
D prostanoid receptor 2 (chemoattractant
receptor–homologous molecule expressed on TH2 cells)
protein expression in asthmatic patients and its effects
on bronchial epithelial cells
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Background: The D prostanoid receptor 2 (DP2; also known as
chemoattractant receptor–homologous molecule expressed on
TH2 cells) is implicated in the pathogenesis of asthma, but its
expression within bronchial biopsy specimens is unknown.
Objectives: We sought to investigate the bronchial submucosal
DP2 expression in asthmatic patients and healthy control
subjects and to explore its functional role in epithelial cells.
Methods: DP2 protein expression was assessed in bronchial
biopsy specimens from asthmatic patients (n 5 22) and healthy
control subjects (n5 10) by using immunohistochemistry and in
primary epithelial cells by using flow cytometry,
immunofluorescence, and quantitative RT-PCR. The effects of
the selective DP2 agonist 13, 14-dihydro-15-keto prostaglandin
D2 on epithelial cell migration and differentiation were
determined.
Results: Numbers of submucosal DP21 cells were increased
in asthmatic patients compared with those in healthy control
subjects (mean [SEM]: 78 [5] vs 22 [3]/mm2 submucosa,
P < .001). The bronchial epithelium expressed DP2, but its
expression was decreased in asthmatic patients compared with
that seen in healthy control subjects (mean [SEM]: 21 [3] vs 72
[11]/10 mm2 epithelial area, P 5 .001), with similar differences
observed in vitro by primary epithelial cells. Squamous
metaplasia of the bronchial epithelium was increased in
asthmatic patients and related to decreased DP2 expression
From the Institute of Lung Health, Department of Infection, Inflammation and Immunity,

University of Leicester.

*These authors contributed equally to this work as co-senior authors.

Supported by AstraZeneca. C.E.B. is a Wellcome Trust Senior Clinical Fellow. The

research was performed in laboratories funded in part by the European Regional

Development Fund (ERDF 05567). This study was also supported in part by the Na-

tional Institute for Health Research Leicester Respiratory Biomedical Research Unit

and AirPROM (FP7-270194). The views expressed are those of the author(s) and

not necessarily those of the National Health Service, the National Institute for Health

Research or the Department of Health. The European Regional Development Fund had

no involvement in the design of the study, data collection, analysis and interpretation of

the data, in the writing of the manuscript, or in the decision to submit the manuscript.

Disclosure of potential conflict of interest: S. E. Stinson has received research support

from and owns shares of AstraZeneca. C. E. Brightling has received research support

from GlaxoSmithKline, MedImmune, Novartis, Roche, and Chiesi; has consultant ar-

rangements with GlaxoSmithKline, MedImmune, Boehringer Ingelheim, Novartis,

Roche, and Chiesi; and has received travel support fromBoehringer Ingelheim. Y. Am-

rani declares no relevant conflicts of interest.

Received for publication February 6, 2014; revised July 23, 2014; accepted for publica-

tion August 21, 2014.

Available online October 11, 2014.

Corresponding author: Christopher E. Brightling, PhD, Institute for Lung Health, Clin-

ical Sciences Wing, University Hospitals of Leicester, Leicester, LE3 9QP, United

Kingdom. E-mail: ceb17@le.ac.uk.

0091-6749

� 2014 The Authors. Published by Elsevier Inc. on behalf of the American Academy

of Allergy, Asthma & Immunology. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/3.0/).

http://dx.doi.org/10.1016/j.jaci.2014.08.027
(rs 5 0.69, P < .001). 13, 14-Dihydro-15-keto prostaglandin D2

promoted epithelial cell migration and at air-liquid interface
cultures increased the number of MUC5AC1 and involucrin-
positive cells, which were blocked with the DP2-selective
antagonist AZD6430.
Conclusions: DP2 is expressed by the bronchial epithelium, and
its activation drives epithelial differentiation, suggesting that in
addition to its well-characterized role in inflammatory cell
migration, DP2 might contribute to airway remodeling in
asthmatic patients. (J Allergy Clin Immunol 2015;135:395-406.)

Key words: Expression, asthma, immunohistochemistry, prosta-
glandin D2, biopsy

D prostanoid receptor 2 (DP2) or chemoattractant receptor–
homologousmolecule expressed onTH2 cells (CRTH2) is aGpro-
tein–coupled receptor that has been implicated in the pathogenesis
of allergic diseases.1 DP2 is activated by prostaglandin D2

(PGD2), which is found at high levels in the bronchoalveolar
lavage fluid of asthmatic patients.2-6 The expression of DP2 and
the effects of its stimulation on TH2 lymphocytes, eosinophil
and basophil migration, and activation has been well character-
ized.7,8 An increase in the number of DP21 inflammatory cells
in patients with allergic disease6 has highlighted a potential role
for this receptor in allergy9,10 and asthma.11,12 In addition, consid-
erable interest in the development of DP2 antagonists in both pa-
tients with allergic conditions9,10 and asthmatic patients11-13 has
strengthened the linkage between the DP2 receptor and
inflammatory-related disorders. To date, limited efficacy has
been demonstrated for DP2 antagonists in asthmatic patients11,13;
however, it remains to be determined whether DP2 antagonism is
more effective in a subset of patients. A thorough understanding of
DP2 expression within the airways and whether changes in recep-
tor expression correlates with disease severity might aid in identi-
fying a responsive asthmatic group. Unfortunately, there is
currently a lack of data describing the protein expression of DP2
in bronchial biopsy specimens in asthmatic patients, which has
limited the cell types that DP2 function has been explored within.
In contrast, the expression of DP2 on epithelial cells has been
described from a variety of tissues, including the nose,14 skin,15

and retina,16 and bronchial epithelial cells in patients with chronic
obstructive pulmonary disease (COPD).17 These studies highlight
the potential that DP2 might be expressed on epithelial cells
within the airways of asthmatic patients. In addition, in mouse
challenge models18,19 DP2 antagonists caused a reduction in
goblet cell hyperplasia, suggesting that DP2 activation on epithe-
lial cells might play a key role in the pathogenesis of asthma.
Comparative studies looking at the expression of DP2 on biopsy
specimens from asthmatic patients and healthy control subjects
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3, 14-Dihydro-15-keto prostaglandin D2
DP1: D
 prostanoid receptor 1
DP2: D
 prostanoid receptor 2
PGD2: P
rostaglandin D2
would provide useful data to indicate possible target cells located
within the airways for DP2 antagonists, helping to focus future
DP2 antagonist study readouts and patient populations.

