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Abstract

Bayesian empirical likelihood (BEL) models are becoming increasingly popular as an attrac-

tive alternative to fully parametric models. However, they have only recently been applied to

spatial data analysis for small area estimation. This study considers the development of spa-

tial BEL models using two popular conditional autoregressive (CAR) priors, namely BYM

and Leroux priors. The performance of the proposed models is compared with their

parametric counterparts and with existing spatial BEL models using independent Gaussian

priors and generalised Moran basis priors. The models are applied to two benchmark spatial

datasets, simulation study and COVID-19 data. The results indicate promising opportunities

for these models to capture new insights into spatial data. Specifically, the spatial BEL mod-

els outperform the parametric spatial models when the underlying distributional assump-

tions of data appear to be violated.

1 Introduction

Bayesian Empirical Likelihood (BEL) was first described by Lazar [1] based on early work on

Empirical Likelihood (EL) by Owen. [2]. The concept of EL has been utilised in Bayesian anal-

ysis in a few instances since then [3–5]. As discussed in section 2.1, BEL provides a flexible

semi-parametric approach using data to approximate the likelihood part of the Bayesian poste-

rior combined with parametric prior distributions.

In the context of spatially dependent data, an EL framework has been developed in a fre-

quentist set-up by [6–9]. BEL semi-parametric approaches for modelling areal spatial data

were introduced by Chaudhuri and Ghosh [10] and Porter et al. [11, 12] extending small area

estimation models [13]. These BEL spatial approaches utilise a Bayesian hierarchical frame-

work, moving the spatial dependence structure to the parameter model of the hierarchy and

applying EL at the observation level [11]. Chaudhuri and Ghosh [10] introduced area-level

and unit-level models which can handle both discrete and continuous data, with informative

priors for the spatial random effects as independent Gaussian and Dirichlet process mixture

priors. Porter et al. [11] provided a more complete version of this model and suggested that it
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could be generalised to spatial-temporal dependencies. Porter et al. [11] formulated a different

set of lattice priors utilising the generalised Moran basis [14] for the spatial dependencies. The

multivariate extension of the Bayesian semi-parametric hierarchical empirical likelihood

(BSHEL) model of [11] can be found in Porter et al. [12].

The BEL models described above focused on a selected set of priors to represent spatial

dependence. However, a class of very popular spatial priors, namely the conditional autore-

gressive (CAR) priors for the spatial random effects in areal data analysis [15, 16] have still not

been explored in the BEL framework. This article aims to address this research gap by formu-

lating BEL semi-parametric spatial models applying CAR structure priors for spatial random

effects.

The CAR priors have gained in popularity for modelling spatial data and have been

employed in many applications of spatial modelling, such as disease mapping [17]. Besag et al.

[18] introduced the CAR prior, which has become known as the BYM prior. There are now

many variants of this prior and corresponding model such as the Cressie model [19], the Ler-

oux model [20] and the Lu model [21]. For a detailed comparison of different CAR priors in

spatial analysis under Bayesian parametric framework, see Lee, D. [15] and Rampaso et al.

[16]. The Leroux model has been termed as a flexible CAR structure for modelling spatial ran-

dom effects, since it consists of a spatial dependence parameter (ρ) taking different values

according to the underlying spatial autocorrelation present in the data. Special cases of the Ler-

oux model give rise to independent Gaussian (IG) priors for spatial random effects, when no

spatial structure is needed for modelling areal data (ρ = 0) and intrinsic conditional autore-

gressive (ICAR) priors (ρ = 1) (which is the spatial prior considered in the BYM model [18]).

The present study develops spatial BEL (SBEL) models for the two popular CAR prior

choices, Leroux and BYM. The proposed SBEL-CAR models are illustrated by analysing areal

data on an irregular lattice using two benchmark examples on Scottish lip cancer [22] and

North Carolina Sudden Infant Death Syndrome (SIDS) [23] and on a very recent example

using a COVID-19 dataset for Europe. The performance of the proposed models and other

existing spatial BEL models and their parametric counterparts are compared. The models are

also illustrated using simulated datasets.

The development of the proposed models is achieved by extending the Bayesian semi-

parametric hierarchical empirical likelihood (BSHEL) model proposed by Porter et al. [11]. A

recap of the BEL models, BEL spatial models and Bayesian parametric spatial models is given

in Section 2. Section 3 contains the formulation of SBEL-CAR models with an algorithm to

obtain the posterior samples of interest. The application of the SBEL-CAR models to case

study datasets and simulated datasets is reported in section 4 followed by a final discussion in

section 5.

2 Background on BEL and SBEL models

This section briefly discusses the background of Bayesian Empirical Likelihood (BEL) and

SBEL models from the existing literature.

2.1 Recap of Bayesian Empirical Likelihood

2.1.1 Empirical likelihood. Empirical likelihood (EL) combines the reliability of non-

parametric methods with the flexibility and effectiveness of the likelihood approach. To over-

come the model misspecification and lack of robustness of parametric likelihood, a non

parametric analogue of parametric likelihood, empirical likelihood (EL) was introduced by

Owen [2]. Owen [2] initially showed that the empirical likelihood ratio function can be used to

construct confidence intervals for a sample mean, for a class of M-estimates and for other

PLOS ONE Evaluation of spatial Bayesian Empirical Likelihood models in analysis of small area data

PLOS ONE | https://doi.org/10.1371/journal.pone.0268130 May 27, 2022 2 / 27

to access the data for analysis in the current article.

The links to download the datasets used are as

follows: 1. Scottish Lip Cancer Data: https://

geodacenter.github.io/data-and-lab/scotlip/ 2.

North Carolina SIDS data: https://r-spatial.github.

io/spdep/articles/sids.html 3. COVID19 data:

https://github.com/owid/covid-19-data/tree/

master/public.

Funding: This research was supported by an ARC

Australian Laureate Fellowship for project,

Bayesian Learning for Decision Making in the Big

Data Era under Grant no. FL150100150, awarded

to KM. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0268130
https://geodacenter.github.io/data-and-lab/scotlip/
https://geodacenter.github.io/data-and-lab/scotlip/
https://r-spatial.github.io/spdep/articles/sids.html
https://r-spatial.github.io/spdep/articles/sids.html
https://github.com/owid/covid-19-data/tree/master/public
https://github.com/owid/covid-19-data/tree/master/public


differentiable statistical functional. These methods were framed as a non-parametric extension

of Wilk’s [24] theorem for parametric likelihood ratio tests. Later EL was expanded to all types

of estimating equations by Qin and Lawless [25].

For data points y1, y2, . . ., yn from some unknown distribution F, let some functional of F,

say θ(F) be the parameter of interest for inference, which can be determined by the estimating

equation f(yi, θ), the EL function can be defined as [26]:

L̂ðF;wÞ ¼
Yn

i¼1

wi

where wi satisfies the constraints
Pn

i¼1
wi ¼ 1;

Pn
i¼1

wifiðyi; θÞ ¼ 0.

Constrained optimisation of the EL ratio function is carried out in order to obtain the EL

weights wi which are used as the data likelihood [26].

