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Abstract

Introduction: Malaria is re-emerging in most of the African highlands exposing the non immune population to deadly
epidemics. A better understanding of the factors impacting transmission in the highlands is crucial to improve well targeted
malaria control strategies.

Methods and Findings: A conceptual model of potential malaria risk factors in the highlands was built based on the
available literature. Furthermore, the relative importance of these factors on malaria can be estimated through
‘‘classification and regression trees’’, an unexploited statistical method in the malaria field. This CART method was used to
analyse the malaria risk factors in the Burundi highlands. The results showed that Anopheles density was the best predictor
for high malaria prevalence. Then lower rainfall, no vector control, higher minimum temperature and houses near breeding
sites were associated by order of importance to higher Anopheles density.

Conclusions: In Burundi highlands monitoring Anopheles densities when rainfall is low may be able to predict epidemics.
The conceptual model combined with the CART analysis is a decision support tool that could provide an important
contribution toward the prevention and control of malaria by identifying major risk factors.
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Introduction

In recent decades, highland malaria has been a re-emerging

problem in several African countries (Ethiopia, Uganda, Kenya,

Tanzania, Rwanda, Burundi and Madagascar) [1,2]. The spread

of the vectors distribution in time and space exposes the human

populations to a longer transmission season, resulting in a higher

endemicity in the highlands [2,3]. Besides, deadly epidemics have

been reported with higher frequency and amplitude than before

[4–8]. Indeed, one fifth of the African population lives in malaria

epidemic prone areas (desert fringes and highlands) [9] where all

age groups are at risk of clinical malaria due to the limited

acquired immunity. The prevention of malaria in these vulnerable

populations is one of the priorities for African leaders and

international agencies [10]. It is therefore, essential to understand

the factors fuelling these changes in transmission so that a national

strategy plan for epidemic prevention and control can be

developed in highland regions.

Former reviews published in 1998, have already shown the

complexity of factors influencing malaria in the highlands [1,2].

The aim of the present paper is to summarise and update current

knowledge on malaria in the African highlands and build a

detailed conceptual model for malaria risk factors. Furthermore,

the hierarchical importance of these factors in influencing

highland malaria is analysed using classification and regression

trees [11,12] (CART). The CART method is useful when dealing

with large numbers of explanatory variables and to explore the

relationship and the relative importance of these variables as well

as all their possible interactions [13]. Therefore, the conceptual

model associated with a CART analysis may be used as a decision

support tool and different strategies could be implemented

according to the risk factors that emerge as the strongest.

The CART method has been applied to the case of Burundi

[14,15] and measures to control and/or prevent malaria epidemics

are discussed.

Methods

Conceptual Model of Malaria Risks Based on Literature
Review

Based on a literature review, different risk factors for malaria in

African highlands were identified and used to build a conceptual

model. The main source of information was peer-reviewed

scientific papers obtained through PubMed using the keywords
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‘‘malaria’’ and ‘‘highland’’. Both English and French papers,

describing malaria potential risk factors, were used. The reported

risk factors were classified according to their impact on vectors or

on malaria. To determine the hierarchical importance of different

risk factors identified in the conceptual model the Classification

and Regression Trees (CART) were used on malaria data

collected in the Burundi highlands.

The Burundi Database
A four year vector control programme based on one annual

round of Indoor Residual Spraying (IRS) was carried out between

2002 and 2005 in the central highland province of Karuzi, and

targeted the valleys where malaria transmission was the highest

[14]. Long Lasting Insecticidal Nets were also distributed in 2002.

Between 2002 to 2007, bi-annual (May and in November) cross

sectional surveys (11 surveys in total) were carried out. The

sampling process has been described in detail elsewhere [14,15].

Briefly, during each survey 450 to 800 houses were sampled and in

each of them (total houses sampled for the 11 surveys = 8075),

Anopheles were collected with the spray catch method and a blood

slide of two randomly selected persons (#9 and .9 years old) were

taken (total person included in the 11 surveys = 12745, 36% of the

houses have no children #9 and in 6% of the houses one of the

selected person was not present). Of the 14,932 An.gambiae and

An.funestus that were collected, 244 were found positive for the

detection by ELISA of the P.falciparum circumsporozoite antigen

(Wirtz). The intervention was evaluated on the basis of the

reduction of the Anopheles density, infective bites by house by

month and the prevalence of malaria infection. Information on

location, housing construction (house size, open eaves, type of wall

and roof), livestock, separate kitchen, vector control activities (net

use and spraying), prior antimalarial treatment, sex and age was

also collected. Altitude and distance to the marsh of the houses

were registered with a hand held positioning system (GPS 76,

GarminH). Average monthly minimum and maximum tempera-

tures and monthly rainfall, recorded at the Karuzi meteorological

station, were obtained from the Institute of Geography of Burundi

(IGEBU).

