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ABSTRACT

Cardiorenal syndromes (CRS) are broadly defined as disorders of the heart and kidneys whereby acute or chronic
dysfunction in one organ may induce acute or chronic dysfunction of the other. CRS are currently classified into five
categories, mostly based on disease-initiating events and their acuity or chronicity. CRS types 3 and 4 (also called
renocardiac syndromes) refer to acute and chronic kidney dysfunction resulting in acute and chronic heart dysfunction,
respectively. The notion of renocardiac syndromes has broadened interest in kidney–heart interactions but uncertainty
remains in the nephrological community’s understanding of the clinical diversity, pathophysiological mechanisms and
optimal management approaches of these syndromes. This triple challenge that renocardiac syndromes (and likely
other cardiorenal syndromes) pose to the nephrologist can only be faced through a specific and demanding training plan
to enhance his/her cardiological scientific knowledge and through an appropriate clinical environment to develop
his/her cardiological clinical skills. The first must be the objective of the subspecialty of cardionephrology (or
nephrocardiology) and the second must be the result of collaboration with cardiologists (and other specialists) in
cardiorenal care units. This review will first consider various aspects of the challenges that renocardiac syndromes pose
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to nephrologists and, then, will discuss those aspects of cardionephrology and cardiorenal units that can facilitate an
effective response to the challenges.

Keywords: acute kidney injury, cardionephrology, cardiorenal syndromes, chronic kidney disease, renocardiac syndromes

INTRODUCTION

Cardiorenal syndrome (CRS) encompasses a spectrum of disor-
ders involving both the heart and kidneys. The Acute Dialysis
Quality Initiative outlined a consensus approach in 2008 that
phenotyped CRS into two major groups, cardiorenal and reno-
cardiac syndromes, based on the primum movens of the disease
process [1]. This was further grouped into five subtypes based on
disease acuity and sequential organ involvement. A recent Sci-
entific Statement from the American Heart Association devel-
oped the central notion that in CRS, acute or chronic dysfunc-
tion in one organ may induce acute or chronic dysfunction in
the other organ [2].

Although the notion of CRS has stimulated the research of
the cross-talk between the heart and the kidney across several
clinical scenarios, some aspects deserve to be considered [3].
Mainly due to the influence of aging and increased incidence
of common cardiac and renal metabolic and hemodynamic risk
factors, the interactions between heart and kidney diseases are
of increasing complexity and include important epidemiologi-
cal, diagnostic, preventive and therapeutic aspectswhich are not
fully addressed in the limited context of simultaneous acute or
chronic organ dysfunction. Furthermore, patients with the dual
burden of heart and kidney disease continue to experience unac-
ceptably high rates of clinical complications, hospitalization and
mortality. On the other hand, the pathophysiological framework
underlying the classification of CRS has been challenged by re-
cent mechanistic advances.

Therefore, this review article is based on the consideration
that the time has come for the nephrologist to advance the view
of heart–kidney interactions proposed in the CRS classification.
In this conceptual framework, and by way of example, we will
focus on some clinical, mechanistic and therapeutic aspects
of types 4 and 3 of CRS (i.e., chronic and acute renocardiac
syndromes, respectively) that underlie the complex and broad
kidney–heart relationship in these two syndromes. Finally, we
will consider how to address the growing clinical and scientific
challenge that patients with renocardiac syndromes pose to
nephrologists.

DIVERSITY OF CLINICAL MANIFESTATIONS IN
RENOCARDIAC SYNDROMES

Both chronic and acute renocardiac syndromes have multiple
clinical manifestations, beyond the classically acknowledged
and researched conditions.

Chronic renocardiac syndrome

This syndrome is characterized by primary chronic kidney dis-
ease (CKD) leading to an increased risk of chronic impairment of
cardiac function [1, 2] (Fig. 1).Decreased kidney functionworsens
chronic heart failure (CHF) prognosis [4]. Adverse left ventricular
(LV) remodeling bothmacroscopic [i.e., progressive development
of left ventricular hypertrophy (LVH) with diastolic dysfunction,
evolving lately to LV dilatation and systolic dysfunction] andmi-
croscopic (e.g., cardiomyocyte hypertrophy and apoptosis, and

myocardial interstitial inflammation and fibrosis) is involved in
the development and progression of CHF in CKD patients [5].