We hypothesized (1) that submucosal inflammatory cells and the
bronchial epithelium express DP2 and that its expression is
increased in asthmatic patients and related to disease severity and
(2) that activation of DP2 in primary epithelial cells promotes
migration and differentiation. To test our hypotheses, we have
undertaken an immunohistochemical analysis of bronchial biopsy
specimens fromasthmatic patients and healthy control subjects and
studied the expression and function of DP2 in primary epithelial
cells in submerged and air-liquid interface (ALI) cultures.
METHODS

Subjects
Healthy control subjects and asthmatic patients were recruited from

Glenfield Hospital, Leicester, United Kingdom. Asthma severity was defined

according to the Global Initiative for Asthma treatment steps.20 Subjects were

characterized in terms of demographics, smoking history, spirometry, sputum

cell counts, and atopic status, which was defined as either 1 or more positive

skin prick test responses or blood-specific IgE levels to common aeroaller-

gens. Healthy subjects had no history of respiratory or allergic disease and

had normal spirometric results. The study was approved by the Leicestershire

Research Ethics Committee. Informed consent was obtained from all subjects.
Immunohistochemistry
Mucosal biopsy specimens were processed into glycol methacrylate

(Polysciences, Northampton, United Kingdom). Two-micrometer sections

were stained with antibodies: DP2/CRTH2 (rabbit polyclonal against

sequence CAASPQTGPLNRALSSTSS, 1 mg/mL; AstraZeneca, London,

United Kingdom) with staining confirmed by an alternative antibody to DP2/

CRTH2 OPA1-15328 (5 mg/mL; Thermo Fisher Scientific, Leicestershire,

United Kingdom), mast cell tryptase (IR640; Dako, Cambridge, United

Kingdom), CD3 (M7254, 5 mg/mL; Dako), major basic protein (MON6008,

1.3 mg/mL; Monosan, Newmarket, United Kingdom), neutrophil elastase

(M0752, 0.02 mg/mL; Dako), CD4 (M7310, 5 mg/mL), CD8 (M7103, 1 mg/

mL), MUC5AC (Ab24070, 1 mg/mL; Abcam, Cambridge, United Kingdom),

pancytokeratin (M0821, 1 mg/mL; Dako), involucrin (Ab68, 0.75 mg/mL;

Abcam), or isotype controls (Dako). The EnVision FLEXkit (Dako) was used.

Colocalization was undertaken with sequential sections, as described previ-

ously.21 Positively stained nucleated cells were enumerated per square milli-

meter of submucosal area, per 10 mm2 of total epithelial area, or per

millimeter of ALI culture length by a blinded observer. Grading criteria

were derived for histology of biopsy specimens and area of involucrin-

positive staining. Grading was carried out on 2 separate occasions by a blinded

observer.
Cell culture
Epithelial cells were derived from bronchial brushings of asthmatic

patients. Healthy control cells were derived either from bronchial brushings
of healthy control subjects or bought from Epithelix (Gen�eve, Switzerland).
Fully differentiated epithelial cells were purchased as MucilAir-ALI cultures

and grown in bronchial epithelial media (Epithelix).The following treatments

(final concentrations) were added to the basal media of duplicate cultures for

24, 48, or 72 hours: DP2 agonist; 13, 14-dihydro-15-keto prostaglandin D2

(DK-PGD2; 100 nmol/L; Cayman chemicals, Cambridge, United Kingdom);

dimethyl sulfoxide (vehicle control; 1 mmol/L; Sigma, St Louis, Mo); or

AZD6430 (1 mmol/L; AstraZeneca; concentration 500-fold above its Ki for

human DP2). AZD6430 has excellent selectivity. It was tested in more than

100 assays, and the only significant, although very low-affinity, activities

were observed at the following receptors and enzymes: D prostanoid receptor

1 (DP1; pIC505 5.5), thromboxane receptor (pIC505 5.4), angiotensin type 2

receptor (pIC505 5.4), aldose reductase (pIC505 5.2), and COX1/2 (pIC505
5.5). AZD6430 thus showed at least 1500-fold selectivity over all other targets

tested: IL-13, 100 ng/mL (R&D Systems, Abingdon, United Kingdom); TGF-

b1, 10 ng/mL (Miltenyi Biotec, Bergisch Gladbach, Germany).
Epithelial cell expression
Extracellular and intracellular (0.1% saponin) DP2 expression was

assessed with DP2-PE antibody relative to isotype control (Rat-PE isotype)

with the FACSAria (BD Biosciences, Oxford, United Kingdom). The effects

of corticosteroids onDP2 expressionwere investigated, as described above, by

incubating healthy control cells with 1mmol/L fluticasone propionate (Sigma)

for 24 hours. The effects of 100 nmol/LDK-PGD2 for 24 hours onDP2 expres-

sion were also assessed. For the study of DP2 expression in submerged cells

grown in chamber slides, cells were fixed, stained with AstraZeneca DP2 anti-

body, and detected with anti-rabbit Alexa Fluor 488 (Invitrogen, Paisley,

United Kingdom).
Quantitative RT-PCR
The RNAqueous-4PCR kit (Ambion, Life Technologies, Grand Island,