The introduction to estimating equations to EL enhanced the scope of EL to so many differ-

ent applications including generalised linear models [27], time series [7, 28], econometrics

[29], regression analysis [30, 31], survival analysis [32] and many more. For more details on

scope and benefits of EL, we refer the reader to Lazar [33], which reviewed EL from its initia-

tion to current developments in theory and applications along with the potential for future

development.

2.1.2 Bayesian Empirical Likelihood. In a Bayesian framework, the likelihood is used to

update a prior distribution and yield posterior inference. Lazar [1] argued that EL can be used

in place of a density and, when multiplied by the prior of the parameter of interest can yield

the posterior distribution in such an analysis. The author explored the characteristics of Bayes-

ian inference using EL instead of a parametric density. Starting from a well-known parametric

case of a Bayesian posterior of a parameter vector θ, Schennach [3] derived an EL posterior

using the weights attributed to the sample points, which can be calculated by solving an

entropy maximisation problem,

pðθjYÞ / pðθÞ
Yn

i¼1

w�i ðθÞ ð1Þ

where p(θ) is a given prior on θ and ðw�
1
ðθÞ; . . . ;w�nðθÞÞ is the solution of:

argmax
Xn

i¼1

� wilogðwiÞ; subject to
Xn

i¼1

wi ¼ 1;
Xn

i¼1

wifiðyi; θÞ ¼ 0 ð2Þ

where fi(yi, θ) represents the estimating equations of interest. The estimating equations can be

formulated using the moment conditions [3, 5].

Schennach [3] showed that for large enough samples, BEL offered similar results to Bayes-

ian bootstrap. Grendar and Judge [34] demonstrated that the BEL is an asymptotic approxima-

tion of the Bayesian maximum a posteriori probability estimators, which provided additional

justification of using EL in a Bayesian setting [33]. As a result, BEL has been applied in quantile

regression [35], ridge and lasso regression [36], inference with complex survey data [37], spa-

tial data analysis [10–12, 38] and so on. The spatial analysis using BEL is the focus of this

study.

2.2 Recap of spatial BEL models

BEL has been employed for spatial analysis [10–12] and has been found to provide precise esti-

mation of small area effects. Chaudhuri and Ghosh [10] introduced area-level and unit-level

models using BEL by extending the traditional Fay-Herriot (FH) model [13] using an EL
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framework. Following this work, Porter et al. [11] provided a general hierarchical Bayesian

framework incorporating empirical likelihood methodology for the data model and developed

a spatial FH model used for small area estimation (SAE). The FH model for SAE can be written

as:

Yi ¼ mi þ �i ð3Þ

mi ¼ X0iβþ ci ð4Þ

where Yi, i = 1, 2, . . ., n, is a design unbiased estimate of μi, and �i is an unstructured error

component, Xi is the vector of covariate information for area i, β is the vector of fixed covariate

effects, β = (β0, β1, . . ., βp)0 and ψi is spatially referenced random effect for area i.
Three forms of priors for the vector of spatial random effects ψ were specified by these

authors. [10] suggested two options, the first being an independent and identically distributed

(iid) Gaussian distribution (IG) with variance A following a Inverse Gamma distribution

ci � Nð0;AÞ;A � InverseGammaða1; a2Þ:

The second option was a Dirichlet process (DP) with a Gaussian base,

cijG � G;GjA � DPða;GÞ

where DPða;GÞ represents a Dirichlet process with precision parameter α and a base measure

G0� N(0, A)

In contrast, Porter et al. [11] suggested the use of a generalised Moran basis [14],

pðψÞ / tq=2exp �
1

2
tψ�

0M0

ðBþ � BÞMψ�
� �

where, B is an adjacency matrix for a first order Intrinsic Gaussian Markov Random Field

(IGMRF) (rank (B) = n − 1), B+ is a diagonal matrix with {B+}i,i = ∑j2ne(i) bij, bij = 1 if i and j are

adjacent and 0 otherwise, where j 2 ne(i) means that area j is a neighbour of area i. The vector

M is the set of eigen-vectors corresponding to the non-zero eigenvalues of the matrix PcBP
0

c

with Pc = I − X(X0X)−1 X0, q is the number of non-zero eigenvalues of the matrix PcBPc and ψ
= Mψ�. The prior for the precision parameter τ can be specified as Gamma with hyperpara-

meters chosen to be equal to 1 [11]. The prior for the vector of the fixed covariate effects is

specified as

β � Nðβ�; g � 1AI2Þ

where g represents the Zellner prior [39] evaluated at a fixed point estimate 10 [10]. In the

prior specification for fixed effects β of [11], A is replaced by τ−1.

For estimation of the fixed effects and the random effects, BEL was used in spite of having a

parametric distribution for Yi. The estimating equations for (β, ψ) are:

Xn

i¼1

wiðyi � miÞ ¼ 0 ð5Þ

Xn

i¼1

fwiðyi � miÞ
2
=s2

i g � 1 ¼ 0: ð6Þ

Details of the MCMC sampling algorithm using a random walk Metropolis-Hastings (MH)

approach can be found in [11].
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2.3 Recap of Bayesian parametric spatial models

For parametric modelling of disease incidence or mortality, the response variable is usually

assumed to have a Poisson distribution with an expected value that can be explained by a func-

tion of covariates and spatial random effects. Gaussian distributions are also commonly used

for modelling continuous response variables such as standardised incidence ratios (SIRs) on a

logarithmic scale [40] and binomial distributions are used for proportions [41]. There is a

wide range of spatial prior formulations in the literature, including basis functions, deforma-

tion methods, Gaussian Markov Random Field (GMRF) methods etc. [42]. A very popular

class of priors to represent these random effects is the conditional autoregressive (CAR) mod-

els, which are a special case of the GMRF methods. Different model formulations using differ-

ent CAR models are available in the literature [15, 43]. A short recap of BYM, Cressie, Leroux

and generalised Moran basis priors are provided in this section.

2.3.1 The BYM model. A very well-known Bayesian hierarchical model for disease map-

ping was proposed by Besag et al. [18], known as the BYM model. The spatial random effects ψi
(from Eq 4) comprise a spatial random effect term ui with a CAR prior structure and an unstruc-

tured random component vi. The conditional distribution of each ui can be expressed as:

uijuj;i6¼j � N
P

jwijuj
P

jwij
;
s2
uP
jwij

 !

where wij are the weights defining the relationship between area i and its neighbours and the

prior mean is a weighted average of the other uj [18]. A popular specification of the weights is

the intrinsic CAR prior in which wij = 1, if area i and j are adjacent and wij = 0 otherwise. The

prior for unstructured random component vi is typically considered to have an independent

normal distribution,

vi � Nð0; s2
vÞ:

The above model specification with both structured and unstructured random components

(ui and vi) with or without covariates is also known as a convolution model.

If only a structured component ui is used to express the spatial dependence (e.g. in Eq 4 ψi =

ui), then the model is termed an intrinsic model, which is the simplest possible CAR prior that

does not estimate the strength of the spatial correlation between the random effects [15]. Intrin-

sic CAR distributions are commonly used to model the spatial dependency structure in Bayes-

ian hierarchical models, such as the intrinsic Gaussian Markov Random Field (IGMRF) [44].