Increasing interest is being devoted to the role of distur-
bances of the right ventricle in chronic renocardiac syndrome. In
fact,CKD is independently associatedwith the risk of pulmonary
hypertension [6, 7] and right ventricular–pulmonary artery un-
coupling [8], which it is recognized as a major mechanism of
right ventricular systolic dysfunction [9]. Interestingly, CKD is
associated with severe right ventricular systolic dysfunction,
which is independently associated with mortality [10].

Recently, a group of experts identified several aspects of CKD
that fit criteria of unmetmedical needs, among them the preven-
tion and management of cardiac complications beyond CHF [11,
12]. Furthermore, cardiac complications in patientswith CKD are
more prevalent, with higher complexity and severity compared
with the non-CKD population, and are associated with larger
economic and societal burden [13–15].

Although classically the cardiac risk of CKD has been re-
lated to coronary atherosclerosis [16] and vascular calcification
[17], it is now accepted that the risk of other cardiac compli-
cations (including coronary microvascular dysfunction, cardiac
valve disease, dysrhythmias and sudden cardiac death) is also
increased in CKD patients (Fig. 1) [18].

Coronary microvascular dysfunction results from different
structural, functional and/or dynamic alterations in the coro-
nary microcirculation associated with CKD that may result in
angina even in the absence of atherosclerotic coronary artery
disease or coronary calcifications [19]. Coronary microvascular
dysfunction is characterized by a reduced coronary flow reserve
[20, 21] and is independently associated with adverse cardiovas-
cular events [22, 23].

There is an epidemiological collinearity of the prevalence
and incidence of CKD with aortic and mitral valve diseases,
which are present in 88–99% of stage 5 CKD patients [24]. Calcifi-
cation plays an important role in CKD-associated valve disease
occurring 10–20 years earlier in CKD patients compared with
the general population, with an increase in the incidence and
prevalence in parallel to the progression of CKD stage [25]. The
presence of aortic and/or mitral valve disease has a strong un-
favorable impact on the outcome in patients with CKD, namely
in those on dialysis [26]. Compared with the bibliography focus-
ing on left-sided valves and CKD, evidence on tricuspid and pul-
monary valve disease ismuch less.However, tricuspid regurgita-
tion is prevalent in CKD,namely in patients on dialysis (in whom
the prevalence is of 63%) and mostly due to pulmonary hyper-
tension [27].

CKD patients have a significant increased burden from atrial
fibrillation (AF) compared with subjects without CKD, with a
prevalence reaching up to 20% in non-dialysis CKD patients and
up to 40% in patients on dialysis [28]. CKD and AF share many
risk factors,making it difficult to discern the contributions of in-
dividual factors to either condition or associated outcomes (e.g.,
stroke) [29].

There is an increased risk of sudden cardiac death (SCD) in
CKD. While the annual incidence rate of SCD is around 0.1%
in the general population, it rises to 1.5%–2.7% in non-dialysis
CKD patients, reaching 7% in patients initiating dialysis [28].
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FIGURE 1: Schematic view of the two pathophysiological and clinical relationships participating in views of chronic renocardiac syndrome (RCS) or type 4 cardiorenal
syndrome: the classical restricted one (left part of the figure) and the emerging expanding one (right part of the figure). The depicted photographs are the following:
ischemic vascular disease: angiographic view of obstructive coronary artery disease (left) and diminished density of coronary microvessels (right). Cardiac valve
disease: macroscopic appearance of aortic stenosis (left) and mitral regurgitation (right). Chronic congestive heart failure: clinical aspect of jugular engorgement

(left) and peripheral oedema (right). Progression of chronic heart failure: oxygen therapy in a patient suffering from stage D heart failure. Cardiac dysrhythmias:
electrocardiographic image of ventricular tachycardia (left) and atrial fibrillation (right).

There is a significant gap of knowledge in the understanding of
electrical and hemodynamic mechanisms underlying SCD. In
a retrospective study of hemodialysis patients who were pre-
scribed a wearable cardioverter defibrillator, 80% of cardiac ar-
restswere recorded as ventricular tachyarrhythmias (ventricular
tachycardia or ventricular fibrillation) compared with 20% brad-
yarrhythmias, and most events occurred during or imme-
diately after dialysis sessions [30]. In contrast, in a recent
prospective study with continuous electrocardiogram moni-
toring, bradyarrhythmias and asystole, rather than ventricular
tachyarrhythmias, were important determinants of SCD during
the long interdialytic period [31].

