
REVIEW
published: 29 March 2019

doi: 10.3389/fimmu.2019.00617

Frontiers in Immunology | www.frontiersin.org 1 March 2019 | Volume 10 | Article 617

Edited by:

Anil Shanker,

Meharry Medical College,

United States

Reviewed by:

Ranjit Chauhan,

Memorial University of Newfoundland,

Canada

Adam J. Gehring,

University Health Network (UHN),

Canada

*Correspondence:

Jiming Zhang

jmzhang@fudan.edu.cn

Zhijun Su

su2366@sina.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

T Cell Biology,

a section of the journal

Frontiers in Immunology

Received: 23 October 2018

Accepted: 08 March 2019

Published: 29 March 2019

Citation:

Yu X, Zheng Y, Mao R, Su Z and

Zhang J (2019) BTLA/HVEM

Signaling: Milestones in Research and

Role in Chronic Hepatitis B Virus

Infection. Front. Immunol. 10:617.

doi: 10.3389/fimmu.2019.00617

BTLA/HVEM Signaling: Milestones in
Research and Role in Chronic
Hepatitis B Virus Infection
Xueping Yu 1,2†, Yijuan Zheng 1†, Richeng Mao 2, Zhijun Su 1* and Jiming Zhang 2*

1Department of Infectious Diseases, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, China, 2Department of

Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China

B- and T-lymphocyte attenuator (BTLA) is an immune-regulatory receptor, similar to

CTLA-4 and PD-1, and is mainly expressed on B-, T-, and all mature lymphocyte cells.

Herpes virus entry mediator (HVEM)-BTLA plays a critical role in immune tolerance and

immune responses which are areas of intense research. However, the mechanisms of the

BTLA and the BTLA/HVEM signaling pathway in human diseases remain unclear. This

review describes the research milestones of BTLA and HVEM in chronological order and

their role in chronic HBV infection.

Keywords: B and T lymphocyte attenuator, herpes virus entrymediator, hepatitis B virus, milestones, T lymphocyte

INTRODUCTION

Lymphocyte activation is either triggered by the binding of an antigen to its T-cell receptor
(TCR) or B-cell receptor (BCR), or by a co-stimulatory or co-inhibitory molecule. T-cells require
a co-stimulatory or co-inhibitory molecule for activation, and the quality of T-cell activation is
determined by multiple co-signaling molecules. These co-signaling molecules exert both positive
stimulatory and negative regulatory functions, and act in a coordinated fashion to maintain
homeostasis in the body (1). Co-signaling molecules can be classified into two major families
based on their structure. The first is the CD28 immunoglobulin (Ig) superfamily (IgSF), which
includes CD28, cytotoxic T-lymphocyte antigen-4 (CTLA-4), inducible costimulatory molecule
(ICOS), programmed death-1 (PD-1), and B and T-lymphocyte attenuator (BTLA); and the second
is the tumor necrosis factor receptor (TNFR) superfamily (TNFRSF) (2), which includes CD27,
CD30, 4-1BB, herpesvirus entry mediator (HVEM), CD40, and OX40 (Table 1). Similar to PD-
1 and CTLA-4, BTLA inhibits T-cell reactions and cytokine production. Studies on hepatitis B
virus (HBV) infection revealed that BTLA is highly expressed in virus-specific T-cells, which have a
potent inhibitory effect on events such as T-cell proliferation and cytokine secretion. In this review,
we discuss the biological characteristics of BTLA and its ligand and explore their role in chronic
HBV infection.

CHRONOLOGICAL MILESTONES IN BTLA RESEARCH

BTLA, also known as CD272, was first discovered by genetic screening in 2003 for its ability to
inhibit Th1 cell expression (3). It is the third new member of the CD28 family discovered after
PD1 and CTLA-4. In 2005, HVEM was identified as the specific ligand of BTLA (4). HVEM
belongs to the TNFR family and not to the Ig family, thus shattering the perspective that receptors
exclusively bind with ligands belonging to the same family. In the same year, the herpes simplex
virus type 1 glycoprotein D (HSV1 gD) was found to bind to HVEM from the crystal structure
of the BTLA-HVEM complex (5). In the subsequent year, the structure, distribution, biological
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TABLE 1 | Co-stimulatory and inhibitory receptors of the immunoglobulin

superfamily and TNFR family.

