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Abstract. [Purpose] The aim of this study was to determine whether the consumption of a leucine-enriched es-
sential amino acid mixture (LEAA), which is known to increase protein synthesis in muscles, alleviates muscle 
damage and accelerates recovery by ameliorating muscle damage. [Participants and Methods] A double-blind, 
randomized crossover trial was conducted over a 5-week period. Ten untrained males (age, 23.0 ± 1.6 years) were 
asked to repeatedly flex and extend their elbows for 10 counts/set × 5 sets at full power while using a dynamometer. 
The participants took 3.6-g supplements (LEAA mixture or placebo) 3 times daily on day 0 and for the next 7 days. 
Changes in serum creatine phosphokinase (CPK) activity and myoglobin concentration as markers of muscle tissue 
damage were evaluated prior to and after exercise and on days 1, 2, 3, 5, and 7. [Results] The relative ratio of the 
changes in peak serum CPK activity measured on day 5 was significantly lower after taking LEAA than after taking 
the placebo. [Conclusion] LEAA consumption suppressed exercise-induced elevation of muscle damage markers in 
blood, which suggests that LEAA could attenuate muscle damage and aid muscle recovery.
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INTRODUCTION

Repeated performance of high-force, eccentric muscle contractions or unaccustomed exercise can cause tissue damage 
in the affected muscles1). Muscle tissue damage is accompanied by the leakage of proteins such as creatine phosphokinase 
(CPK) and myoglobin, from the muscle tissue into the bloodstream2–4). Since muscle tissue damage deceases muscle strength 
and range of motion, it can have a profound effect on the ability to perform subsequent bouts of exercise and therefore adhere 
to an exercise training program5). Thus, alleviating muscle damage and aiding recovery from muscle damage is necessary for 
athletes to maximize their performance.

Muscle tissue damage is associated with inflammation and the degeneration of damaged tissue. Structural damage to the 
sarcolemma caused by the high mechanical forces produced during high-force exercise is accompanied by a net influx of 
Ca2+ from the interstitium. This abnormal influx has several deleterious effects, including impairment of oxidative phos-
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phorylation and/or activation of a calcium-dependent proteolytic enzyme on the muscle fiber6). The progressive deterioration 
of the sarcolemma would be accompanied by diffusion of intracellular components, such as CPK and myoglobin, into the 
interstitium and blood. The presence of these components in the extracellular space, induces active phagocytosis and cel-
lular necrosis. Subsequently, undifferentiated precursors of skeletal muscle cells, known as satellite cells are activated: they 
proliferate, differentiate, and fuse to form myofibrils, thus repairing muscle tissue7). This process is regulated by intracellular 
signaling pathways that balance the synthesis and degradation of muscle proteins, such as the mammalian target of rapamy-
cin (mTOR) pathway8). Namely, mTOR promotes muscle regeneration through kinase-independent and kinase-dependent 
mechanisms at the stages of nascent myofiber formation and myofiber growth, respectively8), whereas rapamycin, an inhibi-
tor of mTOR, impairs both the formation and growth of myofibers during muscle tissue regeneration.

In recent years, researchers found that branched chain amino acids (BCAAs) increases the anabolism and decreases the 
catabolism of muscle proteins9–11). Altered protein turnover during exercise might reduce damage to myofibrillar and/or 
membrane-associated proteins and reduce muscle fiber disruption, resulting in lower peak values of serum CPK and myo-
globin levels after exercise loading. Urinary 3-methylhistidine excretion, an index of myofibrillar protein degradation, was 
weakened after resistance exercise loading when the nine amino acids known as essential amino acids (EAAs) were ingested 
with carbohydrates, and this attenuation was associated with elevated cortisol levels12). Oral consumption of amino acids is 
followed by an increase in their serum concentrations, which immediately increases the rate of muscle protein synthesis13, 14), 
partly through activation of mTOR signaling4). EAAs are believed to have a particularly important role in the muscle protein 
synthesis following amino acid intake15–17).

Leucine, an EAA, activates mTOR signaling pathway18) and has a key role in the initiation of muscle protein synthe-
sis19–26). In a study of elderly patients, intake of a mixture of essential amino acids including 40% leucine (leucine-enriched 
essential amino acids, LEAA) activated the mTOR signaling pathway in muscle tissue27). Furthermore, LEAA promoted 
muscle protein synthesis more strongly than a similar mixture containing 26% leucine in elderly individuals28) and young 
individuals29) during moderate steady state exercise, which indicates a dose-dependent effect of leucine on muscle protein 
synthesis.