2.3.2 Cressie model. The Cressie Model, also referred to as a proper CAR model was pro-

posed by Ver Hoef and Cressie [45] and Stern and Cressie [19]. The model considers a single

set of random effects with an additional spatial correlation parameter ρ. The plausible range

for ρ, 0� ρ< 1 makes the Cressie model a proper CAR model and becomes the ICAR model

for ρ = 1. According to this model, the random effect ψ has a multivariate normal distribution

[16]:

ψ � MVNðm; s2Q� 1Þ ð7Þ

where the (i, j)th element of Q is defined as:

Qij ¼

ni; i ¼ j;
� r; i � j;
0; otherwise:

8
><

>:
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The univariate full conditional distribution for ψi|ψ−i can be written as:

cijψ � i � N r
1

ni

X

j�i

cj;
s2

ni

 !

ð8Þ

where ψ−i denotes the random effect vector with the ith component deleted. The conditional

variance is the same as for the intrinsic CAR model and the conditional expectation is

expressed as a weighted average of local random effects with weight ρ and zero overall average

weighted by 1 − ρ. A drawback of this model pointed out by Rampaso et al. [16] is that the con-

ditional variance depends on the number of neighbours even in the absence of spatial

dependence.

2.3.3 Leroux model. The Leroux spatial model, proposed by Leroux et al. [20] proposed

the following distribution for the spatial random effects ψi (from Eq 4)

ψ � MVNð0;DÞ ð9Þ

with a singular covariance matrix D. Leroux et al. [20] proposed the generalised inverse of D
as:

D� ¼ fð1 � rÞI þ rRg=s2 ð10Þ

where R is the intrinsic autoregression matrix which represents the neighbourhood structure

of the regions with typical element,

Rij ¼
ni; i ¼ j

� Iði � jÞ; i 6¼ j

(

where ni is the numbers of neighbours of region i and I(i� j) is an indicator function taking

value 1 when i and j are adjacent.

The term ρ is introduced as a spatial dependence parameter, ρ 2 [0, 1], with the two

extreme cases giving rise to the independence model (i.e., ψi = vi and D = σ2I, where I is an

identity matrix) and intrinsic autoregression (i.e., ψi = ui and D = σ2R−). The conditional

moments can be expressed as weighted averages of local moments [46]:

Eðcijc� iÞ ¼
1 � r

1 � rþ rni
� 0þ

rni
1 � rþ rni

1

ni

X

j�i
cj ð11Þ

varðcijc� iÞ ¼
1 � r

1 � rþ rni
� s2 þ

rni

1 � rþ rni

s2

ni
ð12Þ

where ψ−i denotes the random effect vector with the ith element deleted. For ρ close to 1, the

conditional variance becomes close to σ2/ni and for ρ close to 0, the variance becomes close to

σ2, that is independent of the number of neighbours ni [16].

The Leroux Model [46] is more flexible than the earlier models, namely, the BYM model

[18] and the Cressie model [45]. The Leroux model overcomes the shortcoming of the Cressie

model which depended on the number of neighbours even when there was no spatial depen-

dence by inclusion of the spatial dependence parameter ρ which may take the value 0, thus

making the variance term independent of the neighbourhood structure (σ2). The Leroux

model also captures the intrinsic autoregression specified by ICAR BYM Model when ρ = 1.

The flexibility of the Leroux model has been one of the reasons of popularity of this model in

spatial data analysis. This has also motivated the formulation of a BEL model using the Leroux
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prior structure in the present study, which can take the form of the BYM model with intrinsic

autoregression (ρ = 1) and spatially independent model (ρ = 0).

The univariate full conditional distribution for ψi|ψ−i can be written as:

ψijψ � i � N
r

nirþ 1 � r

X

j�i

cj;
s2

nirþ 1 � r

 !

: ð13Þ

2.3.4 Generalised Moran basis priors. The generalised Moran basis priors are shown in

section 2.2 in reference to the BEL spatial models. Hughes and Haran [14] introduced the gen-

eralised Moran basis priors within a parametric framework. The use of generalised Moran

basis priors for spatial random effects is intended for dimension reduction in large spatial data-

set while conducting spatial smoothing. The spatial generalised linear mixed effect models

(SGLMM) [18] was extended by applying generalised Moran basis priors and was named

Sparse SGLMM by Hughes and Haran [14]. The authors provided different applications using

binary, count and continuous data following normal distributions to perform reasonably well

in order to estimate the fixed effects more precisely with reduced dimension and computa-

tional time.

3 Formulation of BEL spatial model applying CAR prior structure

The approach of the present study is to extend the BEL semi-parametric models proposed by

Chaudhuri and Ghosh [10] and Porter et al. [11] by applying the popular CAR prior structures

(Leroux and BYM) for spatial random effects. The proposed Spatial Bayesian Empirical Likeli-

hood Model with a CAR prior, SBEL-CAR takes two forms: a model with a BYM prior (intrin-

sic CAR prior) for the spatial random effects (SBEL-BYM) and a model with a Leroux CAR

prior for these effects (SBEL-Leroux).

The SBEL-Leroux model is formulated below noting the special cases (ρ = 1, 0) give rise

respectively to SBEL-BYM model with intrinsic autoregression and independent BEL model

with an independent Gaussian prior for spatial random effects (SBEL-IG) proposed by Chaud-

huri and Ghosh [10].

The SBEL-Leroux model utilises the parametric prior of the Leroux model for the spatial

random effects, a Gaussian prior for the covariate fixed effects and EL to estimate the parame-

ters of the SAE model (Eqs 3 and 4) without specifying the data distribution of Yi. Thus, this

model formulation is different from those of Porter et al. [11] and Chaudhuri and Ghosh [10]

in terms of prior specification for the spatial random effects. This also required a new MCMC

algorithm to obtain the posterior distributions of interest.

The empirical likelihood (EL) estimating equations utilised for estimating (β, ψ) are in Eqs

(5) and (6) with mi ¼ x0iβþ ci. The constrained optimisation of the EL estimating equations is

well established [26]. Some R packages e.g., gmm [47] and emplik [48] perform the computa-

tion as well. A random walk MH sampling algorithm is proposed to fit the proposed model fol-

lowing the suggestions of Porter et al. [11]. These details are described below.

3.1 Prior distributions of SBEL-CAR models

The prior distribution of the random effect ψ is taken to be a Leroux prior given by Eq (14).

Defining a precision parameter associated with the variance of the random effect as t ¼ 1

s2, the

distribution of random effects ψ can be written as,

ψ � MVNð~0; t� 1DÞ ð14Þ
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where D is a singular covariance matrix with generalised inverse given by Eq (10). For a spe-

cific value of ρ and an intrinsic autoregression matrix R, the prior density of ψ can be specified

as:

pðψjtÞ / exp �
1

2
ψ
0D� ψt

� �

ð15Þ

The prior distribution of the fixed effects β can be specified following the suggestion of

Chaudhuri and Ghosh [10] and Porter et al. [11] as,

β � MVNð~β; g � 1t� 1IpÞ ð16Þ

where g represents the Zellner prior [39], τ is the precision parameter, p is the number of

covariates in the study and Ip is an identity matrix of dimension p × p. We specify ~β ¼ βWLS,

the weighted least squares estimate of β following the suggestion of Porter et al. [11].