Inhibitory molecules Co-stimulatory molecules

Family Molecule Ligand Family Molecule Ligand

IgSF PD-1 PDL1 IgSF CD28 CD80

PDL2 CD86

CTLA-4 CD80 ICOS ICOSL

CD8 TNFRSF HVEM BTLA

BTLA HVEM LIGHT

Tim3 Galectin-9 4-1BB 4-1BBL

TIGIT PVR, OX40 OX40L

CD155 CD27 CD70

CD112 CD30 CD30L

Lag3 MHCII CD40 CD40L

CD160 HVEM GITR GITRL

characteristics, and other aspects of BTLA and HVEM were
summarized in a review by Murphy et al. (6), who also found
a third motif, Grb-2, in the cytoplasmic domain of BTLA that
recruits the PI3K-subunit p85, thus, leading to stimulation of
the PI3K signaling pathway and subsequent T-cell activation
(7). In 2008, the receptors HSV1 gD, LIGHT (also known
as tumor necrosis factor superfamily 14) and CD160, were
found to constitute the CD160/BTLA/LIGHT/HVEM signaling
regulatory network and to share the same ligand HVEM as BTLA
(8). The interactions within the CD160/BTLA/LIGHT/HVEM
signaling regulatory network were summarized in the 2009
review by Cai and Freeman (9). Specific BTLA antibody clones
such as 6F7 and 6H6 targeting the BTLA-HVEM pathway
were summarized in the review by Crawford and Wherry (10).
Between 2006 and 2010, the roles and mechanisms of BTLA
and its ligands in human diseases [organ transplantation (11),
intestinal inflammation (12), rheumatoid arthritis (13), and
cancer (14)] and animal models [experimental cerebral malaria
(15), mouse pancreatic transplantation (16)] were reported.
In 2010, Murphy et al. extensively reviewed the biological
characteristics and functional mechanisms of BTLA and its
ligands and discussed newer findings (17). A new anticancer
therapy based on the blockade of the BTLA signaling pathway
was proposed next, which signaled the beginning of a new chapter
in cancer intervention (18).

Since HVEM could interact with many co-signaling
molecules, Kronenberg et al. proposed that the
CD160/BTLA/LIGHT/HVEM signaling regulatory network
plays a bidirectional regulatory role in various inflammatory,
autoimmune, and infection immune reactions (19). Decreased
BTLA levels could induce hyper-activation of T-lymphocytes
in HIV patients thereby promoting disease progression (20).
In 2012, the HVEM-BTLA signaling pathway was found to
be upregulated in the hepatic tissue of HBV-related acute-on-
chronic liver failure (HBV-ACLF) patients, promoting disease
progression (21). In addition, BTLA was also found to promote
the development and progression of sepsis through inhibition

of the innate immune response (22). In 2013, sirolimus was
identified to promote the inhibitory effects of BTLA thereby
enabling immune tolerance in kidney allograft (23). BTLA was
reported to be a crucial molecular marker in “immunoparalysis”
associated with sepsis (24), and it was shown to play a positive
regulatory role in viral diseases; for example, mouse hepatitis
virus-3 (MHV3) could induce BTLA signaling and cause acute
liver failure through phagocyte activation and secretion of the
inflammatory molecules TNF-α and FGL2 (25). This study
advances our understanding of the conditions that determine the
negative or positive regulatory functions of BTLA in humans. In
2015, the BTLA-HVEM signaling pathway was reported to help
intestinal parasites (especially Strongyloides stercoralis) maintain
an infection (26). In the following year, vaccines blocking the
BTLA/CD160 signaling pathway were shown to activate the
response of aged CD8+ T cells to the influenza virus (27).
Moreover, dendritic cells (DCs) were demonstrated to induce
extrathymic T-cell tolerance in peripheral Treg cells through
the BTLA-HVEM signaling pathway (28). In 2017, Shen et al.
found that the CD8+ BTLA+ T-cells isolated lymphocytes from
the liver tissue of chronic hepatitis B patients had a negative
regulatory effect on Treg cells that helped HBV to avoid immune
clearance (29). In 2018, BTLA was elucidated as a marker of
a less cytotoxic T-cell subset in diffuse large B-cell lymphoma
(30). Our summary listing the research milestones on the BTLA
signaling pathway in chronological order aims to distill the
information from previous findings and provide more explicit
research directions for future studies (Figure 1).