NY) was used for RNA preparation, and the RETROScript cDNA synthesis kit

(Ambion) was used for cDNA preparation. TaqMan reagents used DP2

(Hs01867513), DP1 (Hs00235003), MUC5AC (Hs00873651), and 18S

(Hs03928985; Applied Biosystems, Warrington, United Kingdom). The

Stratagene Mx3000P (Stratagene, La Jolla, Calif) was used. Data were

generated with the standard curve method normalized to the 18S house-

keeping gene.
Cell migration
The Oris Cell Migration Kit was used (tebu-bio, Peterborough, United

Kingdom). Triplicate repeats for vehicle control (1 mmol/L dimethyl

sulfoxide), 100 nmol/L DK-PGD2 or 100 nmol/L DK-PGD2, and 1 mmol/L

AZD6430were added for 24 hours in 5 healthy control donors and 5 asthmatic

donors. The concentrations of 500 nmol/L and 1 mmol/L DK-PGD2 were

tested in cells from 5 healthy control donors. TGF-b1 (10 ng/mL) and fibro-

blast growth factor (25 ng/mL; R&D Systems) were used as positive controls

in cells from 5 healthy control donors and 2 asthmatic donors. Cells were fixed

and labeled with Hoechst nuclear dye (Invitrogen, Carlsbad, Calif). The num-

ber of cells migrated into the migration zone was counted by a blinded

observer.
Calcium assay
Calcium responses to 1 mmol/L DK-PGD2, 1 mmol/L DK-PGD2 and 1

mmol/L AZD6430, and 1 mmol/L ionomycin (Sigma) were assessed in

Fura-2 (Invitrogen)–loaded cells, as described previously.22
Analysis
Statistical analysis was performed with PRISM software, version 6

(GraphPad Software, La Jolla, Calif). Parametric data were analyzed with

1- or 2-way ANOVA, Tukey posttest correction for intergroup comparison, or

the paired t test. Nonparametric data were analyzed with the Kruskal-Wallis



TABLE I. Clinical characteristics for biopsy specimens used for immunohistochemical analysis

Healthy control

subjects (n 5 10)

Patients with mild

asthma (n 5 8)

Patients with moderate

asthma (n 5 7)

Patients with severe

asthma (n 5 7) P value

Age (y) 50 (5) 48 (5) 53 (6) 52 (4) .94

Male sex (female sex) 7 (3) 3 (5) 2 (6) 2 (5) .19

Atopy (no.) 4 5 4 6 .31

Smoking history (exsmoker/current smoker/

never smoker)

2/0/8 2/0/6 1/0/6 2/0/5 .92

ICS dose (mg BDP eq/d) 0 75 (53) 800 (0) 1565 (148) <.001

LABA use (%) 0 0 100 100 <.001

Oral corticosteroid use (no.) 0 0 0 3 .01

FEV1 (% predicted) 99.9 (4.4) 78.6 (6.8) 79.2 (3.7) 82.0 (8.4) .01

FEV1/FVC (%) 78.6 (2.9) 72.5 (3.8) 72.1 (3.7) 68.7 (3.3) .22

Bronchodilator reversibility (%)* 0.5 (5.2) 10.9 (24.6) 12.4 (20.3) 8.9 (8.9) .04

Total cell count (106 cells/g sputum)* ND 1.7 (1.1) 5.5 (5.3) 4.2 (6.1) .06

Sputum eosinophils (%)* ND 3.5 (18.7) 0.4 (1.1) 5.2 (30.8) .30

Sputum neutrophils (%)* ND 47.5 (25.5) 57.4 (67.8) 57.9 (54.0) .60

Data are expressed as means (SEMs). Comparisons across groups were done by means of ANOVA or the Kruskal-Wallis test.

BDP eq, Beclomethasone dipropionate equivalent; FVC, forced vital capacity; LABA, long-acting b2-agonist; ND, not done.

*Median (interquartile range).
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test and the Dunn test for post hoc comparison. The Spearman correlation test

was used for correlation analysis. A P value of less than .05 was considered

significant.
RESULTS

Immunohistochemistry staining for DP2 on biopsy

specimens
Clinical characteristics of the patients with mild, moderate, or

severe asthma and healthy control subjects are shown in Table I.
Groups were well matched for age and smoking history. Asth-
matic patients had impaired lung function and evidence of eosin-
ophilic airway inflammation. Representative examples of DP2
expression in bronchial biopsy specimens from asthmatic patients
and healthy control subjects are shown (Fig 1, A-D). No staining
was seen for the isotype control (Fig 1, A) or when the antibody
was incubated with a blocking peptide (see Fig E1 in this article’s
Online Repository at www.jacionline.org). Expression with a
commercially available DP2 antibody was similar (see Figs E2
and E3 in this article’s Online Repository at www.jacionline.org).