There have been many recommendations about choice of g including choosing fixed scalar

or introducing prior for g as well [49–53]. Geinitz [49] outlined three different choices of g and

the intuitive interpretations of the weighting in resulting posterior from a computational per-

spective. The author mentioned if g is chosen to be 1, it implies 50% prior weight and choice of

g as 10 implies 10% prior weights, whereas, increase of g towards infinity leads to a diffuse

prior. So, g is fixed at 10 in the present study following the suggestion of Chaudhuri and

Ghosh [10].

Then the prior density of β can be written as:

pðβjtÞ / exp �
1

2
gtðβ � βWLSÞ

0

ðβ � βWLSÞ

� �

: ð17Þ

The prior distribution of precision parameter τ can be taken as a Gamma distribution [11],

i.e.,

t � Gammaða1; a2Þ: ð18Þ

The prior density of τ can be written as,

pðtÞ / t1þa1exp �
a2

t

� �
: ð19Þ

3.2 MCMC sampling algorithm

The MCMC sampling algorithm was designed and implemented in R and is motivated by the

one provided by Porter et al. [11]. Hence there are similarities in the algorithm steps with dif-

ferences in some models and equations induced by the new prior specification for the spatial

random effects ψi.

1. Obtaining starting values

Using the gmm package [47] in R and the EL estimating Eqs (5) and (6), the maximum

empirical likelihood estimates (MELE) for β are obtained. The initial values for β are cho-

sen randomly from the prior distribution, weights wi are set to 1/n and s2
i is replaced using

the calculated residual variance for estimation purposes. Using the MELE of β and setting

ψ ¼~0 gives the starting values of mi ¼ x0iβþ ψ. The EL weights wi are calculated to satisfy
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the constraint:

Wm ¼
Xn

i¼1

wi ¼ 1;wi > 0 8 i;
Xn

i¼1

wimjðyi;μÞ ¼ 0 8 jÞ

( )

ð20Þ

where mj(yi, μ) are the estimating equations (j = 1, 2) presented in (5) and (6). This calcula-

tion can be made by constrained optimisation using el.test from the emplik [48]

package in R.

2. Sampling spatial random effects, ψ
To sample ψ, a multivariate normal proposal ψ� �MVN(0, S) is used where the proposal

covariance S is tuned by pilot chains [54]. The proposed values are then utilised in the esti-

mating equations below to generate weights w�i :

Xn

i¼1

w�i fYi � x0iβ � ψ�i g ¼ 0 ð21Þ

Xn

i¼1

fw�i ðYi � x0iβ � ψ�i Þ
2
=s2

i g � 1 ¼ 0: ð22Þ

To generate the set of weights, the MELE estimate of β from step 1 is used. If w�i satisfies the

constraint specified in Eq (20), a Metropolis-Hastings (MH) step is performed with the fol-

lowing posterior density ratio:

gc ¼
pðYjc�; bÞpcðc

�
jtÞ

pðYjcðt� 1Þ
; bÞpcðc

ðt� 1Þ
jtÞ

gψ ¼

Qn
i¼1
ðw�i Þexp �

1

2
ψ�

0D� ψ�t
� �

Qn
i¼1
ðwðt� 1Þ�

i Þexp �
1

2
ψðt� 1Þ�D� ψðt� 1Þ�t

� � ð23Þ

where t = 1, 2, 3, . . . is the iteration index and ψ(t−1)� is the value of ψ� in the previous itera-

tion. When t = 1, in the first iteration, ψðt� 1Þ� ¼ ψ0� ¼~0.

To compute the ratio γψ, D− must be estimated given ρ. Ideally, in a parametric set up, ρ is

simultaneously estimated in the MCMC algorithm using an appropriate prior distribution

and proposal distribution for ρ. A similar approach can be adapted in the semi-parametric

approach as well. However, the number of parameters estimated using the SBEL approach

does not leave enough information for effective sampling of ρ. The parameters ψ and ρ are

strongly interdependent, which results in a very difficult posterior space for the Random

Walk Metropolis-Hastings to adequately explore and obtain independent Monte Carlo

draws from. In our investigations of MCMC sampling with free ψ and ρ, we found that

increases the MH kernel variance did not result in more independent samples as even a

small increase resulted in a very low acceptance rate for new parameter values. It is for this

reason we decided to fix one parameter and sample the other. It is to be noted that in sam-

pling spatial random effects, use of Gibbs sampling is predominant in the literature [55,

56]. In SBEL approach, we cannot use Gibbs sampling due to lack of likelihood for the

response variable. Hence, we decided to fix one parameter, ρ and sample ψ, the spatial ran-

dom effects.

A grid search approach is recommended to find an appropriate ρ using the SBEL-CAR
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model structure. The posterior samples under this model can be drawn for each of the pro-

posed values of ρ and identify the most suitable ρ for a given dataset can be determined

using a model performance criterion, such as WAIC [57, 58]. The fixed value of ρ is then

used in the algorithm to sample the spatial random effects. Please see Appendix 2 of S1 File

for illustration.

3. Sampling the fixed effects, β
The vector β is sampled using a MH random walk step with a multivariate normal proposal,

β� � MVNð�β;ΣβÞ with proposal covariance tuned on the basis of pilot chains [54]. If the

generated weights w�i utilising the proposed values β� verify the constraints specified in

(20), a MH step is performed having posterior density ratio as:

gb ¼
pðYjc; b�Þpbðb

�
jtÞ

pðYjcðt� 1Þ
; b
ðt� 1Þ
Þpbðb

ðt� 1Þ
jtÞ

gβ ¼

Qn
i¼1

w�i exp �
1

2
gtðβ� � βWLSÞ

0

ðβ� � βWLSÞ

� �

Qn
i¼1

wðt� 1Þ�

i exp �
1

2
gtðβ�ðt� 1Þ � βWLSÞðβ

�ðt� 1Þ � βWLSÞ

� � ð24Þ

where β�
ðt� 1Þ

and w�iðt� 1Þ
are the values of β� and w�i in the (t − 1)th iteration respectively. For

t = 1, β
�(0) and w�ið0Þ are replaced by the initial estimates of β and weights wi are generated

using the initial β. As described above, g is the Zellner prior [39]. and �β is the weighted least

squares estimate of β [11].

The proposed values are accepted if γβ> uβ where uβ� Unif(0, 1). If Eq (20) is not satisfied,

β(t) is set equal to β(t−1).

Notice that this step is similar to that proposed by [11]. The difference lies in using the val-

ues of ψ� from step 2, which was estimated considering the Leroux model structure.

4. Sampling τ
Following the suggestion of Porter et al. [11], τ is sampled with a Gaussian proposal as

t�
0

� Nðt;StÞ, with a proposal variance tuned based on pilot chains and accepted accord-

ing to a MH step with posterior density ratio as:

gt ¼
pcðcijt

�Þpbðbjt
�Þpðt�Þ

pcðc
ðt� 1Þ

i jtðt� 1ÞÞpbðb
ðt� 1Þ
jtðt� 1ÞÞpðtðt� 1ÞÞ

ð25Þ

where,

pcðcijtÞ ¼ exp �
1

2
ψ
0

iD
� ψit

� �

ð26Þ

pbðbjtÞ ¼ ðβ � β
0

WLSÞðβ � βWLSÞÞgt ð27Þ

pðtÞ ¼ tð1þa1Þexp �
a2

t

� �

ð28Þ

In the numerator of the posterior density ratio in Eq (25), the current values of β, ψ are uti-

lised with the proposed values of τ, τ�. In the denominator, all the values of the previous

iteration are used, and τ� is accepted if γτ> uτ, uτ� Unif(0, 1).
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As per step 3, this step is also similar to that given by Porter et al. [11] with changes in the

posterior density ratio due to the estimation of ψ� in step 2.