BIOLOGICAL CHARACTERISTICS OF BTLA

Structure and Distribution of BTLA
The human BTLA gene, located on chromosome 3 at 3q13,
comprises 5 exons with a total length of 870 bp and 3 mRNA
splice variants, which encode functional proteins that can be
transcribed. Of note, a single nucleotide polymorphism (SNP)
of BTLA, rs76844316, was reported to protect against chronic
hepatitis B infection (31). BTLA is a type I transmembrane
glycoprotein comprising 289 amino acids. Its protein structure
is similar to those of CTLA-4 and PD-1 and includes an
extracellular domain, transmembrane domain, and cytoplasmic
domain (32). The cytoplasmic domain contains three conserved
signals: a growth factor receptor-bound protein-2 (Grb-2)
recognition motif, an immunoreceptor tyrosine-based inhibitory
motif (ITIM), and an immunoreceptor tyrosine-based switch
motif (ITSM) (6). ITIM is present in many inhibitory receptors,
binding and activating the tyrosine phosphatases SHP-1 and
SHP-2, which dephosphorylate tyrosine and inhibit protein
tyrosine kinase (PTK)-dependent cell activation (33). The Grb-
2 recognition motif recognizes the Grb-2 protein, recruits the
PI3K protein subunit p85, and stimulates the PI3K signaling
pathway, promoting cell proliferation and survival (7). Thus,
the BTLA molecule exerts bidirectional regulatory effects:
immunosuppressive effects like those on CTLA-4 and PD-1
proteins, and positive stimulatory effects like those on CD28 and
ICOS proteins.
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FIGURE 1 | Timeline of milestones in BTLA research.

BTLA is widely expressed in the spleen, thymus, and lymph
nodes and has relatively low expression or is even undetectable
in the liver, kidney, heart, brain, and other organs. BTLA
is constitutively expressed in the CD4/CD8 single-positive T-
cells in the mouse thymus (34). Additionally, BTLA is highly
expressed in the B-lymphocytes, splenic macrophages, and bone
marrow-derived dendritic cells (35, 36).

BTLA Ligands
HVEM, a BTLA-specific receptor, was discovered in 2005 (4).
HVEM is expressed in peripheral T- and B-cells, highly expressed
in resting T cells, immature B cells, and memory B cells,
but downregulated in activated T and B cells. Additionally, it
is widely expressed in monocytes, dendritic cells, Treg cells,
neutrophils, and NK cells (37, 38). HVEM binds with many
co-signaling molecules, both co-stimulatory and co-inhibitory.
The roles that both types of signaling molecules play in
signaling pathways also differ and are known as the “molecular
switch” models of activation and inhibition. Binding of HVEM
to LIGHT or LIGHT-α exerts a positive stimulatory effect,
stimulating lymphocyte proliferation, activation, and inducing
inflammatory reactions; thus, providing a second stimulatory
signal for T cell activation (4, 39). Binding of HVEM to BTLA
and CD160 exerts an adverse regulatory effect, inhibiting T-
and B-lymphocyte activation and proliferation and binding
of HVEM to HSV-gD, which can promote HSV infection in
target cells (4). Taken together, HVEM provides either an
inhibitory or activating signal and bi-directionally regulates host
immune function.

FUNCTION OF BTLA IN IMMUNE CELLS

Function of BTLA in T-lymphocytes
Resting T-cells express high levels of BTLA andHVEM, and T cell
activation increases or decreases BTLA and HVEM expression,
respectively. The inhibition of T-cells by BTLA is stronger than
the positive stimulatory effect of HVEM on T-cells and prevents
the excessive activation of T-cells (40). Importantly, HVEM
and BTLA in naive T-cells form a cis-heterodimeric complex,
blocking the external CD160 and other co-signaling molecules
from binding to HVEM and stimulating the NF-κB signaling
pathway, therebymaintaining T-cell tolerance (41). Other studies
have demonstrated that BTLA gene knockdown mice (Btla−/−)
resist immune tolerance induced by high doses of oral or
intravenous ovalbumin (OVA) and show increased infiltration
by the inflammatory cells in multiple organs, which induces
an autoimmune hepatitis-like disease (42, 43). Additionally,
Liu et al. could not induce immune tolerance in Btla−/−

mice injected with large doses of OVA, indicating that BTLA
plays a vital role in inducing and maintaining T cell immune
tolerance (44).