A verbal informed consent was obtained for the blood slides and

mosquito collections. For children the consent was obtained from

the parents. In case of refusal, other persons or the next household

was asked for consent. Present procedure and the full study was

approved by the Commission of Medical Ethics of the Prince

Leopold Institute of Tropical Medicine Antwerp (Belgium) (ref

number 04 26 4 461). At the time of the implementation of the

study, the Institutional Ethical Committee was not functional in

Burundi. However, the Ministry of Health signed an agreement

for the vector control program and the study design

and the national malaria control program (LMTC) offered close

collaboration.

The Classification and Regression Trees CART
The non-parametric classification and regression tree (CART)

models were used to explore the influence of the specified

determinants on the level of malaria and on the Anopheles

mosquitoes. CART models are useful tools to explore the

interactions between a desired outcome and its determinants

[13,16]. They can be used to analyse either categorical

(classification) or continuous data (regression). The analysis was

performed using a commercial software CART (Salford systems

Inc. Version 6, California, USA).

CART expresses its result in the form of a decision tree, a

different approach that the better known parametric techniques.

Indeed, in classical regressions the linear combinations are the

primary method of expressing the relationships between variables

while in CART this does not need to be linear or additive and the

possible interactions do not need to be pre-specified or of a

particular multiplicative form. The decision tree resulting of

CART is useful, as well as the resulting flexibility and the non-

parametric form (no assumption upon the covariates). The CART

has many advantages, but they are known as instable approach.

Therefore in the present paper we used a 10-fold cross-validation

as estimation method.

The building of a classification tree begins with a root (parent)

node, containing the entire set of observations, and then through a

process of yes/no questions, generates descendant nodes. Begin-

ning with the first node, CART finds the best possible variable to

split the node into two child nodes. In order to identify the best

splitting variable (called splitters), the software checks all possible

variables, as well as all possible values of the variable to be used to

split the node. In choosing the best splitter, the program seeks to

maximize the average ‘‘purity’’ of the two child nodes. The

splitting is repeated along the child nodes until a terminal node is

reached. Each terminal node is characterized by an average and a

standard error (computed as the standard deviation divided by the

square root of the terminal node size), indicating the purity of the

node. The node purity measure provides an indication of the

relative homogeneity (the inverse of impurity) of cases in the

terminal nodes. If all cases in each terminal node show identical

values, then node impurity is minimal, homogeneity is maximal,

and prediction is perfect (at least for the cases used in the

computations). In this study, the Gini criterium and the interclass

variance were used as a measure of ‘‘purity’’.

The one standard error rule was applied to select the best tree

(the smallest tree within 1 standard error of the minimum error

tree). A minimum terminal node size of 500 samples was selected

to avoid too many splits, with few observations, that are difficult to

explain.

CART also provides a ranking based on the overall contribution

of each variable in the construction of the tree. This ranking

indicates the importance of each independent variable as a

predictor. Importance, for a particular variable, is the sum across

all nodes in the tree of the improvement scores between this

variable and the best splitter at a particular node [17]. It is thus

possible that a variable enters the tree as a second most important

splitter in many nodes (and will not appear on the tree), but never

as the primary splitter. However, such variable will turn out as

very important in the overall variable ranking. The advantage of

such an approach is that important contributing determinants are

not ignored.

Multivariate Analysis
The risk of a positive slide was analyzed using the survey logistic

regression in Stata 9.2 (Stata Corporation, College station, Texas,

USA), taking into account the study design. Negative binomial

regressions were used for the analysis of Anopheles density.

Results

Conceptual Model for Malaria Risk in the Highlands
Due to the instability of transmission in the highlands small

variations in environmental or human related factors can have

dramatic consequences for malaria transmission due to the low

immune status of the human population [2,18]. Different factors

can drive these changes by influencing the vector’s transmission

capacity and the malaria prevalence. These factors can be grouped

into three classes: (1) environmental factors such as altitude and

climate (2) biological factors related to the Anopheles vector, the

Highland Malaria Risk Factors
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parasite and the human host and (3) human related factors such as

socio-economic status, health access, migration, gender, control

activities (IRS, Insecticide Treated Net, and Intermittent Preventive

Treatment) and land use (irrigation, deforestation, swamp drainage

and living near breeding sites). The conceptual model of potential

factors influencing either Anopheles (density, longevity or/and contact

with human) or the outcome of transmission (i.e. malaria infection)

in the highland based on this review is presented in Figure 1.