Taken together, the above considerations indicate that
nephrologists should be encouraged and educated to discuss
cardiac risks and potential cardiac diagnostic and treatment op-
tions for CKD patients in a broader manner than is currently
the case from the perspective of chronic renocardiac syndrome,
which focuses primarily on CHF attributable to LV failure.

Acute renocardiac syndrome

This syndrome occurs when acute kidney injury (AKI) con-
tributes to and/or precipitates the development of acute cardiac
injury or dysfunction [1, 2] (Fig. 2). In particular, AKI is associated
with increased risk of acute decompensated HF (ADHF). In fact,

in a population-based study involving a large cohort of patients
who survived a hospitalization complicated by AKI, 20% of pa-
tients were readmitted within 30 days, most often with ADHF
[32]. In another study of a large cohort of hospitalized adults,
during the first year after discharge the risk of hospitalization
for ADHF was increased by 44% [33] in the group with AKI as
compared with the group that did not have AKI.

In addition,AKI is also associatedwith increased risk of other
long-term cardiovascular complications (Fig. 2). A 2017 meta-
analysis of 25 studies involving a total of 254 408 patients, in-
cluding 55 150 with AKI, showed that AKI was associated with
an 86% increase in the risk of death from cardiovascular causes
during a median follow-up of 2.6 years [34]. There was a 58% in-
crease in the risk of CHF during 2.9 years of follow-up, a 40% in-
crease in the risk of acute myocardial infarction during 2.3 years
of follow-up,and a 15% increase in the risk of stroke over a period
of 2.7 years [34]. Other studies have shown that the increased
risks did not differ between AKI patients with and without pre-
vious CKD and neither status with respect to recovery of renal
function nor severity of AKI [35–37]; there are also no differences
between patientswith andwithout previous cardiovascular con-
ditions, including CHF [38, 39], suggesting that the long-term risk
of cardiovascular events is associated with AKI itself.

A new category of AKI diagnosed by elevations of tubular
damage biomarkers alone [e.g., neutrophil gelatinase-associated
lipocalin (NGAL) also known as lipocalin 2], which might evolve
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FIGURE 2: Schematic view of the two pathophysiological and clinical views of acute renocardiac syndrome (RCS) or type 3 cardiorenal syndrome: the classical restricted
one (left part of the figure) and the emerging expanding one (right part of the figure). The depicted photographs are the following: chronic kidney disease: macroscopic

appearance of end-stage kidney disease. Acute decompensated kidney failure: chest X-ray image of pulmonary oedema (left) and lung ultrasound image of B-lines
(right). Chronic heart failure and other cardiac complications: clinical aspect of jugular engorgement (left) and electrocardiographic image of acutemyocardial infarction
(right).

into a clinically manifest syndrome characterized by a rise in
serum creatinine levels and a decrease in estimated glomerular
filtration rate (eGFR), has been described and termed subclin-
ical AKI [40]. In a pooled data analysis from 2322 critically ill
patients, increased urine or plasma NGAL detects patients with
likely subclinical AKI who have an increased risk of adverse out-
comes including need for renal replacement therapy (primary
endpoint), hospital mortality, their combination and duration
of stay in intensive care and in-hospital, in absence of elevated
serum creatinine [41]. As increased urinary or blood NGAL levels
are an independent risk factor for future CHF and atheroscle-
rotic coronary disease [42], the link between clinically overt AKI
and cardiac dysfunction might also extend to subclinical AKI.

Therefore, nephrologists must be aware that AKI is associ-
ated not only with increased risk of CKD and ADHF but also with
increased risk of future long-term adverse cardiovascular seque-
lae, especially CHF. These sequelae lead to other complications
and poor outcomes, independent of or intertwinedwith the risks
associated with the development of CKD [43].

COMPLEXITY OF MECHANISMS IN
RENOCARDIAC SYNDROMES

Recent research has illustrated the growing complexity of the
interrelated cellular and molecular mechanisms underlying
chronic and acute renocardiac syndromes.

Insights from experimental models

Animal models have been established that induce primary renal
damage/dysfunction and allow the assessment of the impact
of kidney injury on the initiation and development of cardiac
acute and chronic alterations simulating human renocardiac
syndromes [44] (Table 1).