In addition to inhibiting antigen-specific TCR signaling-
mediated T-cell proliferation, activation (CD25, CD38), and
cytokine (IL-2, IL-4, and IL-10) production (34), the BTLA
molecule also crosslinks HVEM on Treg cells to facilitate their
immunosuppressant effects (40). Further, BTLA inhibits IgG
production by inhibiting secretion of IL-21 by follicular helper T
cells (Tfh) and plays an essential role in the immunomodulation
in body fluids (45). γδT cells play an important role in
pathogen clearance and the anticancer process. Interestingly,
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BTLA inhibits γδT cell proliferation, and secretion of IL-17, TNF-
α, and other cytokines leading to decreased pathogen clearance
and anticancer activity (46, 47).

In some instances, binding of BTLA and HVEM mediates
immunosuppressive activity and transduces positive signals that
promote the survival of effector T cells (33). Tarun et al. used
the vaccinia virus to infect mice and found that the BTLA-
HVEM co-signaling system significantly promotes the survival
of antiviral effector CD8+ T-cells and production of memory
cells (48). Competitive stimulation with BTLA antibodies
(3C10) can induce IL-10-dependent Treg cell production and
helps prolong allogeneic heart transplantation in mice (49).
Additionally, BTLA can increase the number and activity of
γδT cells and reduce the symptoms of skin inflammation;
Btla−/− mice have a reduced number of γδT cells and are
susceptible to dermatitis. Moreover, BTLA/HVEM crosslinking
was observed to suppress T-cell activation thereby preventing
allograft rejection (21, 50). Variations of the therapeutic
strategy that targets the BTLA-HVEM immune checkpoint
pathway using specific antagonist antihuman antibodies has
been published in numerous patents, and drugs capable of
targeting BTLA-associated signaling pathways such as the
HVEM-BTLA-CD160 pathway are currently in preclinical trials
(10, 18, 51, 52).

Function of BTLA in B-lymphocytes
BTLA research has been focused on T-cells, and there are
few studies on its function in B-cells. Previous studies have
revealed that BTLA is an inhibitory receptor in the BCR
signaling pathway. BTLA attenuates the BCR signaling strength
by recruiting and phosphorylating the protein tyrosine kinase
Syk and downregulating B-cell linker protein, phospholipase
E2, and NF-κB (53). Ware et al. suggested that HVEM-
BTLA signaling can inhibit CPG-mediated B-cell proliferation
and cytokine secretion, and increase stimulatory molecules on
their surface; however, this does not affect IL-8 and MIP-
1β secretion, indicating that BTLA can partially, but not
completely, inhibit B cell function (54). However, studies have
also shown that BTLA expression in B cells is decreased
in elderly patients, leading to reduced responsiveness to the
trivalent influenza vaccine, and an inability to produce useful
IgG antibodies and mount effective vaccination responses
(55). Thus, BTLA can play bidirectional regulatory roles in
specific cases.

Function of BTLA in Dendritic Cells
Latest research demonstrates that HVEM-BTLA signaling plays
an important role in maintaining the stability of the internal
environment for DCs. Lymphotoxin beta receptor (LT-βR)
signaling can induce DC proliferation, whereas HVEM-BTLA
signaling inhibits their proliferation, indicating that HVEM-
BTLA signaling can regulate LT-βR signaling by feedback and
maintain the stability of the internal environment for DCs
(56). Interestingly, an adenoviral infection can cause immature
DCs to express high levels of CCR7 and exhibit relatively
strong migration ability. However, their immune tolerance is
relatively poor, and the overexpression of BTLA promotes

the maintenance of immune tolerance in these DCs (57).
Additionally, BTLA+ DCs in the thymus increase the expression
of CD5 in peripheral T-cells through the BTLA-HVEM signaling
pathway and promote the differentiation of these CD5+T-
cells into Treg cells; thus, producing extrathymic T-cell
tolerance (28).