Because of its effect on protein synthesis in muscle tissue, LEAA has been posited to facilitate recovery from muscle 
damage, LEAA might strongly affect recovery from muscle damage. Recently, experiments in a rat model demonstrated that 
LEAA increased muscle protein synthesis and attenuated muscle soreness after eccentric contractions30). However, it remains 
unclear whether LEAA can alleviate and stimulate recovery from muscle tissue damage after exercise loading in humans.

The aim of the present study was to investigate the effect of LEAA ingestion for 8 days on indirect markers of muscle dam-
age by an isokinetic muscle load in untrained men. We hypothesized that the extent of muscle damage would be attenuated 
and/or the extent of recovery would be accelerated by LEAA. We measured serum CPK activity, myoglobin concentration, 
maximal muscle strength, and VAS scores for muscle pain before and after isokinetic muscle loading for 8 days in a random-
ized double-blind cross-over design.

PARTICIPANTS AND METHODS

Ten healthy males (age, 23.0 ± 1.6 years; height, 174.1 ± 5.8 cm; body weight, 69.0 ± 8.9 kg) who did not routinely 
perform exercise or habitually consume tobacco, alcohol, or dietary supplements were recruited for this study using by self-
report questionnaire. The purpose, procedures, and risks associated with the study were fully explained to the participants, 
and written informed consent was obtained. This study was performed after receiving approval from the Research Ethics 
Committee of the University of Tsukuba Graduate School of Physical Education. The ethics approval number is 23-24.

We estimated that nine participants are required to have 80% power to detect a difference in CPK activity threshold of 60% 
between LEAA and placebo ingestions31), with a 5% alpha level. Taken a drop out ratio of 10% into account, ten participants 
were estimated to be included into the study.

We used a randomized, double-blind cross-over study design. The participants were randomly divided into two groups, 
and both groups underwent two 8-day treatment periods separated by a 3-week washout period. On day 0, the elbow flexors 
of one arm were loaded with exercise, and the recovery of the muscles was evaluated by measurements of maximal muscle 
strength, blood test and muscle soreness over the following 7 days, during which time the participants were instructed to 
ingest supplements of LEAA or a placebo three times daily. After the 3-week wash-out, participants went through a second 
treatment period that was identical to the first but with the other arm and the other supplement. One group ingested LEAA 
during the first treatment period and placebo on the second, whereas the other group started with the placebo and ended with 
LEAA.

On the day of exercise loading (day 0), participants were examined early in the morning while in a fasting state and 
subsequently received a light meal of jelly (200 kcal, protein:fat:carbohydrate=15:20:65). Baseline measurements (maximal 
muscle strength, blood tests, and muscle soreness) were obtained, and then each participant took 3.6 g supplement. Thirty 
minutes later, they performed the exercise, which was immediately followed by another 3.6 g supplement. Measurements 
were repeated after exercise loading in the same manner as described above. On the same day, the participants were also 
instructed to take a third dose of supplement prior to bedtime.

On days 1, 2, 3, 5, and 7, maximal muscle strength, blood and muscle soreness measurements were repeated 30 minutes af-
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ter ingesting the supplement while fasting in the morning. In addition, the participants were instructed to ingest supplements 
at approximately 3:00 PM, and prior to bedtime. On days 4 and 6, when no measurements were performed, the supplements 
were ingested at approximately 10:00 AM, 3:00 PM, and prior to bedtime. During the experimental period, the participants 
could lead a normal life, but were also asked to refrain from strenuous exercise and sports. The participants were also asked 
to monitor meals during the first week after the exercise load and to refrain from consuming alcohol as much as possible.

During the washout period, the participants were again permitted to lead a normal life but to avoid strenuous exercise 
and sports, and they were asked to ingest meals that were as similar to the initial meals as possible. After a second set of 
measurements at the end of the washout period, both groups started a new treatment period, changing both the supplement 
and the arm that was loaded with exercise.