DP2 expression was observed on inflammatory cells within the
submucosa for biopsy specimens from asthmatic patients and
those from healthy control subjects. Quantification of DP21 cells
within the submucosa demonstrated a significant increase in bi-
opsy specimens from patients with severe asthma compared
with that seen in biopsy specimens from healthy control subjects
(mean [SEM]: 78 [5] vs 22 [3] cells/mm2 submucosa, P < .001;
Fig 1, E). By using serial section staining, DP2 was found to
colocalize with a subset of CD31 T cells, major basic protein–
positive eosinophils, and tryptase-positive mast cells (Fig 1, F).
DP21 submucosal cells were most commonly T cells. The num-
ber of DP21CD31 cells was significantly increased in biopsy
specimens from patients with mild, moderate, and severe asthma
compared with that seen in specimens from healthy control sub-
jects (mean [SEM]: 25 [5] vs 14 [2] mm2 submucosa, P 5 .011;
33 [3] vs 14 [2] mm2 submucosa, P < .001; and 47 [4] vs 14 [2]
mm2 submucosa, respectively; P <.001) and in biopsy specimens
from patients with severe asthma compared with those from pa-
tients with mild and moderate asthma (mean [SEM]: 47 [4] vs
25 [5] mm2 submucosa, P < .001; 47 [4] vs 33 [3] mm2
submucosa, P 5 .030). In a subset of asthmatic patients (n 5
12) and healthy control subjects (n5 5), the DP21CD31 pheno-
type was investigated further by using CD4 and CD8 markers.
The number of DP21CD41 cells was significantly increased in
asthmatic patients compared with that seen in healthy control sub-
jects (mean [SEM]: 15 [3] vs 4 [1] mm2 submucosa, P 5 .002).
DP2 expression was also observed for CD81 cells, but only a
small proportion of cells and no significant differences between
biopsy specimens from healthy control subjects and asthmatic pa-
tients were found (data not shown). There was no colocalization
of DP21 cells with neutrophils. Positive expression was seen
for biopsy specimens from asthmatic patients and healthy control
subjects on epithelial cells. The number of DP21 epithelial cells
was significantly reduced in biopsy specimens from patients with
moderate and severe asthma compared with those from healthy
control subjects (Fig 1, G; mean [SEM]: 30 [5] vs 72 [11]/10
mm2 epithelium, P5 .036; 21 [3] vs 72 [11]/10 mm2 epithelium,
P 5 .001) and in biopsy specimens from patients with severe
asthma compared with those from patients with mild asthma
(mean [SEM]: 21 [3] vs 54 [8]/10 mm2 epithelium, P 5 .027).
The number of DP21 inflammatory cells and DP21 epithelial
cells had reciprocal correlations with total sputum cell counts
(r5 0.54,P5.003; r520.42,P5.028), FEV1 percentage bron-
chodilator response (r 5 0.36, P 5 .048; r 5 20.43, P 5 .002),
and airway hyperresponsiveness (r 5 20.586, P 5 .004; r 5
0.55, P 5 .009), respectively, but not with FEV1 percent pre-
dicted, FEV1/forced vital capacity ratio, or sputum differential
cell counts.

To determinewhether a change in phenotype had occurred in the
DP22 epithelial cells, we costained cells with involucrin, which
was previously described as a reliable marker of a squamous meta-
plastic phenotype by Araya et al23 in the lungs of patients with
COPD.We found a lack of DP2 staining on epithelial cells in areas
expressing pancytokeratin (used to confirm epithelial origin) and
involucrin (Fig 2, A-C). Many of the DP22 epithelial cells had a
flattened squamous morphology (Fig 2, C). These findings sug-
gested that the reduction in DP21 epithelial cell counts was due
to a metaplastic change in phenotype of the epithelial cells in the
groups with moderate and severe asthma. Epithelial histology for
all biopsy specimens were graded according to the criteria shown

http://www.jacionline.org
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FIG 1. Images are shown at 3200 magnification. A-D, Examples of DP2 expression (brown staining) on

epithelial cells and inflammatory cells within the bronchial submucosa in rabbit immunoglobulin fraction

negative control demonstrating a lack of any positive staining (Fig 1, A), a healthy control subject (Fig 1,

B), a patient with mild asthma (Fig 1, C), and a patient with severe asthma (Fig 1, D). E, Dot plot of DP21 in-

flammatory cells within the submucosa of healthy control subjects and patients with mild, moderate, and

severe asthma. P values are based on the Kruskal-Wallis test. Overall P < .001. P values shown in the figure

are based on the Dunn post hoc test. F,Numbers of DP21mast cells (mast cell tryptase positive), eosinophils

(major basic protein positive), and T cells (CD31), as assessed by means of colocalization of sequential sec-

tions. P values are based on 2-way ANOVA. Overall P < .001. P values shown in the figure based on the Tukey

post hoc test. G, Dot plot of DP21 epithelial cells in healthy control subjects and patients with moderate and

severe asthma. P values are based on the Kruskal-Wallis test. Overall P < .001. P values shown in the figure

are based on the Dunn post hoc test.
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in Fig 2,D. Grading criteria were assessed on 2 separate occasions,
and intraclass correlation for all data was strong (Cronbach a 5
.992, P < .001). A significant increase in epithelial histology grade
was observed for biopsy specimens from patients with moderate
and severe asthma compared with that seen in healthy control
samples (median [interquartile range]: grade 4 [2-4] vs grade 1.5
[1-2], P < .001; grade 4 [3-4] vs grade 1.5 [1-2], P < .001) and bi-
opsy specimens from patients with moderate and severe asthma
compared with those from patients with mild asthma (grade 4
[2-4] vs grade 2 [1-3], P < .001; grade 4 [3-4] vs grade 2 [1-3],



FIG 2. A-C, Images (3400 magnification) of serial sections of a severe asthma biopsy specimen after invo-

lucrin staining (brown; Fig 2, A), pancytokeratin (Fig 2, B), and DP2 (Fig 2, C). D, Epithelial histology grades

for biopsy specimens from healthy control subjects and patients with mild, moderate, and severe asthma. P
values are based on 1-way ANOVA. Overall P < .001. P values shown in the figure based on the Tukey post
hoc test. E, Grading of involucrin staining for biopsy specimens from healthy control subjects and patients