Function of BTLA in Natural Killer T-cells
Like B- and T-lymphocytes, BTLA is expressed in the natural
killer T (NKT) cells. Nakajima et al. established that BTLA−/−

NKT mice secrete more cytokines (IFN-γ and IL-4) after α-
galactosylceramide stimulation and Con A injection compared
to wild-type mice, and develop Con A-induced hepatitis more
easily(58). However, these phenomena were not observed in
BTLA−/−NKT−/− mice. When BTLA−/−NKT and NKT cells
were purified in vitro and injected into the NKT−/− mice,
mice receiving BTLA−/−NKT cells were more susceptible to
Con A-induced hepatitis, indicating that BTLA inhibits hepatitis
induced by NKT cells. Similarly, Fu et al. also found in a Con A-
induced acute hepatitis model that NKT cells inhibit the release
of cytokines (IFN-γ, IL-2, and IL-4) and liver tissue damage
through upregulation of the HVEM-BTLA signaling pathway
(59). Additionally, in mouse models of breast cancer, type I
NKT cells express high levels of BTLA, and blocking the BTLA
signaling pathway may promote infiltration of tumors by NKT
cells and inhibit tumor growth (60).

FUNCTION OF BTLA IN CHRONIC HBV
INFECTION

HBV infection severely endangers the health of humans.
Globally, there are 240 million patients with HBV infection
and every year 0.65 million patients die of HBV-associated end-
stage liver diseases, whose leading mortality causes include liver
cirrhosis (LC), liver failure (LF), primary hepatic cell carcinoma
(HCC). China is an endemic zone for HBV infection, and
currently, there are 93 million individuals with chronic HBV
infection, with ∼20 million chronic hepatitis B (CHB) patients.
Thus, HBV infections put a heavy economic burden on the
country and its citizens. However, the pathogenic mechanism
of chronic HBV infection is not completely understood.
Research has demonstrated that the HBVM-BTLA signaling
pathway plays an important role in cancer (14, 61), intestinal
inflammation (12), autoimmune diseases (4, 13), viral infection
(62), transplant rejection (11, 63), and in continuous chronic
HBV infection. In this section, we have provided a current
summary of the literature review of BTLA’s functions in chronic
HBV infection.

Function of BTLA in CHB
The response of HBV-specific T cells (CTL) in CHB patients
is extremely weak and can be undetectable. Additionally, the
inability to clear HBV leads to continuous infection. Multiple
reports suggest that this could be related to an increased
expression of T-cell co-inhibitory molecules (e.g., PD-1).
However, recent studies demonstrated no significant difference in
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the peripheral blood expression of BTLA in CD4+ and CD8+T-
cells in CHB patients and healthy individuals, (64, 65) and the
expression levels were similar in the 4 subtypes of CD4+T and
CD8+T cells (TEM-RA, Tnaïve, Tcm, and Tem) (64). Although
these results suggest that BTLA does not contribute to chronic
HBV infection (or CHB immune tolerance); however, there is
a difference in BTLA expression levels in the CTL subtypes
in the peripheral blood and liver tissue of CHB patients. In
the peripheral blood, BTLA is primarily expressed in the Tcm
subtype of T-lymphocytes, whereas BTLA in the liver tissue is
primarily expressed in the Tem subtype. This difference may
be due to an upregulation of BTLA expression during homing
of the peripheral CD8+T-cells to the liver that prevents the
excessive transition of CD8+T cells from the CM stage to the
EM stage helping HBV evade immune clearance. Thus, it is
believed that CD8+BTLA+T cells can negatively regulate Treg
cells (29). Critically, during the four different phases of HBV
infection [immunotolerant phase, immune clearance phase, non-
reactive or minimally (non-) replicative phase, and reactivation
phase], the immune reactions produced by HBV are different.
Additionally, Zhou et al. established that the frequency of
rs76844316 in the G allele of the BTLA gene was decreased in
patients with severe CHB, which leads to increased sensitivity
to HBV and association with severe disease (31). Therefore, the
total BTLA expression level in CHB patients should not be viewed
in isolation and BTLA expression in patients at different phases
of HBV, across multiple severities of CHB should be analyzed.
However, to our knowledge, no such data have been reported.

Function of BTLA in HBV-LC and HCC
CHB is a progressive disease, and the Chinese “Guidelines for
the Prevention of Chronic Hepatitis B (2015 edition)” indicates
that every year, ∼2–10% of the CHB patients develop LC and
3–6% of the LC patients further progress into HCC (66). Liao
et al. suggested that BTLA expression levels are significantly
upregulated during the progression of CHB from HBV-LC to
HCC, but the expression levels of other co-signaling molecules
(CD28, ICOS, LIGHT) do not change significantly indicating
that BTLA plays an important role in the progression of CHB
(67). BTLA is expressed at high levels in the peripheral blood of
patients with HBV-associated HCC and directly correlates with
CD4+CD25+Treg cells. These findings indicate that BTLA may
have a synergistic effect with CD4+CD25+Treg cells, inhibit T-
cell activity and proliferation, and promote the immune evasion
of tumors (68). Thus, blocking the BTLA signaling pathway
inhibits T-cell function, “awakens” cancer recognition by the
immune system, and clears tumor cells. Blockade of the HVEM-
BTLA signaling pathway has been developed as a new anticancer
method (18, 52) and has led to more anticancer drugs that
target BTLA (Figure 2).