The composition of LEAA supplement was as reported previously28, 29). In particular, it contained 3.6 g of a mixture of all 
nine essential amino acids (leucine, 1.44 g; lysine, 0.6 g; valine, 0.4 g; isoleucine, 0.39 g; threonine, 0.34 g; phenylalanine, 
0.24 g; methionine, 0.12 g; histidine, 0.06 g; and tryptophan, 0.03 g) per pack, whereas the placebo contained 3.6 g of malti-
tol per pack. Both supplements were processed by Ajinomoto Co., Inc., which were indistinguishable based on their external 
appearance and taste. The applied dose of LEAA (10.8 g/day) and the timing and duration of the ingestion were also based 
on a previous study31). The supplements were taken with 200 ml of water.

The participants performed 5 sets of 10 arm curls at each maximum effort using the Biodex System 4 (Biodex Medi-
cal Systems, New York, USA), in which the elbow flexor group of one arm was loaded with centripetal and centrifugal 
movements. This exercise loading, which was based on a previous report32), was as follows: starting with the elbow flexed 
to 5° and ending at an angle of 125°, each participant performed centripetal movements of the elbow flexors at 60°/s and 
centrifugal movements at 120°/s.

The maximal isometric strength of elbow flexion (expressed in W) was measured using BIODEX System 4 based on a 
previous report33). The participants were placed in a sitting posture and approximately 90° of elbow flexion. Prior to a test 
participants became familiar with the procedures by performing 2–3 submaximal contractions as warm-up. Participants were 
stabilized in the chair with shoulder and abdominal straps. The anatomical axis of rotation was aligned to the dynamometer 
axis using visual inspection and manual palpation. The isometric test included a maximal muscle contractions for 5 seconds.

Blood samples were collected from an antecubital vein using winged blood collection needles. Serum was isolated from 
the collected blood by centrifugation at 3,000 rpm and 4 °C for 15 minutes. To evaluate changes in the serum concentra-
tions of amino acids with time, the concentrations of eight EAAs were measured (with the exception of tryptophan) using 
an automated JLC-500/V2 amino acid analyzer (JEOL, Tokyo). Serum CPK activity and myoglobin concentrations were 
measured as markers of muscle damage. Serum CPK activity was assayed using a commercial kit (L-Type CK; Wako Pure 
Chemical Industries, Ltd., Osaka, Japan). Serum myoglobin concentrations were analyzed using a chemiluminescence-based 
immunoassay (Chemilumi ACS-Myoglobin, Siemens Healthcare Diagnostics K.K., Tokyo, Japan). The coefficient of varia-
tions (CV) for the assays of CPK and myoglobin were 5% and 15%, respectively.

Muscle soreness was evaluated using a visual analysis scale (VAS) as previously reported34). The participants had to 
flex the elbow joint from an extended position to a fully flexed position and extend the elbow joint from a flexed to a fully 
extended position in approximately 2 s at complete rest under the guidance of the investigators. The VAS incorporated a 
100-mm line marked with a 0 at one end, indicating no discomfort, and a 10 at the other end represented substantial pain. The 
participant placed the mark with a pen using their free hand.

Differences in changes in blood amino acid concentrations between LEAA and placebo ingestion were evaluated using a 
paired t-test. Serum CPK activities and myoglobin concentrations were log-transformed and presented as back transformation 
values. Differences in maximal muscle strength, log-transformed CPK activity, log-transformed myoglobin concentration 
and VAS scores for muscle soreness at each time point for the two supplement ingestions were evaluated using a mixed-
effects model. Differences in the mean changes relative to the pre-exercise load value in log-transformed CPK activity and 
log-transformed myoglobin concentration at peak (day 5 and 3, respectively) were also evaluated using a mixed-effected 
model. These values were treated as response variables; treatment, time point and treatment by time point interaction were 
treated as fixed effects; and the subject was treated as a random effect. The analyses were performed using SAS version 9.2, 
and a p-value of 0.05 was considered statistically significant.

RESULTS

Blood leucine and total EAA levels were increased in LEAA ingestion compared with placebo ingestion (Leu: 215 ± 15.6 μM 
vs. 148 ± 16.1 μM [p=0.016], total EAAs: 1,084 ± 65 μM vs. 894 ± 90 μM [p=0.099], respectively) after supplementation on the 
first day. On the following day, leucine and total EAAs levels also were significantly higher in LEAA ingestion than in placebo 
ingestion (Leu: 264 ± 24.4 μM vs. 109 ± 9.5 μM [p=0.0002], EAAs: 1,085 ± 91 μM vs. 681 ± 52 μM [p=0.007], respectively) 
30 minutes after supplementation, and they were significantly higher throughout the whole experimental period.