Factors Influencing Malaria
The ability to suppress malaria infection depends on immunity.

It has been suggested by Bodker et al [18] that acquired immunity

is both exposure and age-dependent. At a moderate level of

transmission (0.1 to 2 infective bites per year), immunity will

develop with increasing transmission but after a certain age (2–3

years) the immunity will increase independently of transmission

intensity. In low transmission areas, however, prevalence of

infection and clinical malaria is similar in all age group.

The health status of the population can have an important

impact on malaria infection. Malnutrition can weaken children’s

immunity and can increase the level of malaria morbidity and

mortality [19,20]. HIV has been associated with an increased level

of malaria transmission in South Africa [21] and might enhance

malaria parasite biomass [22]. It has also been observed that in all

endemic areas the frequency of malaria infection is greater in

pregnant women than in non pregnant women. However in low or

unstable transmission areas, as in the African highlands, the effect

of parity is less pronounced or even absent as compared to high

transmission areas [23,24]. Conversely, the implementation of

intermittent preventive treatment is able to reduce morbidity in

pregnant women [25] and in infants [26].

In several countries, the resurgence of malaria has been largely

attributed to the emergence and spread of drug-resistant parasites

[27–31]. The progressive build-up of the gametocyte pool in the

human reservoir, contributing to the speed-up of transmission,

could be enhanced by treatment failure of sulphadoxine-

pyrimethamine [32] and chloroquine [33]. In contrast, imple-

mentation of effective treatment, such as artemisin-based combi-

nation therapy, has improved cure rates, decreased the gametocyte

carriage and, therefore, resulted in a reduced transmission in low

endemic areas [34,35].

Finally, other human related factors, such as population

migrations [36], reduced health systems access and quality [2],

and socio-economic pressure as population growth [37,38] have

also created favourable conditions for malaria outbreaks.

Factors Influencing the Vector
Mosquitos’ longevity, man-vector contact and mosquito density

determine the transmission capacity of a vector population. First, a

reduction in the lifespan of the mosquitoes will reduce the

sporozoite rate and hence the proportion of infective bites.

Secondly, a reduction in the human/vector contact will decrease

the proportion of blood meals taken on human hosts. Finally, a

reduction of vector density by decreasing the number of adult or

larvae will also reduce transmission intensity. Therefore, any

factors that could have an impact on any of these components will

influence malaria transmission. According to the MacDonald

model [39], factors influencing longevity will have more impact on

Figure 1. Conceptual model of important risk factors affecting malaria prevalence in the African Highlands. Factors are regrouped in 3
main classes (environmental factors: green label, biological factors: grey label and human related factors: blue label). Dependant variables included in
the CART analysis are displayed in red and predictor variables are highlighted in white.
doi:10.1371/journal.pone.0008022.g001

Highland Malaria Risk Factors

PLoS ONE | www.plosone.org 3 November 2009 | Volume 4 | Issue 11 | e8022



transmission than factors affecting human-vector contact or

density.

An altitude around 1800–2000 meters is usually considered the

upper limit at which malaria transmission occurs [2], though

epidemics have been recorded higher [19,40]. The protective

effect of altitude is linked to the decreasing temperature (0.5uC to

0.7uC every 100 meters) [41,42] that increase the length of the

extrinsic incubation period and hence decrease the likelihood of a

mosquito of becoming infectious. Optimum conditions for the

extrinsic development of the parasite are between 25uC and 30uC
[41]. Below 16–19uC, few vectors survive before the completion of

the sporogonic cycle and this temperature range is often

considered as the threshold for stable malaria transmission.

Temperature will also influence the longevity and feeding

frequency of a mosquito [41]. The aquatic stage of anopheline is

also temperature-dependant. In the laboratory, it was observed

that larval mortality increased considerably when water temper-

ature fell below 18uC [43]. In the Kenyan highlands only a small

larval survival rate was observed at low temperatures [44], while

the adult mosquitoes could survive inside houses with tempera-

tures 2 to 3 degrees higher [40,45]. Therefore, a small temperature

rise either through seasonal variability [46], local microclimatic

changes due to modification in vegetation cover [47–49] or to

global warming [50–52] can increase malaria transmission and

distribution.