5. Steps 2–4 are repeated until convergence.

After convergence, the samples drawn for each of the parameters of interest ψ, β and τ are

stored as draws from the desired posterior distribution and used to obtain inferences of

interest.

3.3 Implementation

The SBEL-CAR models (SBEL-BYM and SBEL-Leroux) were fitted in R using the MH algo-

rithm (section 3.2). An R package called BELSpatial is made available in github (https://

github.com/Farzana-Jahan/BELSpatial) that contains all the necessary code to draw posterior

samples of interest from the proposed SBEL-CAR models using any areal data set. The package

also contains code to draw posterior samples from the BSHEL model [11] and independent

Gaussian model [10]. To implement the algorithm, the R package emplik [48] was used to

calculate the EL weights corresponding to the estimating equations and the package gmm [47]

was used to calculate the maximum EL estimates of the regression coefficients from the data in

order to obtain the starting values of the regression coefficients in the algorithm. The initial

values for the other parameters of interest were randomly generated from the respective prior

distributions. Three parallel chains of 1 million iterations with a burn in period of 100,000 iter-

ations, thinned by 10, were run to fit the models in this present study described below. The

convergence of the MCMC chains was assessed by using visual diagnostics and the Gelman-

Rubin diagnostic. Since no distribution is assumed for the underlying data, a larger number of

iterations is needed to obtain convergence compared to an traditional Bayesian parametric

spatial models. In addition to fitting the proposed SBEL-CAR models, the SBEL-IG model

using independent Gaussian priors proposed by Chaudhuri and Ghosh [10] and the BSHEL

model proposed by [11] were also implemented to compare the performances of the BEL spa-

tial models following the algorithms provided by the corresponding authors. We acknowledge

the existence of a Hamiltonian Monte Carlo (HMC) algorithm [38] and an R package named

elhmc [59] for fitting the SBEL-IG model, but in the present study we have employed a MH

algorithm instead to estimate the posteriors for all four spatial BEL models.

To compare the performance of the SBEL models with their parametric analogues, the IG

model (using an independent Gaussian prior for spatial random effects), the BYM and the Ler-

oux models were fitted using the CARBayes package [60] in R. The generalised Moran basis

prior applied by the sparse SGLMM model was fitted using the R package ngspatial [61].

For comparison purposes, the number of iterations, burn in period and thinning interval were

kept the same for the parametric and spatial BEL models.

3.4 Comparison of model performance

The posterior summaries of the parameters of interest (fixed effects and precision parameters)

using the parametric and SBEL models, along with Gelman Rubin diagnostic value for conver-

gence and WAIC [57] were used as measures of performance of the models. The WAIC, which

has been used in spatial models by many authors, e.g., Aswi et al. [62] and Duncan and Men-

gersen [63]; a smaller value of WAIC indicates a better model fit [57]. There have been two

adjustments of WAIC suggested in the literature and both are viewed as the approximations to

cross validation [58]. The second adjustment to WAIC, proposed by Gelman et al. [58] gives
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more stable version by computing variances for each data points and then summing. In this

present study, the stable version of WAIC [58] is used.

It is to be acknowledged that there are other available model selection criteria such as K-

fold cross validation, information criteria such as DIC, leave one out cross validation among

others [64]. All the model selection criteria described in [64] are for non-spatial Bayesian mod-

els. These criteria are not suitable for validating a spatial model [63]. The reason of not consid-

ering any of these cross-validation techniques for model selection is that the spatial

component of the model adds an additional objective that often competes with goodness-of-

fit. That is, goodness-of-smoothing and goodness-of-fit criteria will often lead to different

“best” models. Additionally, in a spatial setting for small area level data, leaving out one or

more small areas from the model as in cross validation would completely change the neigh-

bourhood patterns, and underlying spatial dependence. Thus the goodness of fit and model

selection for spatial modelling needs different considerations [63]. So we followed the recom-

mendations of Duncan and Mengersen [63] and chose WAIC as the model selection criteria,

as it is showed valid in the context of spatial models as well. While this criteria is not perfect

for spatial models, more research needs to be conducted to find out ways to apply cross valida-

tion or other selection criteria for Bayesian spatial models in small area level, which is beyond

the scope of this current study.

4 Applications

This section presents a thorough investigation of the SBEL-CAR models. The models are

applied to two well-known areal spatial datasets, namely the Scottish lip cancer data and the

North Carolina Sudden Infant death syndrome (SIDS) data. The models are compared with

existing parametric Bayesian spatial models and other existing SBEL models (for details, see

section 3.4). The comparison with the Dirichlet process (DP) prior under BEL framework pro-

posed by Chaudhuri and Ghosh [10] are not made in this article, considering the similar out-

put for IG and DP models reported by these authors. A simulation study is also made to

compare the performances of the parametric and semi-parametric spatial models. At last an

application of proposed and existent SBEL models along with the parametric spatial models

are made to very recent COVID-19 data for Europe in 2020 at the small area level.

4.1 The Scottish lip cancer data

The Scottish lip cancer data is a publicly available spatial dataset compiled by Kemp et al. [22]

and Breslow and Clayton [65]. The Scottish lip cancer data has been analysed by many authors

including Clayton and Kaldor [66] Leroux et al. [46] etc. It contains data on lip cancer inci-

dence in males registered during the 6 years from 1975 to 1980 for 56 small areas (counties) of

Scotland along with information on expected incidence and sun exposure (spatial covariate).

In this project, we use this well-known data set to illustrate the proposed SBEL-CAR models.

To fit the proposed SBEL-CAR approaches with the FH model described in Eqs (3) and (4),

let Yi be the log of the observed standardised incidence ratios, logSIR calculated from the data

by taking the ratio of observed and expected incidences in each of the 56 counties and let μi be

the corresponding expected logSIR for each county. Here, X is a 56 by 2 design matrix, the first

column of which corresponds to an intercept parameter and the second column of which cor-

responds to the measure of sun exposure in each county. The estimating Eqs (5) and (6) are

used in this context to draw posterior samples from the SBEL-BYM and SBEL-Leroux models

using the MH algorithm for MCMC estimation described in section 3.2. The independent

Gaussian spatial model under the BEL framework (SBEL-IG) [10] and the BSHEL model [11]

are also fitted in the same context in order to compare the performances. Under the parametric
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setup, the following model was considered with the CAR priors (ICAR BYM and Leroux),

Moran basis Priors (via Sparse SGLM) and independent Gaussian (IG) priors are employed to

model the spatial random effects ψ:

Yijmi � Nðmi; s2
i Þ ð29Þ

mi ¼ X0βþ ci ð30Þ

The parametric model is chosen to make it compatible with the estimating equations uti-

lised to fit the spatial BEL models. Alternative choices of models are also possible for both the

parametric and semi-parametric set ups, such as a Poisson model for the observed incidence

utilising expected incidence as an offset variable. The estimating semi-parametric models need

to be adjusted to make these comparable.