with mild, moderate, and severe asthma. P values are based on Kruskal-Wallis tests. Overall P < .001. P
values shown in the figure are based on the Dunn post hoc test.
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P < .001; Fig 2, D). Quantification of a change in phenotype of
some epithelial cells was achieved by using involucrin staining
gradedwith the criteria described in Fig 2,E. A significantly higher
incidence of involucrin staining was observed for biopsy speci-
mens from patients with moderate and severe asthma compared
with healthy control samples (grade 3 [2-3] vs grade 0 [0-1], P <
.001; grade 3 [2-3] vs grade 0 [0-1], P < .001; Fig 2, E) and biopsy
specimens from patients with severe asthma compared with those
from patients withmild asthma (grade 3 [2-3] vs grade 1 [0-2],P5
.026). The number of DP21 epithelial cells was negatively corre-
lated with both the histology grade and involucrin grade (rs 5
20.63, rs 5 20.69, P < .001; see Figs E4 and E5 in this article’s
Online Repository at www.jacionline.org).
DP2 expression on cultured epithelial cells
To investigate whether differences in DP2 expression in vivo

also existed in vitro, we characterized the expression of DP2 on
cultured epithelial cells taken from healthy subject and asthmatic
patients. All asthmatic donors used had moderate-to-severe dis-
ease (Global Initiative for Asthma treatment steps 3-5). Fluores-
cent DP2 cell staining was associated with submerged epithelial
cells from healthy subjects and asthmatic patients (Fig 3, A and
B). For epithelial cells from asthmatic patients, there were some
cells that were DP22 (49-6-diamidino-2-pheynylindole dihydro-
chloride–positive but DP22; Fig 3, B). No DP2 staining was
observed with the isotype control (Fig 3, A, insert). DP2 expres-
sion was present on epithelial cells grown in an ALI format
from both healthy (Fig 3, C) and asthmatic (Fig 3, D) donors.

Extracellular expression analysis of DP2 on submerged
epithelial cells showed a significant reduction in the percentage
of DP21 cells for the cells from asthmatic patients (mean [SEM]:
28% [6%]) compared with those from healthy control subjects
(mean [SEM]: 54% [7%], P < .001; Fig 3, E). A similar trend
was observed for intracellular DP2 expression (mean [SEM]:
60% [4%] for healthy control subjects vs 31% [7%] for asthmatic
patients, P < .001). For both cells from healthy control subjects
and those from asthmatic patients, no significant differences

http://www.jacionline.org


FIG 3. DP2 expression on cultured submerged epithelial cells. Fluorescent cell staining is shown as follows.

A, Green staining for DP2, with blue 49-6-diamidino-2-pheynylindole dihydrochloride (DAPI) nuclear stain-

ing (cells from healthy control subjects). The inset shows a rabbit isotype control with lack of any green

staining. B, Green staining for DP2, with blue DAPI nuclear staining (cells from asthmatic patients). Note

cells with absence of DP21 cells (green) staining. C, Green staining for DP2 on ALI culture from healthy con-

trol subjects.D,Green staining for DP2 on ALI culture from asthmatic patients. E, Percentage of DP21 epithe-

lial cells of extracellular expression assessed by means of fluorescence-activated cell sorting. P values are

based on unpaired 2-tailed t tests. F, DP2 mRNA expression normalized to the 18S housekeeping gene for

epithelial cells. P values are based on unpaired 2-tailed t tests. G, i, Hoechst-positive epithelial cells within

the migration zone for vehicle control. ii, Hoechst-positive epithelial cells within the migration zone for 100

nmol/L DK-PGD2 treatment. iii, Hoechst-positive epithelial cells within themigration zone for 100 nmol/L DK-

PGD2 plus AZD6430 treatment. H, Dot plot of cell migration fold change over vehicle control for both cells

from healthy control subjects and those from asthmatic patients with 100 nmol/L DK-PGD2 and 100 nmol/L

DK-PGD2 plus 1 mmol/L AZD6430. P values are based on paired 2-tailed t tests.
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were found between the extracellular and intracellular compart-
ments in the number of DP21 cells (mean [SEM]: 58% [6%]
for healthy control subjects vs 60% [4%], P 5 .182; 31% [8%]
for asthmatic patients vs 31% [7%], P > .999). DK-PGD2 did
not induce any significant change in intracellular percentage of
DP21 cells or expression levels (2-fold [0- to 5-fold] increase
in DP21 cell percentage, P 5 .550; 1.6-fold [0.6- to 4-fold] in-
crease in expression, P5 .185). Similarly, fluticasone propionate
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had no significant effect on extracellular or intracellular percent-
ages of DP21 cells or levels of expression (extracellular 7.8-fold
[4- to 16-fold] increase in DP21 cell percentages, P 5 .157; 1.2-
fold [0.7- to 2-fold] increase in expression, P5 .208; intracellular
2.7-fold [0- to 5-fold] increase in DP21 cell percentages, P 5
.370; 1-fold [0.8- to 1.4 fold] increase in expression, P 5 .423).
DP2 mRNA expression in epithelial cells was detected for both
cells from healthy subjects and those from asthmatic patients
grown in a submerged or ALI culture format, with significantly
more DP2 expression associated with healthy epithelial cells
(mean [SEM]: 9 [3] vs 0.3 [0.1], P 5 .009; 3 [1] vs 0.8 [0.3],
P 5 .002; Fig 3, F). Because we did not detect any DP1 mRNA
expression on epithelial cells grown in submerged or ALI culture,
the role of DP1 was not investigated (data not shown).
DP2 activation causes migration and calcium

responses in epithelial cells
The functional response of DP2 on epithelial cells was assessed

by using a cell migration assay. Vehicle treatment caused a small
increase in cell migration compared with untreated values, and
therefore fold changes were assessed relative to values seen in
vehicle-treated cells. DK-PGD2 promoted migration of epithelial
cells from healthy control subjects (10-fold [7- to 14-fold]) and
asthmatic patients (4-fold [3- to 6-fold]), but this was greater in
the healthy control subjects than in asthmatic patients (P 5
.002; Fig 3, G and H). Migration was blocked by the DP2 antag-
onist AZD6430 in cells from both healthy subjects (10-fold [7- to
14-fold] vs 2-fold [1- to 3-fold], P5 .001) and asthmatic patients
(4-fold [3- to 6-fold] vs 0.8-fold [0.6- to 1-fold],P5.002; Fig 3,G
and H). Significant migration was also observed at 500 nmol/L
DK-PGD2 (10.8-fold [8-14], P < .001) and 1 mmol/L DK-PGD2