Rainfalls play a crucial role in malaria epidemiology by

providing breeding sites for the aquatic stages of the mosquito’s

life cycle. In addition, rainfalls may increase the relative humidity;

above 60%, adult mosquitoes longevity, and consequently the

vectorial capacity, increases [41]. By contrast, heavy rain showers

can flush away and kill larvae [53]. In Ethiopia [19] and Uganda

[5,54], for example, extreme rainfalls were associated with malaria

epidemics, whereas in Tanzania malaria decreased after intense

rains [55].

In highland settings, malaria transmission is negatively corre-

lated with the increasing breeding sites-house distance [14,56,57].

The topography of highland areas affects the spatial distribution of

breeding sites [58] and land use changes such as irrigation [59–61]

and swamp drainage for cultivation [49,62,63], or for other

economic activities [64] can create new habitats for malaria

vectors such as Anopheles gambiae and Anopheles funestus. Environ-

mental management, on the other hand, can reduce the

availability of the breeding sites and therefore decrease the vectors

density population [65–67]. Vector control measure such as

Indoor Residual Spraying (IRS) and Insecticide Treated Net (ITN)

have a high impact on transmission by reducing both Anopheles

survival and density, if the coverage is high [14,68]. ITN can also

decrease the man-vector contact and reduced the human blood

feeding success [69,70]. However, the emergence of insecticide

resistance may decrease the effectiveness of these methods [71,72].

Household and socio-economic factors have also an impact on

malaria transmission by influencing the human-vector contact. For

example, more mosquitoes were found in poorly constructed

houses as compared to good ones [73,74]. Other factors such as

keeping livestock inside the house, type of roof, open eaves, no

separate kitchen were also associated with increase malaria risk

[74,75].

Identifying and Ranking Malaria Risk Factors in Burundi
Highlands

Based on the conceptual model (Figure 1), variables among the

three classes (environmental, biological and human related) were

chosen from the Burundi database and used in the CART analysis

to determine their impact either on the malaria infection or on

Anopheles prevalence. Predictive factors for malaria infection

included in the CART analysis were Anopheles density, density of

infected Anopheles, individual human characteristics (age and sex),

housing condition, past treatment, and ‘‘survey’’ (Table 1). The

variable ‘‘survey’’ was included in the prevalence model and

represents the possible time-related variables not covered by the

parameters included in the vector density and prevalence analyses.

To study the impact on Anopheles, two regression trees were

developed, one with as a dependant variable the Anopheles density

and the other with as a dependant variable the density Anopheles

infected with Plasmodium falciparum. The factors included were

monthly rainfall and average monthly minimum and maximum

temperatures (during the month of the survey and 1–2 months

before the survey), housing conditions, vector control activities,

and environmental parameters. Detailed information of the houses

was available on the Burundi database. The characteristics of these

houses were scored by size and type of construction: house size

(floor area size score 1 = ,25 m2, score 2 = 25–50 m2, score 3 =

.50 m2), type of wall (1 = thatch, 2 = mud, and 3 = bricks), type

of roof (1 = thatch, 2 = iron sheet, and 3 = tiles) and separate

kitchen (1 = no, 2 = yes). The score of the houses’ characteristics

were combined and divided into four categories (score 4–5 = 1:

poorest housing condition, score 6–7 = 2, score 8–9 = 3, score 10–

11 = 4: best housing condition). Other factors presented in the

conceptual model were not collected in our study and could not be

included in the analysis.

The overall ranking of predictor variables for malaria infection

is presented in Table 2. Surveys and Anopheles density were the two

most important factors. Housing conditions that influence the

human-vector contact and infective mosquitoes were ranked third

and sixth. In the corresponding classification tree, Anopheles density

was the first splitter (Figure 2) with a higher prevalence (46.3%) in

houses with more than 1.5 Anopheles compared to houses with

fewer Anopheles (prevalence: 26.5%). Then, in this last group,

malaria prevalence was lower in surveys 5 to 11 (year 2004 to

2007) compared to surveys 1 to 4 (year 2002 to 2003). For surveys

1 to 4, age was the best discriminator with a threshold at 38 years;

for survey 5 to 11, malaria prevalence among people living in the

poorest houses was higher (25.7%) than for people living in the

better-constructed ones (16.8%). Each terminal node is categorised

as 1 (positive) or 0 (negative) depending on whether the proportion

of 1’s exceeds the proportion of 1’s in the population (30.3%).