The comparative performance of the models is summarised in Table 1. It is observed that

all the SBEL models provided similar estimates of posterior means for fixed effects. However,

in the SBEL models, the 95% credible intervals were wider than those of the parametric

models.

Hence the results obtained are encouraging as they show that the estimation for the param-

eters β made from SBEL-CAR models are similar to those obtained by using parametric mod-

els. It is noted that the Scottish lip cancer example is a benchmark data set for which

parametric assumptions hold, so it is not surprising to see parametric models performing

Table 1. Posterior summaries of regression coefficients (β) and precision parameter (τ) for Scottish lip cancer data using Bayesian parametric and semi-parametric

models.

Models Parameters Mean 95% CI Gelman Rubin WAIC

SBEL Models SBEL-BYM β0 -0.008 (-1.65, 1.65) 1.01 452.82

β1 0.437 (-1.27,2.15) 1.00

τ 0.035 (0.024,0.052) 1.00

SBEL-Leroux β0 -0.010 (-1.45, 1.43) 1.00 452.53

β1 0.437 (-1.28,2.16) 1.00

τ 0.035 (0.024,0.052) 1.00

BSHEL β0 -0.025 (-0.89, 0.84) 1.00 452.34

β1 0.429 (-0.77,1.64) 1.00

τ 0.392 (0.005,3.91) 1.00

SBEL-IG β0 -0.025 (-1.31, 1.26) 1.00 452.21

β1 0.43 (-1.27,2.13) 1.00

τ 0.035 (0.024,0.051) 1.00

Parametric BYM β0 -0.014 (-0.22,0.19) 1.00 226.36

β1 0.276 (-0.023,0.555) 1.00

τ 0.369 (0.018,1.58) 1.00

Leroux β0 -0.013 (-0.249, 0.221) 1.00 164.96

β1 0.346 (-0.030,0.663) 1.00

τ 0.043 (0.002,0.52) 1.00

Moran basis β0 -0.013 (-0.25, 0.22) 1.00 163.03

β1 0.434 (-0.030,0.66) 1.00

τ 1.181 (0.005,3.91) 1.01

IG β0 -0.014 (-0.27,0.23) 1.00 161.37

β1 0.43 (0.16,0.70) 1.00

τ 0.123 (0.002, 1.09) 1.01

https://doi.org/10.1371/journal.pone.0268130.t001
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better according to WAIC and posterior distributions. In cases in which it is not straightfor-

ward to assume the parametric distribution, SBEL models can be useful to draw posterior

inference and make predictions.

Figs 1 and 2 show posterior densities obtained by applying the SBEL and parametric spatial

models using different prior structure such as: BYM, Leroux, Moran basis prior and IG prior.

It is noted that the BSHEL model outperforms the SBEL-BYM and SBEL-Leroux models based

on the precision of the posterior estimates of the regression parameters, though the posterior

means are all concentrated around the same value for this case study. According to the WAIC

reported in Table 1, the prediction performance of the SBEL models is very similar irrespective

of the choice of spatial priors. For spatial maps showing smoothed SIRs obtained by SBEL

models and visualisation of posterior distribution from each of the parametric and SBEL mod-

els, see Figs A1 and A2 in S1 File.

4.2 The North Carolina SIDS data

The North Carolina sudden infant death syndrome (SIDS) data is also a publicly available

benchmark dataset containing the annual number of SIDS and death rates per 1000 live births

for each of 100 counties and each of the years between 1974–1975. The data set was first pre-

sented by Atkinson [23] and subsequent analysis and additions were made by Symons et al.

[67] and Cressie [68]. The augmented version of the data is printed in Cressie, N. [69]. A more

recent introduction to this data set is given by Bivand [70]. For evaluating the performance of

the proposed SBEL models in this project, the aggregated counts of SIDS for 1974–78 are mod-

elled using the corresponding spatial covariate (number of non-white births) at small area

levels.

Similar to the previous case study, the proposed SBEL-CAR models are fitted considering

Yi as the log of the observed standardised mortality ratios, logSMR calculated from the data by

taking the ratio of observed and expected mortality in each of the 100 counties. Here μi is the

expected logSMR for each county and X is a 100 by 2 design matrix. The available covariate

Fig 1. Posterior densities of regression coefficients β0 and β1 using spatial BEL models for Scottish lip cancer data.

https://doi.org/10.1371/journal.pone.0268130.g001
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information in the data set is the number of non-white births in each county, denoted by the

second column in X. Other spatial BEL models and parametric spatial models are also fitted to

compare the model performance similar to the Scottish Lip Cancer application.

The posterior estimates of regression parameters and the prediction performance of each

models fitted to the data are presented in Table 2. Among the parametric models, the Leroux

model shows the best performance and among the SBEL models, the BSHEL model performs

the best, although the WAIC values of all the SBEL models are very close. Figs 3 and 4 show

the posterior densities obtained using SBEL models and parametric models. The spatial maps

showing raw and smoothed SMRs obtained by fitting BEL spatial models are shown in the Fig

A4 in S1 File. All these results for this case study also suggest that the choice of spatial priors is

very important when fitting Bayesian parametric spatial models using BYM, Leroux, general-

ised Moran basis priors or IG for spatial random effects but the performance of SBEL models

is very similar irrespective of choices of spatial prior.

4.3 Simulated data

For a more detailed investigation of SBEL models on areal spatial data, data were generated on

expected counts, based on an underlying spatial random field (USRF) following the method

provided by Aswi et al. [62]. A covariate was also generated and the observed counts simulated

so that they are influenced by the covariate effect as well as the USRF. The synthetic data were

generated for a small (25 areas) and a large number of areas (100) for strong and weak spatial

autocorrelation among the small areas. Each of the parametric Bayesian spatial models (BYM,

Leroux, IG and Moran basis) and SBEL models (SBEL-BYM, SBEL- Leroux, BSHEL and SBE-

L-IG) were fitted to five realisations of each of the simulated data scenario taking the log of

Fig 2. Posterior densities of regression coefficients β0 and β1 using Bayesian parametric spatial models Scottish

lip cancer data.

https://doi.org/10.1371/journal.pone.0268130.g002
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standardised incidence ratios, log(SIR) (ratios of observed and expected disease counts) for

each area as the response variable. The model performance was compared by considering the

maximum values of WAIC for each simulation scenario.

An additional scenario of disease data was considered, under which the log(SIR) followed a

mixture distribution consisting of different Gaussian components with outliers.

The comparative performance of the models under the different simulation scenarios

(Table 3) is presented in Table 4. The parametric models fitted assumes a Gaussian distribu-

tion of the response variable (Eq 29). However, the data generated for a small number of areas

(25), does not necessarily reflect a Gaussian distribution (Fig 5). As a result, the SBEL models

performed better than the parametric spatial models (smaller WAIC, Table 4). When the num-

ber of areas increased (to 100), the deviation from the normality assumption was reduced (Fig

5) and as a result the parametric spatial models performed better than the SBEL models. Simi-

lar results are observed for both strong and weak spatial autocorrelation. The results obtained

for scenario 3, where the data contain outliers and mixture distributions (Fig 6) indicate that

the SBEL models perform better than the parametric models for both small and large number

of areas (smaller WAIC, Table 3).