Function of BTLA in HBV-ACLF
Liver failure is categorized as acute liver failure (ALF), subacute
liver failure (SALF), acute-on-chronic liver failure (ACLF), and
chronic liver failure (CLF) (69). Clinically, the most common
form of HBV-associated liver failure is HBV-associated acute-on-
chronic liver failure (ACLF) in China, and it has a high mortality

FIGURE 2 | BTLA-associated signaling pathways (stimulatory/inhibitory) regulate the outcomes of HBV-ACLF, liver graft tolerance/rejection, liver cirrhosis and

hepatocellular carcinoma. The “?” indicates that the role of the Grb-2 pathway in T-cell-related immune diseases requires further validation and has not been fully

characterized yet. HBsAg, Hepatitis B antigen; TCR, T-cell receptor; MCH, major histocompatibility complex.
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rate of 60–80% (70). ACLF was first coined in 1995 describing
a condition arising from two simultaneous insults to the liver,
one ongoing and one acute (71). The consensus statements of
its definition, diagnosis and management were approved at the
2008 Annual Conference of the APASL in Korea (72), which was
defined as an increasingly recognized syndrome characterized
by an acute deterioration of liver function and organ/system
failure (liver, kidney, brain, coagulation, circulation, and/or
respiration) (70).

Since ACLF is a complex and dynamic disease, its diagnostic
criteria consists of several components: the cause and timeframe
of liver disease development and deterioration following an acute
insult, whether patients have pre-existing chronic liver disease,
the symptoms of liver failure to determine ACLF severity, and
how to assess short- (28-day) and long-term (90-day) prognoses
(73). HBV infection is one of the causes of acute liver injury, and
BTLA/HVEM signaling contributed to HBV-ACLF pathogenesis
(21). The timeframe of acute liver disease development after
an acute insult has not been rigorously defined, but several
studies have reported it to range from 2 to 8 weeks (73). The
role of BTLA/HVEM signaling in determining this timeframe
has not been characterized yet. BTLA/HVEM signaling pathway
has been shown to prevent T-cell activation thereby promoting
malignancy (Figure 2) (68). However, blocking this co-inhibitory
pathway limited antitumor response against pre-existing tumor
cells (74). The association of BTLA/HVEM signaling with the
symptoms of liver failure in ACLF has not been elucidated.
Although BTLA/HVEM signaling was shown to be implicated
in poor HBV-ACLF outcome (21), further research is necessary
to determine its potential as a biomarker for both short- and
long-term clinical prognosis.

Currently, there are no effective therapeutic measures, and it
is critical to search for early diagnostic markers or targets for
pharmacological intervention. Upregulation of PD-1/PD-L1 (75)
and BTLA/HVEM (21) pathways in the liver tissue of HBV-
ACLF patients were reported. Additionally, BTLA is primarily
expressed in fibrinogen-like protein-2 and CD68+ phagocytes
and is not expressed in the liver tissue of CHB patients or healthy
individuals. Thus, BTLA has the potential to be a diagnostic

marker for HBV-ACLF and provides a theoretical basis for HBV-
ACLF immunotherapy.

CONCLUDING REMARKS

Since the discovery of BTLA in 2003, multiple studies have
established that the HVEM-BTLA signaling pathway plays
an essential immunomodulatory role in autoimmune disease,
cancer, transplantation, infection, and other diseases. Recent
studies on the HVEM-BTLA signaling pathways have unveiled
the function and mechanism of BTLA, and targeted anticancer
drugs for HVEM-BTLA are emerging. However, whether BTLA
participates in inducing functional exhaustion of T-cells and its
pathophysiological roles in associated diseases (e.g., HBV-ACLF)
remain unknown. It is predicted that studies targeting BTLA will
lead to a new revolution in unraveling the immune mechanisms,
diagnosis, and treatment of chronic HBV infection.
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