From all negative individuals, 62% (5486/8889) were properly

classified as negative (0) and from all positive individuals, 64%

(2484/3856) were properly classified as positive.

As the Anopheles density was more important than density of

infected Anopheles for the malaria prevalence (Table 3), only the

regression trees with the dependent variable Anopheles density is

presented. According to their overall discriminatory power,

monthly rainfalls in the current month and with one month time

lag, emerged as the two strongest predictors for Anopheles density,

followed in decreasing order of importance by spraying, net-use,

monthly minimum temperature with one and two months time

lag, distance to the marsh, altitude of houses, and two months

lagged rainfall (Table 3). The resulting regression tree is presented

in Figure 3. Every important predictor divides a node into two

sub-nodes, either with a higher or a lower Anopheles density. A one

month lag minimum temperature was the main splitter, with

temperature below 14.05uC being associated with the lowest

Anopheles density (mean: 1.6/house). This sub-node was further

split by the variable ‘‘distance to the marshes’’. The highest

Anopheles density (2.4/house) was found in houses located within

500 metres from the marsh. Spraying was then the best

discriminative variable for this node, Anopheles density being the

Highland Malaria Risk Factors
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highest (3.4/house) when houses were not in treated areas. In this

group, current rainfall had an influence over the average Anopheles

density. Monthly rainfalls higher than 96.2 mm were associated

with lower Anopheles density (2.2/house). Monthly rainfalls in the

preceding month (power: 99.9), net use (power: 83.1) and a lag

minimum temperature of two months (power: 73.0) did not

appeared as main splitters in the final tree whereas they were

identified as important risk factors for Anopheles density as shown by

Table 1. Dependant and predictor variables introduced in the CART analysis.

Dependant Variable Variables classes Predictor Variables

Anopheles density Environmental

# Precipitation Current monthly rainfall (mm)

Lagged monthly rainfall: one month (mm)

Lagged monthly rainfall: two months (mm)

# Temperature Lagged average monthly minimum Tu: one month (uC)

Lagged average monthly minimum Tu: two months (uC)

Lagged average monthly maximum Tu: one month (uC)

Lagged average monthly maximum Tu: two months (uC)

# Altitude Altitude houses (m)

� #1450

� 1451–1500

� 1501–1550

� 1551–1600

� 1601–1650

� .1650

Human

# Land use Distance to marsh (m)

� #300

� 301–500

� 501–700

� 701–900

� 901–1100

� .1100

Type of crop in the marsh

� Two crops/year: rice and vegetable

� Rice field

� Vegetable

� Few crop

# Housing Houses: Poor constructions to better (4 categories)

# Livestock Keep livestock in the houses (yes/no)

# IRS Houses in sprayed areas (yes/no)

# ITN Use of insecticide treated nets (yes/no)

Positive slide Biological

Age (year)

Sex

Anopheles density (number/houses)

Density of infected Anopheles (number/houses)

Human

Past treatment during the 3 previous months (yes/no)

Keep livestock in the houses (yes/no)

Sleep under a net (yes/no)

Houses: Poor constructions to better (4 categories)

Other

Survey

doi:10.1371/journal.pone.0008022.t001
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the ranking of their discriminatory power (Table 3). This happens

because at many stages in the tree building they are important but

never as important as the main splitter.

The logistic regression, showed the surveys, density of Anopheles,

type of house, age and density of infected Anopheles to be significant

(results not shown). In the negative binomial regression the

following variables were retained in the model: rain with one and

two months time lag, spraying, net used, minimum temperature

the previous month, distance to the marsh, altitude and presence

of animals in the house.

Discussion

The conceptual model used in this study provides insight into a

complex disease, malaria, by listing all the potential risk factors

influencing the transmission capacity of the vectors and the

malaria prevalence in the human population. Such complexity

requires tools that enable to explore the hierarchical importance of

these risk factors. CART is such a tool and has proven its

adequacy and usefulness in other contexts, for example for bovine

spongiform encephalopathy [76]. In the Malaria field, CART

methods (or similar approaches) were used for spatial analysis of

malaria risk [77] and has been also used recently to report the

accurate and dynamic picture of the main risk factors for malaria

infection in Vietnam [12].CART has also the advantage to be user

and reader friendly, generating results comprehensible for a wider

audience. Therefore, the conceptual model-CART approach will

lead to a better understanding of the local malaria epidemiology

and a better targeting of control efforts.