From the simulation, it can be observed that if the underlying distribution of the response

variable is irregular, contains noise or does not adhere to the parametric assumptions for the

underlying distribution, applying SBEL models may be preferable in terms of model fit and

precision of parameter estimates. This might arise in the case of small number of areas so that

the parametric assumption is not satisfied or even in situations where the underlying areal

Table 2. Posterior summaries of regression coefficients (β) and precision parameter (τ) for North Carolina SIDS data using SBEL and Bayesian parametric models.

Models Parameters Mean 95% CI Gelman Rubin WAIC

SBEL Models SBEL-BYM β0 -0.326 (-2.03, 1.37) 1.00 923.01

β1 0.239 (-1.48, 1.97) 1.00

τ 0.018 (0.015,0.0267) 1.00

SBEL-Leroux β0 -0.310 (-1.72,1.09) 1.00 922.85

β1 0.239 (-1.42,1.89) 1.00

τ 0.564 (0.015,2.52) 1.00

BSHEL β0 -0.303 (-1.07,0.48) 1.00 922.44

β1 0.236 (-1.039,1.53) 1.00

τ 0.024 (0.002,0.347) 1.00

SBEL-IG β0 -1.01 -0.284, 2.312 1.00 928.54

β1 0.121 (-1.59,1.84) 1.00

τ 0.019 (0.015,0.026) 1.00

Parametric BYM β0 -0.306 (-0.377, -0.235) 1.00 485.61

β1 0.0325 (-0.122,0.193) 1.00

τ 2.26 (0.446,3.239) 1.00

Leroux β0 -0.306 (-0.345,-0.267) 1.00 187.85

β1 0.067 (-0.094, 0.233) 1.00

τ 1.63 (0.96,2.50) 1.00

Moran basis β0 -0.306 (-0.48,-0.132) 1.00 268.85

β1 0.238 (0.064,0.413) 1.00

τ 1.28 (0.92,1.96) 1.00

IG β0 -0.306 (-0.477,-0.134) 1.00 261.151

β1 0.238 (0.0589,0.417) 1.00

τ 0.010 (0.002, 0.870) 1.01

https://doi.org/10.1371/journal.pone.0268130.t002
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spatial data comprise mixture of distributions or include extreme observations. Porter et al.

[11] also shows the superior performance of BSHEL model in the presence of outliers.

4.4 COVID-19 data

The SBEL models and parametric spatial models were fitted to the number of deaths due to

COVID-19 in the countries in Europe during three periods of 2020 (Jan-April, May-Aug and

Sep-Dec). The COVID-19 data has been compiled and updated by the John Hopkins Univer-

sity’s (JHU) Coronavirus Resource Center (https://coronavirus.jhu.edu/map.html). All the

information on confirmed COVID-19 cases and deaths from the JHU data source have been

combined with other information from a range of data sources such as population, number of

hospital beds available and so on in “Our World in Data” website https://covid.

ourworldindata.org/.

For the application of the models, the number of deaths recorded each day in each country

of Europe was aggregated for each of the three periods of the year 2020 (Fig 7). The response

variable is considered as the number of new deaths per million and a covariate was taken as

the proportion of the population aged 65 and over (source: World Bank, compiled by “Our

World in Data” website).

The variation in observed deaths per million in Europe is visible in the three time periods

of 2020. To account for the temporal correlation, one option is to add a temporal component

Fig 3. Posterior densities of regression coefficients β0 and β1 using BEL spatial models for North Carolina SIDS

data.

https://doi.org/10.1371/journal.pone.0268130.g003

PLOS ONE Evaluation of spatial Bayesian Empirical Likelihood models in analysis of small area data

PLOS ONE | https://doi.org/10.1371/journal.pone.0268130 May 27, 2022 17 / 27

https://coronavirus.jhu.edu/map.html
https://covid.ourworldindata.org/
https://covid.ourworldindata.org/
https://doi.org/10.1371/journal.pone.0268130.g003
https://doi.org/10.1371/journal.pone.0268130


using a linear time trend, along with a spatial-temporal interaction term [71]. In the present

article, we are concentrating on spatial models only and ignoring the temporal component.

Adding temporal component and spatial temporal interaction might improve the model per-

formance, which can be checked as a future extension of this study. The Fig 7 also exhibits

some groups of countries having consistently lower numbers of deaths over the 3 periods,

some of the countries show increase or decrease over time. More investigation is possible

using the dataset in order to determine clusters and patterns of observed deaths over time,

which is beyond the scope and focus of this current study.

The response variable, number of new deaths per million was log transformed in order to

satisfy the required parametric assumptions (Eq 29). For the sake of comparison, Yi = log(new

deaths per million) is used as the response in the SBEL models as well, noting that this is not

necessary and SBEL models can work without the log transformation to the response variable.

The model performance statistic, WAIC, is presented in Table 5 for each model in each

time period. From this table, it is evident that SBEL models outperformed the parametric

Fig 4. Posterior densities of regression coefficients β0 and β1 using Bayesian parametric spatial models for North

Carolina SIDS data.

https://doi.org/10.1371/journal.pone.0268130.g004

Table 3. Description of simulation scenarios for data generation.

Scenario Description Number of Areas

1 High autocorrelation, small N 25

High autocorrelation, large N 100

2 Low autocorrelation, small N 25

Low autocorrelation, large N 100

1 20% outliers, consists mixture, small N 25

20% outliers, consists mixture, large N 100

https://doi.org/10.1371/journal.pone.0268130.t003
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models for all periods. It can be seen from Fig 8 that the log of new deaths per million

(response variable) does not follow a normal distribution; which explains the comparatively

poor performance of the parametric models which rely on this assumption. This result also

supports the observations in the simulated data application about the better performance of

SBEL models under situations in which the underlying parametric assumptions of the

response variables are not satisfied. In terms of comparison of model performances in each

period for the COVID-19 application, it is observed that the SBEL-BYM model had the small-

est WAIC throughout the three periods.

Table 4. Model performance on spatial simulated data.

WAIC

Model Scenario 1 Scenario 2 Scenario 3

25 areas 100 areas 25 areas 100 areas 25 areas 100 areas

SBEL-IG 162.29 922.48 162.3 924.5 164.8 922.79

SBEL-BYM 162.42 924.49 162.5 923.6 162.97 923.47

SBEL-Leroux 162.62 922.80 163 922.4 162.68 922.93

BSHEL 163.68 921.23 162.8 921.6 161.3 922.98

IG 260.11 973.66 205.5 818.6 518 924.8

BYM 407.32 842.36 214.01 795.6 263.1 1146.12

Leroux 210.99 790.22 207.5 607.3 263.79 957.3

Moran basis 189.89 695.91 246.2 654.5 274 964.2

https://doi.org/10.1371/journal.pone.0268130.t004

Fig 5. The observed response variable (y = log(SIR)) from simulated response under high autocorrelation (5

realisations for each of 25 areas and 100 areas).

https://doi.org/10.1371/journal.pone.0268130.g005
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The posterior distributions of the regression parameters and the precision parameters for

period 1 using different models are shown using box plots in Fig 9. It can be observed that the

posterior means for the regression parameters using all the parametric and SBEL models are

very similar with different variability. Among all the models, BSHEL has the highest number

of outliers in the posterior distribution of the regression parameters. This also resulted in the

lowest mean with wider credible interval for the precision parameter (τ) for the BSHEL model

(Fig 9). Porter et al. [11] used three different case studies and the precision parameter behaved

differently for different datasets. Hence it can be asserted that the BSHEL model is not a good

choice for modelling COVID-19 death data for 2020 in Europe.