The most widely used model of severe CKD is induced by
subtotal nephrectomy (STNx) consisting of complete removal
of one kidney and upper and lower pole resections of the rem-
nant kidney. STNx-inducedCKDwas associatedwith uremic car-
diomyopathy, characterized by adverse LV remodeling, and en-
hanced susceptibility tomyocardial ischemia [45, 46]. Of note, an
excess of cardiac microRNA-21 has been reported in STNx rats
and microRNA-21 inhibition prevented LV remodeling, through
changes in the peroxisome proliferator-activated receptor-α sig-
naling pathway [47].

Effects of mild-to-moderate CKD on the heart have been in-
vestigated in a unilateral nephrectomymodel by which one kid-
ney is removed, whereas the contralateral kidney is left intact.
Unilateral nephrectomy caused early LV microscopic remodel-
ing (i.e., apoptosis and fibrosis) with mild LVH and LV dias-
tolic dysfunction, which later progressed to LV dilatation and
a reduction in LV ejection fraction [48]. Changes in genes re-
lated to transforming growth factor-β1 and apoptosis pathways
in the heart were involved in this kidney–heart interaction in
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Table 1. Some examples of candidates identified as potential mediators and/or biomarkers of the mechanisms involved in renocardiac
syndromes

Type of observation Type of RCS Potential mediators References

Experimental Chronic microRNA-21 [47]
TGF-β1 [48]
Renal sympathetic nerve activity [49]
TWEAK-Fn14 [50, 51]
α-Klotho [52]

Acute Toll-like receptors 2 and 4 [53]
Dynamin-related protein-1 [54]
TWEAK-Fn14 [55, 56]

“Omics” Chronic Indoxyl sulfate, p-cresyl sulfate [57]
TMAO [58, 59]
FGF23 [57]

Acute ADMA [60]
FGF23 [61]

Clinical Chronic CRP, IL-6, IL-1β [62, 63]
PICP, CITP:MMP-1 [64]
α-Klotho [65, 66]
Soluble TWEAK [67, 68]

Acute High blood pressure [69]

Abbreviations: ADMA, asymmetric dimethylarginine; CRP, C reactive protein; FGF23, fibroblast growth factor 23; Fn14, fibroblast growth factor-inducible 14; IL-
1β, interleukin-1β; IL-6, interleukin-6; PICP, C-terminal propeptide of procollagen type I; CITP:MMP-1, C-terminal telopeptide of procollagen type I to matrix

metalloproteinase-1 ratio; RCS, renocardiac syndrome; TGF-β, transforming growth factor-β; TMAO, trimethylamine-N-oxide; TWEAK, tumor necrosis factor-like weak
inducer of apoptosis.

mild-to-moderate CKD [48]. Whether these changes also occur
in the remaining kidney from living kidney donors remains to be
investigated.

Recent findings obtained in an animal model of CKD due
to adenine show that renal dysfunction is associated with left
atrial dilation, hyperinnervation, fibrosis and arrhythmogen-
esis, which are attenuated by renal denervation [49]. While
they do not indicate causality, they support the implication of
kidney-mediated sympathetic overactivity in left atrial struc-
tural and electrical remodeling and in the pathogenesis of AF.
Furthermore, these observations add experimental support to
the ERADICATE-AF study [70], a single blind randomized clin-
ical trial that demonstrated improved freedom from atrial ar-
rhythmias at 12 months when renal denervation was added to
catheter ablation of AF.

Warm ischemia–reperfusion is the most widely used model
of hypoxia-induced AKI and is characterized by an abrupt de-
cline in renal function and severe injury in the straight seg-
ment of proximal tubules. In this model, kidney injury caused
LV macroscopic (i.e., hypertrophy and dilation) and myocardial
microscopic (i.e., apoptosis) remodeling accompanied by impair-
ment of LV systolic function [71]. Pathways linked to Toll-like re-
ceptors 2 and 4 [53] and maladaptive mitochondrial dynamics
mediated by dynamin-related protein-1 [54] may be critically in-
volved in these alterations.