(11-fold [8-15], P < .001), but no significant difference was
observed between DK-PGD2 concentrations. No significant
migration was observed in response to the DP2 antagonist
AZD6430 (1 mmol/L) alone when compared with vehicle treat-
ment (1.1-fold [0.9-1.4], P > .999). A combination of both 10
ng/mL TGF-b1 and 25 ng/mL fibroblast growth factor was used
as a positive control for the migration studies, which caused sig-
nificant migration (7-fold [3- to 12-fold], P 5 .018), a response
that was not affected by AZD6430 (5-fold [1.7- to 15-fold],
P 5 .102). We also found that 1 mmol/L DK-PGD2 elicited cal-
cium responses in Fura-2–loaded epithelial cells, which could
be blocked with AZD6430 (see Figs E6 and E7 in this article’s
Online Repository at www.jacionline.org).
DP2 activation modulates epithelial differentiation

in ALI cultures
The linkage of DP2 expression with the epithelial phenotype

within biopsy specimens led us to hypothesize that DP2 activation
might play a role in epithelial differentiation. To investigate this,
ALI cultures were used because they contain cells in variable
states of differentiation. Five separate donors of healthy ALI
cultures were treated with vehicle control, DK-PGD2, or DK-
PGD2 and AZD6430. Treatment for 24 hours with DK-PGD2 pro-
duced an increase in goblet cell numbers quantified by using
MUC5AC1 staining, which could be blocked with AZD6430
(Fig 4, A, C, and F). No differences were observed between
untreated and vehicle control–treated cultures. A significant
fold increase in the number of MUC5AC1 cells was observed
with DK-PGD2 treatment when compared with untreated ALI
(4-fold [3- to 4-fold] increase, P <_ .001), which decreased signif-
icantly in the presence of AZD6430 (Fig 4, B, C, and F). IL-13,
which was used as a positive control, caused a significant fold
increase in the number of MUC5AC1 cells compared with un-
treated values (IL-13: 5-fold [4- to 7-fold] increase, P < .001;
Fig 4, D and F). AZD6430 did not affect IL-13 responses (5.6-
fold [4- to 7-fold] vs 5-fold [4- to 7-fold] with IL-13 alone; Fig
4, D and E). MUC5AC mRNA analysis showed similar results
to the protein expression (Fig 4, G). More chronic effects of
DK-PGD2 incubation were also assessed at 48 and 72 hours. An
increase in MUC5AC1 cell numbers compared with untreated
values was maintained at 48 hours of DK-PGD2 (2-fold [1-
to 4-fold], P 5 .021), but this effect diminished at 72 hours
(Fig 4, H).

Involucrin immunohistochemistry staining was used to
further assess the differentiation status of the ALI after more
chronic DK-PGD2 treatment. Staining was graded according to
the same criteria as used for the biopsy specimens. A significant
increase in involucrin staining was seen for the ALI cultures
treated with DK-PGD2 at 48- and 72-hour treatments (untreated:
grade 0 [0-0], DK-PGD2 48-hour: grade 3 [2-3], P < .001, DK-
PGD2 72-hour: grade 3 [3-3]; P < .001; Fig 5, A, B, and G).
AZD6430 significantly decreased involucrin staining compared
with DK-PGD2 alone (Fig 5, B, C, and G). TGF-b1, which was
used as a positive control, caused a significant increase in invo-
lucrin staining (untreated: grade 0 [0-0] vs TGF-b1: grade 3
[3-3]; P < .001; Fig 5, D and G). The effects of TGF-b1 were
unaffected by AZD6430 (TGF-b1: grade 3 [3-3] vs TGF-
b1 1 AZD6430: grade 3 [3-3]; Fig 5, D and E). Involucrin
staining was also assessed for 5 ALI cultures from asthmatic do-
nors. Cultures from asthmatic donors had significantly higher
involucrin grades than the untreated healthy control cultures
(untreated: grade 0 [0-0] vs asthmatic: grade 3 [3-3]; P <
.001; Fig 5, F and G).
DISCUSSION
Here we present compelling evidence that DP2 is differentially

expressed on inflammatory and epithelial cells in the airways of
patients with moderate-to-severe asthma when compared with
those of healthy control subjects.More importantly, accumulation
of DP21 T cells in the bronchial submucosa was closely associ-
ated with asthma severity. We also show that DP2 activation in
epithelial cells induces proremodeling responses. These findings
demonstrate that activation of DP2 in T cells and the epithelium
has the potential to drive key features of severe asthma.

Few studies have investigated the expression of DP2 in the
airways of patients with lung diseases and how this expression
correlates with disease severity. Previous studies have shown
increased numbers of DP21 T cells in the nasal mucosa of
allergic compared with nonallergic subjects14 and in the bron-
choalveolar lavage fluid cells of patients with severe asthma
compared with numbers seen in healthy subjects.6,24 Our study
is the first to demonstrate an increased infiltration of DP21 T
cells in the bronchial submucosa of patients with moderate-to-
severe asthma when compared with values in healthy subjects.
Further analysis of the DP21 T cells on a subset of biopsy spec-
imens demonstrated that the majority of T cells were CD41,
although a small proportion of CD81 T cells were also DP21.
In addition, we speculate that type 2 innate lymphoid cells

http://www.jacionline.org


FIG 4. A-C, Representative images of healthy control ALI cultures of MUC5AC1 staining (brown, 3200

magnification). Results are shown for untreated conditions (Fig 4, A) and treatment with 100 nmol/L DK-