The numerical values of the posterior summaries using each model for periods 1, 2 and 3

are shown in Table A1 in Appendix 1 of S1 File. The spatially smoothed values for new deaths

per million in Europe for the period 3(Sep-Dec) are shown in Fig A5 in Appendix 1 of S1 File.

Fig 6. The observed response variable (y = log(SIR)) from simulated response including outliers and mixture (5

realisations for 100 areas).

https://doi.org/10.1371/journal.pone.0268130.g006

Fig 7. Observed new deaths per million due to COVID 19 in Europe, 2020.

https://doi.org/10.1371/journal.pone.0268130.g007
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5 Discussion

The present study investigates a Bayesian empirical likelihood (BEL) framework for modelling

spatial data at small area level. The article developed spatial BEL (SBEL) models employing the

popular CAR structure priors for the spatial random effects to control for the underlying spa-

tial autocorrelation. A MCMC algorithm was proposed for SBEL-CAR models using MH tech-

niques. A detailed comparison of the existing SBEL models (SBEL-IG and BSHEL) with the

proposed SBEL-CAR models was made using two benchmark case studies employing real life

spatial data at small area level, a simulation study and a study of COVID-19 deaths in Europe.

A comparison with the parametric spatial models analogous to the semi-parametric models

was also made in this study.

The comparison of the model performances shows that parametric spatial models are a bet-

ter choice for situations in which the underlying parametric assumptions are satisfied as

reflected by the model performance in the case studies using Scottish Lip cancer data and

North Carolina SIDS data. However, the results of the case studies suggested that the estimated

Table 5. Model performance (WAIC) for COVID-19 data models in three periods of 2020.

Model WAIC

Jan-Apr May-Aug Sep-Dec

SBEL BYM 468.06 441.42 564.44

BYM 2450.72 4624.97 6169.35

SBEL Leroux 561.72 558.60 781.57

Leroux 1082.12 3608.08 6216.16

BSHEL 588.33 602.76 779.37

Moran Basis 1082.83 4421.82 2101.71

SBEL IG 534.66 534.68 758.76

IG 1081.42 3397.43 2110.83

https://doi.org/10.1371/journal.pone.0268130.t005

Fig 8. Histogram and QQ plot of log(new deaths per million) in Europe during January-April, 2020.

https://doi.org/10.1371/journal.pone.0268130.g008
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regression coefficients of spatial BEL models were similar to those estimated by parametric

spatial models with wider credible intervals, which is expected as the BEL models were using

the empirical likelihood of the data to obtain the posterior without imposing any distributional

assumptions on the data.

The simulation study revealed that spatial BEL models can outperform their corresponding

parametric spatial models if the underlying assumptions regarding the data distributions are

not fully satisfied. This may occur due to smaller number of areas or the presence of irregulari-

ties in the form of outliers or a mixture of different distributional components in the data. BEL

has already gained popularity for providing robust estimates in the case of model misspecifica-

tion [5]. Such situations might occur in the case of spatial data at a small area level, in which

case SBEL models can be chosen over parametric spatial models. SBEL models have already

been demonstrated to perform better than a parametric spatial model in the presence of outli-

ers [11].

The application of the SBEL and parametric models to COVID-19 data revealed that the

SBEL models performed better than the parametric models, since the distributional assump-

tions of the response variable were violated. This supports the finding obtained from the simu-

lated data. This result shows that spatial BEL models could be used to analyse the very recent

COVID-19 data at small area level to reveal significant trends and relationships with improved

prediction performance. This is an important area of future contributions using the already

existent and extended SBEL models.

This is to note that, the analysis performed with COVID-19 deaths data was not directly

related to any biological insights, but it provided methods that can enable us to validate few

Fig 9. Boxplots of posterior distributions of regression coefficients (parametric vs semi-parametric) for COVID-

19 data for Europe, period 1 (January-April), 2020.

https://doi.org/10.1371/journal.pone.0268130.g009
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assumptions using the data and model outcomes. For example, from the very beginning of

pandemic we are listening to the facts that COVID-19 is more severe in elderly people and

immunocompromised people. In the analysis conducted in this article modelled COVID-19

deaths using the covariate proportion of population aged 65 and over in each of the 54 coun-

tries in Europe during 2020. The model revealed significant positive coefficient of the regres-

sion which in a way validated the assertion of more COVID 19 deaths on the average to the

populations with higher proportion of elderly people. The proposed model was able to model

the data irrespective of the irregularities and non-normality of the response variable and

enabled to validate assertion with support of data. This analysis conducted is an indication of

how spatial BEL models applied to COVID 19 deaths or similar data with irregularities can val-

idate multiple research questions.

SBEL models using different priors were seen to perform similarly for benchmark datasets,

while notable change in model performance is noted for Bayesian parametric spatial models

with respect to the choice of spatial priors [63]. The SBEL models also showed substantive dif-

ferences in the WAIC values for the COVID-19 dataset. More detailed inspection revealed that

for different data sets, different SBEL models obtained the lowest WAIC. The SBEL-IG model

[10] performed best for Scottish Lip cancer data analysis, while the BSHEL model [11] per-

formed the best among the other SBEL models for the North Carolina SIDS data. For COVID-

19 application, the SBEL-BYM, which is a model proposed in this study using an ICAR prior

for spatial random effects within a Bayesian hierarchical modelling framework outperformed

all the parametric models and the already existent BSHEL and SBEL-IG models. It is known

that the performance of parametric spatial models depends on the application and data set

[15], and similarly the choice of SBEL model for modelling a small area level spatial data may

be decided after comparing the performance of each of the spatial BEL models for each

application.

The present study has contributed to the Bayesian Empirical Likelihood literature by devel-

oping two new Bayesian semi-parametric spatial models using two popular CAR prior struc-

tures. The proposed BEL-CAR models can be extended to apply other choices of CAR priors,

such as the Cressie prior [68] and the Lu prior [21] in a relatively straightforward manner. The

study showed superior performance of SBEL models in situations in which parametric distri-

butional assumptions do not hold for the data.

One limitation of the proposed SBEL models is the computational cost of the models. It

requires a relatively larger number of iterations for the convergence of the MCMC algorithm

and thinning is required to avoid autocorrelation. The simulation studies conducted in this

paper could be extended by including more scenarios to investigate the choices of spatial mod-

els (parametric vs semi-parametric and choice of spatial priors under BEL framework) to pro-

vide more detailed insights into the choice of appropriate models to analyse areal spatial data.
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