Exercise load caused a marked increase in blood muscle damage markers (CPK activity and myoglobin concentration), 
as shown in Table 1. Maximum CPK values were observed on day 5 after exercise loading and subsequently decreased. The 
average of the peak CPK values were 7,811 IU/l in placebo ingestion and 2,380 IU/l in LEAA ingestion. The individual 
plots (n=10) of serum CPK activities on the peak day for placebo ingestion and LEAA ingestion as were shown in Fig. 1. As 



J. Phys. Ther. Sci. Vol. 31, No. 1, 2019 98

shown on Fig. 2, the increase in serum CPK activity relative to the pre-exercise load value was significantly lower in LEAA 
ingestion than in placebo ingestion (12.7-fold vs. 55-fold; p=0.021). Serum myoglobin concentrations was also higher after 
the exercise loading, reaching maximum values on day 3 and then gradually decreasing. The relative ration increase in blood 
myoglobin value at the peak (day 3) in LEAA ingestion was lower than that in placebo ingestion (9.5-fold vs. 18.5-fold), 
however the difference was not significant (p=0.19). The individual plots of myoglobin levels and the ratios of myoglobin 
changes relative to the pre-exercise load values are shown in Figs. 1 and 2.

Maximal muscle strength was reduced by approximately 40% immediately after the exercise load and later recovered 
in gradual increments (Table 1). No significant differences in maximal muscle strength were observed between supplement 
ingestions (p=0.64 at day 2).

Table 1.  Changes in maximal muscle strength, serum myoglobin concentrations, creatin phosphokinase (CPK) activities, and VAS 
scores for muscle pain. There was no significantly difference between Placebo and LEAA ingestion. CI means confidence 
interval. Group P and Group A mean placebo group and LEAA group.

Mesurement item Group Pre Post Day 1 Day 2 Day 3 Day 5 Day 7
Muscle power (W) Group P Mean 49.7 31.1 36.1 37 36.5 40.5 39.6

95%CI (Lower) 41.9 23.4 28.3 29.3 28.7 32.7 31.8
95%CI (Upper) 57.5 38.9 43.9 44.8 44.3 48.2 47.4

Group A Mean 48 30 37.2 37.2 35.9 41.4 43.7
95%CI (Lower) 40.2 22.2 29.4 29.4 28.1 33.6 35.9
95%CI (Upper) 55.7 37.7 45 45 43.6 49.1 51.5

MB (ng/ml) Group P Mean 33.2 36.1 59.4 440 615 200 67
95%CI (Lower) 18.2 19.9 32.7 242 338 110 36.8
95%CI (Upper) 60.3 65.7 108.2 801 1,120 363 122

Group A Mean 40.6 42 64.8 231 386 113 68
95%CI (Lower) 22.3 23.1 35.6 127 212 62.1 37.4
95%CI (Upper) 73.8 76.4 117.9 420 703 205 124

CPK (IU/L) Group P Mean 142 144 247 1,412 5,195 7,811 1,660
95%CI (Lower) 65.8 66.8 115 657 2,416 3,633 772
95%CI (Upper) 304 309 531 3,036 11,169 16,792 3,568

Group A Mean 187 187 286 810 3,006 2,380 1,112
95%CI (Lower) 86.9 87.2 133 377 1,398 1,107 517
95%CI (Upper) 402 403 615 1,741 6,462 5,116 2,390

VAS scores for muscle pain Group P Mean 0 3.1 5.3 6 5.3 2.4 1
95%CI (Lower) −1.4 1.7 3.9 4.7 3.9 1.1 −0.4
95%CI (Upper) 1.3 4.4 6.6 7.4 6.6 3.7 2.3

Group A Mean 0.1 3 4.3 5.5 5.2 1.7 1
95%CI (Lower) −1.2 1.6 3 4.2 3.9 0.4 −0.3
95%CI (Upper) 1.5 4.3 5.7 6.8 6.6 3.1 2.4

Fig. 1.  Individual plot (n=10) of serum creatin phosphokinase (CPK) activities 
(left) and myoglobin concentrations (right) on the days at which maximum 
levels were observed (days 5 and 3, respectively) for placebo and LEAA 
ingestion. Group P and Group A mean placebo group and LEAA group.
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The VAS scores for muscle pain increased gradually after the exercise loading, reaching maximum values at day 2 and 
subsequently decreasing. The VAS scores for muscle pain in LEAA ingestion were lower than those in placebo ingestion, 
however no significant difference was observed (p=0.58 at day2).