Variables of high importance in both CART and parametric

analysis are almost the same, except for rain which is non

significant in the logistic regression. This can probably be

explained by high colinearity with other rain variables (with time

lag of one and two months). A CART Analysis works with (non-

predefined) interactions. This means that the only similarity

Table 2. Ranking of predictor variables for malaria prevalence
by their overall power as discriminant.

Variables Power

Survey 100

Anopheles density 91.0

Housing 23.4

Age 22.8

Past malaria treatment 5.8

Density of infected Anopheles 1.0

Livestock in houses 0.9

Sleep under a net 0.0

Sex 0.0

doi:10.1371/journal.pone.0008022.t002

Figure 2. Classification trees representing the important risk factors for malaria prevalence. The high risk groups are displayed in red. In
each node 0 stands for negative slide and 1 for positive slide. The following variables were selected by the tree as important risk factors: Anopheles
density (Ano-density) with a cut off of 1.5 Anopheles per house; Survey number 1 to 11; Housing (1,2 = poorest housing condition and 3,4 highest
housing condition); Age with a cut off of 38 years old.
doi:10.1371/journal.pone.0008022.g002
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between a parametric model and a CART model will be the first

split. The variable ‘‘animals’’ was ranked last in CART, probably

because it is important only at the first step in the CART tree (in

analogy with a parametric model) but will only contribute a small

part to the final importance which is obtained by adding

contributions at different splits in the tree.

In the Burundi highlands, Anopheles density, hence vector density

because 95% of the collected Anopheles mosquitoes in the study area

were malaria vectors [14], was the second best predictor for

malaria infection in the human population. The infective

mosquitoes were only the sixth most important predictor variable

in the overall ranking. Likewise, Bodker et al [78] found that a

decline in malaria transmission due to altitude is primarily due to a

diminution of vector abundance and, to a lesser extent, by a

reduction in the proportion of infective mosquitoes. In other

studies, such as in Kenya and Madagascar, the importance of

vector density in unstable highland malaria has been highlighted

[60]. Indeed, in these countries the introduction of irrigated rice

fields increased the number of breeding sites available and exposed

the non-immune population to higher transmission. Nevertheless,

in endemic areas this is not always the case, as sometimes very

high vector densities may result in a low vectorial capacity [79].

In the current study, important variations in prevalence

between surveys were observed and cannot be explained by any

of the factors included in this analysis. Some variables such as

health access, health status, and migration were not collected

during the surveys. Differences between the first four surveys (year

2002 and 2003) and the later ones could be attributed to the

normal decline of malaria prevalence after the malaria epidemic of

2001 [80], or/and to the introduction of the artemisin-based

combination therapy and Rapid diagnostic tests in December

2003. Mosquitoes and blood samples were collected at the same

time. However, when considering the time needed for the parasite

to develop in the vector and the human host, postponing the

parasitological surveys by about one month could have improved

the predicting power of Anopheles density on malaria prevalence. It

is surprising that ITN-use was not associated with lower malaria

prevalence while it affects the Anopheles density, a good predictor of

malaria infection. This finding can be explained by the absence of

any additional impact of ITNs on transmission once an almost full

coverage of IRS has been achieved [14].

In the highlands of Burundi, the CART analysis shows that

factors responsible for high Anopheles density are in agreement with

other studies, i.e. lower rainfall [55–57], no vector control

implementation in houses [75], higher minimum temperatures

[46,81], and breeding sites proximity [56,57]. In Karuzi, high

rainfalls, current or during the previous month, have a negative

effect on vector densities. Minimum temperatures with 1 or 2

months time-lag are good predictors of vector density, while

housing conditions and livestock in houses have no predictive

value. This is most likely due to the predominance of the very

anthropophilic vector An. gambiae s.s. (Form S) [82] in the study

area (98.2% of the complex) [14]. In the presence of An. arabiensis,

however, it has been observed that keeping cattle in houses was a

risk factor for malaria [74,83]. It is also obvious that vector control

(ITN or IRS) using pyrethroids insecticides reduces vector density

in treated houses due to either the excito-repellent effect of this

class of insecticides or by their mass killing effect. Monthly

cumulated temperature and rainfall data have been used in this

work to assess the importance of environmental factors. However

to improve the predictive value, weekly data in different locations

would me more appropriate especially in the highland where

environmental factors can vary greatly between valleys and where

precipitations are non homogenous through the month.