PGD2 for 24 hours (Fig 4, B), and 100 nmol/L DK-PGD2 plus 1 mmol/L AZD6430 for 24 hours (Fig 4, C). D,
IL-13 (100 ng/mL) for 24 hours. E, IL-3 (100 ng/mL) plus AZD6430 (1 mmol/L) for 24 hours. F, Dot plot to

show fold change in MUC5AC1 cells per millimeter of culture over untreated for cultures with 24-hour treat-

ment. P values are based on 1-way ANOVA. Overall P < .001. P values shown in the figure are based on the

Tukey post hoc test. G, Dot plot to show mRNA expression for MUC5AC normalized to 18S expression for

cultures with 24-hour treatment. P values are based on Kruskal-Wallis tests. Overall P 5 .003. P values

shown in the figure are based on the Dunn post hoc test. H, Dot plot to show quantitation of MUC5AC stain-

ing for cultures with 48 and 72 hours of treatment. P values are based on 1-way ANOVA. Overall P5 .005. P
values shown in the figure are based on the Tukey post hoc test.
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contribute to the total number of DP21 T cells because these
have been previously been found to express DP2.25,26 DP2
has been found to delay apoptosis of TH2 lymphocytes,27 and
the findings from our study support the concept that this action
might cause T cells to be retained within the submucosa of the
airways. Increased numbers of DP21 eosinophils were found in
biopsy specimens from patients with moderate asthma. DP2 an-
tagonists have been found to reduce sputum eosinophil numbers
in allergen-challenged steroid-naive asthmatic patients12 and
nasal eosinophil numbers in patients with allergic rhinitis.9

Our data suggest that there is a potential that DP2 antagonists
can affect tissue eosinophil numbers in patients with moderate
asthma. Although DP2 was also found on mast cells (with a
lack of expression on neutrophils), there was no significant dif-
ference between healthy subjects and asthmatic patients in DP2
expression on these cell types. The contribution of DP2 in the



FIG 5. A-E, Representative images of ALI cultures from healthy control subjects of involucrin-positive stain-

ing (brown, 3400 magnification). Results are shown for untreated conditions (Fig 5, A) and treatment with

100 nmol/L DK-PGD2 for 48 hours (Fig 5, B), and 100 nmol/L DK-PGD2 plus 1 mmol/L AZD6430 for 48 hours

(Fig 5, C). D, TGF-b1 (10 ng/mL) for 72 hours. E, TGF-b1 (10 ng/mL) plus AZD6430 (1 mmol/L) for 72 hours. F,

Representative image of involucrin-positive staining for an ALI culture from an untreated asthmatic patient.

G,Dot blot to show quantitation of involucrin staining for cultures with 48- and 72-hour treatments. P values

are based on 1-way ANOVA. Overall P < .001. P values shown in the figure are based on the Tukey post hoc
test.
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pathogenesis of asthma has not been completely elucidated.
Activation of DP2 on TH2 cells has been shown to cause an in-
crease in the ability of these cells to produce IL-2, IL-4, IL-5,
and IL-13.28,29 In turn, these cytokines could regulate key fea-
tures of severe asthma, as suggested by preclinical studies
showing that DP2 antagonism significantly reduced allergen-
induced inflammatory changes within mouse airways.18 There-
fore activation of accumulated DP21 T cells within the airways
of asthmatic patients is likely to play a significant role in the
pathogenesis of allergic asthma through proinflammatory
actions.

There is a wealth of literature suggesting that epithelial cells
contribute to remodeling changes within the airways of
asthmatic patients (as reviewed by Davies30). Epithelial cells
are more stressed in asthmatic patients, showing upregulation
of activated transcription factors,31 and activated repair pro-
cesses are evidenced by increased epithelial growth factor re-
ceptor32,33 and a persistently defective barrier.34 We found
that DP2 was expressed on epithelial cells within biopsy speci-
mens from asthmatic patients. Although previous publications
have described the expression of DP2 on cultured normal hu-
man epithelial cells and H292 cells,35 our report is the first to
demonstrate the in vivo expression of DP2 on epithelial cells
within bronchial biopsy specimens. A recent report has
described expression of DP2 on epithelial cells in lung volume
reduction tissue from patients with COPD,17 but whether this
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expression was associated with disease severity was not investi-
gated because no healthy control tissue was included. We have
shown that the numbers of DP21 epithelial cells were signifi-
cantly decreased in the airway epithelium in patients with
moderate-to-severe asthma. Further investigations led us to
demonstrate that the epithelial cell phenotype in biopsy speci-
mens of patients with moderate-to-severe asthma was dramati-
cally altered when compared with that in healthy control
subjects. We found that there were frequent areas of squamous
metaplasia in patients with moderate-to-severe asthma when us-
ing the involucrin marker previously described in patients with
COPD.23 Interestingly, quantification of epithelial changes to
those seen with a metaplastic phenotype inversely correlated
with DP2 expression. Squamous metaplasia and mucous cell
metaplasia are the most common metaplastic features associated
with epithelial tissue.36 More importantly, squamous metaplasia
has been found to correlate with the severity of airway obstruc-
tion37 and to increase with the severity of COPD,23 possibly
related to cigarette smoke exposure because squamous meta-
plasia is more frequent in asthmatic patients who smoke.38 In
this study squamous metaplasia was increased in the
moderate-to-severe asthma cohort without a difference in smok-
ing status between the groups. This suggests that there might be
other factors independent of cigarette smoke which can
contribute to the induction of squamous metaplasia in airway
epithelium. Our data indicate that in patients with moderate-
to-severe asthma, a phenotype shift of epithelial cells can occur,
which influences DP2 expression. Interestingly, differential
expression between healthy control subjects and patients with
moderate-to-severe asthma was also maintained for epithelial
cells when grown in culture. This finding could suggest that
cultured epithelial cells from asthmatic patients have an intrin-
sically altered phenotype, an observation that has been sug-
gested in previous studies using epithelial cells from children
with asthma.39 In our study DP2 was found to have intracellular
and extracellular expression on epithelial cells similar to that
seen in previous studies for this receptor.14,35 DP2 activation
caused functional consequences on epithelial cells that were
likely mediated through cell-surface receptors. However, intra-
cellular receptor activation can also occur, as has been reported
for other G protein–coupled receptors,40 and its functional
importance requires further study.