DISCUSSION

In this randomized, double-blind, placebo-controlled crossover study, we demonstrated that ingesting LEAA suppressed 
the peak serum CPK activity at an isokinetic exercise loading in untrained men.

Our results showed that the 3.6 g dose (21 mg leucine per body weight) of orally administered LEAA supplement was 
efficiently absorbed and was sufficient to elevate serum levels of EAA and leucine for several hours after ingestion. The 
increases of serum levels of leucine and EAAs in this study were similar to those observed in a study by Bukhari et al. in 
which 3 g of LEAA were ingested by older people (age; 66 ± 1 years old)35), although the timing of measurements were 
different. Whereas serum levels of EAAs were measured 30 minutes after supplementation in our study, Bukhari et al. 
performed measurements in a time-course manner, and reported that serum concentration of amino acids (including leucine) 
peaked at up to 40–60 minutes, and lasted LEAA ingestion stimulated muscle protein synthesis and albumin protein synthesis 
in older women. These findings suggested that leucine levels after LEAA ingestion were sufficiently increased to stimulate 
muscle protein synthesis.

In this study, peak serum CPK activity was measured 5 days after the exercise loading. In a previous study of endurance 
runners, total serum CPK activity was markedly elevated 48 hours when they trained during the first week post-exercise36). 
The increase of CPK following eccentric exercise reached a maximum at 96 hours after exercise, and additional exercise 
produced only small increases, probably due to accelerated enzymatic clearance37). We found that the relative increase of 
the peak serum CPK activity was significantly lower in LEAA ingestion than in placebo ingestion (Fig. 2). Previous studies 
showed that changes in serum CPK activity correlate with the magnitude of the muscle damage induced by exercise19, 38, 39). 
Thus, our findings indicate that LEAA intake decreases the level of muscle damage and promotes recovery after exercise in 
humans, although the mechanism by which LEAA mediates these effects was not investigated.

Despite the beneficial effect of LEAA on the recovery of muscle damage, no such effect was found on the maximal 
isometric strength of elbow flexion and DOMS. Previous findings related to the effect of BCAA on maximal muscle contrac-
tion have also been controversial. In a study with untrained women, BCAA supplementation suppressed the decrease in leg 
muscle force that occurs during maximal voluntary isometric contraction, and this effect was associated with decreased sore-
ness40). In another study with untrained college-age men, participants ingesting BCAA supplements produced higher torque 
levels during knee flexion 48 hours after endurance exercise compared with controls41). However, Nosaka et al. reported that 
BCAA supplementation in non-athletes did not affect the recovery of maximal voluntary contraction after 30 minutes of an 
arm curl exercise with a wristband weight set to 9% of their maximal isometric strength; whereas reduced serum CPK and 
myoglobin levels and attenuated muscle soreness were observed after BCAA ingestion31). No differences in serum myofiber 
concentrations or muscle function were detected after BCAA supplementation, despite the observation of reduced overall 

Fig. 2.  Mean ± 95% confidence interval (n=10) of the ratio of changes relative 
to pre-exercise load values (ratio=values at each point/values at Pre) for 
serum creatin phosphokinase (CPK) activity (left) and myoglobin concen-
tration (MB) (right) on the days at which maximum concentrations were 
observed (days 5 and 3, respectively). Group P and Group A mean placebo 
group and LEAA group.

*Significant difference between placebo and LEAA ingestion (p<0.05).
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soreness in the quadriceps muscle and knee42). Thus, further studies are needed to fully explain how muscle function can be 
improved via amino acid supplementation after exercise.

A limitation of our investigation might be sample size. The extent of muscle damage after exercise loading was very wide 
in variation range in this study. More participants would be needed to obtain more reliable data.

In conclusion, LEAA consumption suppressed exercise-induced elevation of muscle damage markers in blood, suggesting 
LEAA could attenuate muscle damage and aid muscle recovery.
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