Climate (temperature and rainfall) is an important determinant

of malaria vectors in the highlands. An increase in temperature

and a modification in the frequency or amount of rainfall would

affect future transmission of malaria. Different biological and

statistical models have assessed the potential geographical

expansion of malaria ranging from small change in the next

Figure 3. Regression trees representing the important risk
factors for the Anopheles density per/house (Ano__density). The
selected splitting variables (Minimum temperature the previous
month = Tumin-1; Distance of the houses to the marsh with a cut off
of 500 metres; Area sprayed or not; Monthly rainfall in the current
month with a cut off of 96.2 mm) are shown in the nodes.
doi:10.1371/journal.pone.0008022.g003

Table 3. Ranking of predictor variables for Anopheles density
by their overall power as discriminant.

Variables Power

Rain 100

Rain - 1 month 99.9

Spraying 96.7

ITN use 83.1

Tumin - 1 month 75.7

Tumin - 2 months 73.0

Distance from the marsh 42.3

Altitude of the houses 31.9

Rain - 2 months 22.4

Type of crop 9.3

Tumax - 1 month 5.7

Tumax - 2 months 5.1

Housing 0.0

Livestock in houses 0.0

doi:10.1371/journal.pone.0008022.t003
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decades [84,85] to substantial extension by the end of the century

[86,87]. However, the models mostly focused on the effect of

temperature on parasites development and vectors’ longevity and

should now evaluate the impact of climate warming on Anopheles

density. The attribution of malaria resurgence observed in recent

decades in African highlands to climate change is, however,

controversial. Whereas some studies have associated warming

trends to the increase in malaria transmission [50,52,88], other

studies show no association [8,89–91]. In Burundi, Bonora et al

[92] attribute the upsurge of malaria infection in the highlands,

leading to the 2000 epidemic, to climate warming. However, in

Karuzi, temperatures were recorded since 1988 and no warming

trend in monthly mean, maximum and minimum temperature was

observed until the 2000 epidemic [93]. An unusually high

precipitation occurred at the time of the malaria peak (November)

and could not be responsible for triggering the epidemic, but was

probably responsible for stopping or decreasing malaria transmis-

sion [53]. For instance, it is commonly known that high rainfalls

trigger malaria epidemic whereas in our analysis lower precipita-

tions were associated with high Anopheles density, a powerful

predictor of malaria infection. The long dry season preceding the

epidemic of 2000 [80] may thus partially explain the outbreak.

Monitoring the most important malaria risk factors will help to

more adequately prevent and control increases in malaria. The

forecasting or early detection of meteorological variability could

give time for the implementation of control measures. For

example, in the Burundi, a more careful monitoring of the impact

of rainfall and temperature variability on Anopheles density should

be further evaluated and a threshold risk set up in different areas.

If such rainfall variability could be assessed a few weeks in

advance, the follow up of the residual Anopheles densities when

rainfall is low could help in predicting or early detecting epidemics

[94]. However, the practical use of these data for early warning

and especially the initiation of expansive control interventions

based on it, need to be assessed especially in the highlands [95].

It is commonly known that decrease in mosquito longevity will

be more effective to limit transmission than reducing mosquito

density [39]. Therefore, environmental management aiming at

larval source reduction will contribute little to the overall decrease

of malaria burden [96]. However, this activity may be re-

considered when Anopheles density is the most important factor

determining malaria infections; any means aiming at reducing the

Anopheles population will have an impact on malaria. In the past,

successful malaria prevention programmes targeting larval habitats

were implemented [97,98] even in Africa [66]. During the last few

years renewed consideration has been given to environmental

management [99] with a recent successful implementation

reported in the highlands of Ethiopia [67]. To be fully effective,

such a method necessitates substantial information on vector

ecology, distribution of breeding sites and local environmental

conditions and should be combined with insecticidal adult vector

control [100]. Indeed, in our model, IRS and ITN are strongly

related to Anopheles density.

In conclusion, the conceptual model of highland risk factors in

combination with a CART analysis can be considered as a simple

decision support tool to better understand malaria epidemiology in

various high altitude settings. The ranking of risk factors will help

to prioritize monitoring, prevention and control efforts to the most

important identified factors.
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