The novel observation of DP2 expression on bronchial
epithelial cells directed further investigation into the functional
effects of DP2 activation on cultured bronchial epithelial cells.
DP2 activation through PGD2 has been shown to cause cell
migration in TH2 cells, basophils, and eosinophils.

8,41 In the cur-
rent study we found that DP2 activation with the DP2-selective
agonist DK-PGD2

42,43 also caused migration of cells from both
asthmatic patients and healthy subjects, an effect that was
blocked with a DP2-selective antagonist. However, although
the antagonist was highly selective, it had low affinity for other
receptors and enzymes, such as thromboxane receptor, and thus
we cannot fully exclude off-target effects. Migration was more
pronounced in cells from healthy control subjects, possibly
because of the difference in cell-surface receptor expression.
We recognize that within this study, a dose-response curve
was not fully explored in part because of limitations of cell
numbers, but increasing concentrations of DK-PGD2 up to
1 mmol/L revealed that maximal migratory responses were
obtained. Future studies comparing different concentrations of
DK-PGD2 with more potent DP2 agonists, such as 15(R)-15-
methyl-PGD2, might help in uncovering differences between
the asthmatic and healthy states. The existence of functional
DP2 on the epithelium is supported with work in mouse models,
where DP2 antagonists have been found to influence mucous
cell metaplasia and epithelial cell hyperplasia in response to
cigarette smoke19 or allergen stimulation.44 Using the ALI cul-
ture system, which closely mimics the in vivo environment,45 we
provide additional evidence for a role of DP2 in driving pheno-
type changes of the epithelial cells by showing that DK-PGD2

treatment induced not only increased goblet cell numbers
when exposed acutely but also increased the area of involucrin
expression in the epithelium with more chronic treatment.
The positive controls used in this study validated these re-
sponses, in which IL-13 significantly upregulated the number
of MUC5AC1 cells46 and TGF-b1 significantly increased the
amount of involucrin expression.47

Epithelial cells are thought to be highly plastic in that they can
rapidly change their phenotype in response to insult.48 The clas-
sical repair response of epithelial cells to injury is thought to
consist of a number of steps. These include transient mucus
release, shedding of columnar epithelial cells, spreading and
migration of basal epithelial cells, and induction of squamous
metaplasia through progressive redifferentiation, ultimately lead-
ing to regeneration of the mucociliary epithelium.48-50 The
expression of DP2 on basal and columnar epithelial cells and
the findings that DP2 activation can cause many of these repair
step processes could indicate that this receptor plays a key role
in the maintenance and repair of the epithelial barrier. In asth-
matic patients, in whom there is an increased presence of
PGD2,

2,3,6 it is likely that DP2 activation accelerates these func-
tional responses on epithelial cells, causing an aberrant mucosal
barrier phenotype. Such changes can aid progression of disease
and make patients more susceptible to respiratory tract infec-
tion.51-53 Therefore a DP2 antagonist might be useful in
decreasing DP2 activation on epithelial cells and restoring normal
epithelial differential processes.

In conclusion, we have described the differential expression
of DP2 on biopsy specimens from healthy control subjects and
asthmatic patients. Biopsy specimens from patients with severe
asthma were associated with increased DP21 T-cell numbers
within the submucosal compartment and reduced DP21 epithe-
lial cell numbers in areas of epithelial metaplasia. Some of the
epithelial features seen in patients with severe asthma could be
reproduced by activating DP2 on bronchial epithelial cells,
causing cell migration and an increase in numbers of goblet
cells and cells of a squamous phenotype. The effects of DP2
activation on epithelial cells might influence airway remodeling
processes in asthmatic patients, and end points, such as mucus
production, should be considered in future clinical DP2 antago-
nist studies. We conclude that a DP2 antagonist might not just
inhibit infiltration of DP21 inflammatory cells into the airways
but might also act on epithelial cells and prevent proremodeling
action.
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Key messages

d DP2 is differentially expressed on inflammatory cells and
bronchial epithelial cells in biopsy specimens from pa-
tients with asthma compared with those from healthy con-
trol subjects.

d DP2 activation on bronchial epithelial cells might
contribute to airway remodeling in asthmatic patients.
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FIG E1. Images are shown at 3200 magnification. DP2 expression in the

presence of corresponding blocking peptide is shown. Note the lack of

staining.
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FIG E2. Images are shown at 3200 magnification. DP2 expression (brown

staining) on a biopsy specimen from a patient with mild asthma with the

AstraZeneca-sourced antibody is shown.
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FIG E3. Images are shown at 3200 magnification. DP2 expression (brown

staining) on the same biopsy specimen as Fig E2 with the Thermo Fisher

Scientific OPA1-15328 antibody is shown.
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FIG E4. Spearman correlation graph for DP21 epithelial cell numbers

versus histology scores.
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FIG E5. Spearman correlation graph for DP21 epithelial cell numbers

versus involucrin scores.
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FIG E6. Calcium response curves (Fura-2 ratio, 340/380 nm) for 3 healthy

control donors to 1 mmol/L DK-PGD2 on submerged bronchial epithelial

cells.
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FIG E7. Dot plot to show change in Fura-2 ratio (340/380 nm [peak/basal])

for 3 healthy control donors to 1 mmol/L DK-PGD2, 1 mmol/L DK-PGD2 plus 1

mmol/L AZD6430, and 1 mmol/L ionomycin on submerged bronchial epithe-

lial cells.
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