There is also the possibility that some cardiac damaging
mechanisms act in conditions of either CKD or AKI, depending
on the timing and duration of their actions. In this regard,
the potential pathogenic role of the cytokine tumor necrosis
factor-like weak inducer of apoptosis (TWEAK) and its receptor,
fibroblast growth factor inducible 14 (Fn14) signaling in cardiac
and vascular injury accompanying CKD and AKI deserves some
attention. The TWEAK–Fn14 axis promotes tissue (either renal,
vascular or cardiac) remodeling such as apoptosis, inflamma-
tion and fibrosis, while restraining the expression of tissue
protective factors such as the antiaging factor α-Klotho and
the master regulator of mitochondrial biogenesis peroxisome

proliferator-activated receptor-γ coactivator-1α [72]. Increased
tissue expression and activity of Fn14 and, to a lesser extent,
TWEAK, have been reported both in experimental CKD [50, 51]
and AKI [55, 56] and shown to lead to decreased α-Klotho [52].
Kidney α-Klotho is also lost very early in the course of CKD as,
in addition to inflammation, albuminuria itself downregulates
α-Klotho before glomerular filtration rate decreases [73].

Insights from systems medicine studies

Limited data exist on genomics, epigenomics, transcriptomics,
proteomics and metabolomics in the setting of renocardiac
syndromes [74]. However, some examples may illustrate the
potential of systems medicine (also termed “omics”) studies to
gain insight into the heart–kidney interactions in CRS and,more
specifically, to identify novel mediators and/or biomarkers of
these interactions (Table 1).

Recent findings derived from “multi-omics” approaches have
provided a deeper insight into the pathogenesis and diagno-
sis of CKD-related atherosclerosis beyond traditional and non-
traditional risk factors [75]. Combined metabolomics and pro-
teomics approaches added a piece of a puzzle to the knowledge
of atherosclerotic endothelial dysfunction in CKD and mainly
attributed to inflammation and oxidative stress [57]. The rela-
tionship between indoxyl sulfate and p-cresyl sulfate with 181
cardiovascular-related proteins involved in endothelial dysfunc-
tion and inflammation was recently analyzed in patients on
dialysis [57]. Both metabolites were positively associated with
the increased risk of atherosclerotic events and with fibroblasts
growth factor 23 (FGF23), a factor produced in bones that par-
ticipates in the maintenance of mineral homeostasis regulat-
ing phosphaturia through the interaction with α-Klotho–FGF re-
ceptor complexes expressed in renal tubule cells [76]. However,
FGF23 also exerts direct actions on the cardiovascular system.
For instance, FGF23 experimentally impairs endothelial function
apparently via activation of a FGF receptor-dependent, α-Klotho-
independent signaling pathway resulting in oxidative stress [77].
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Plasma FGF23 is increased in CKD patients due to a maladaptive
compensatory response to acquired α-Klotho deficiency, and is
associated with atherosclerotic (e.g., ischemic events) and non-
atherosclerotic (e.g., CHF) complications in this patient popula-
tion [78, 79].

In a proteomics proof-of-concept study, known biomarkers
for AKIwere integrated to underlying disease conditions in path-
way and protein interaction analyses [61]. Both a GeneMania
network analysis and a term cluster analysis of AKI-modulated
molecules allowed to identify AKI biomarker patterns for
molecular pathways potentially involved in extrarenal damage
(e.g., cardiac damage). One of these molecular pathways is
related to FGF23 that induces LVH and myocardial fibrosis
in animals apparently through a FGF receptor-dependent,
α-Klotho-independent mechanism resulting in activation of
calcineurin-nuclear factor of activated T-cells and upregulation
of active β-catenin and transforming growth factor-β1 [80, 81].
Of note, increased serum FGF23 is associated with LVH, LV
dysfunction and incident HF in patients with CKD [82–84].

Metabolomics has identified an excess of trimethylamine-
N-oxide as a predictor of cardiovascular events [85] and
several groups have confirmed the association between
trimethylamine-N-oxide and cardiovascular disease among
individuals with CKD [58, 59, 86, 87]. Metabolomics also identi-
fied novel features of AKI. Increases in acylcarnitines and certain
amino acids (methionine, homocysteine, pyroglutamate, asym-
metric dimethylarginine and phenylalanine) and a reduction in
serum levels of arginine and several lysophosphatidyl cholines
were observed in patients with AKI compared with healthy
subjects [60]. Of interest, several studies have demonstrated
that asymmetric dimethylarginine is an important risk factor
for the increase of cardiovascular diseases and CHF in CKD [88].

Insights from clinical observations

Several clinical observations are providing novel insight on the
potential primary drivers of pathophysiology in renocardiac syn-
dromes (Table 1).

Systemic inflammation is a key process in the pathophysiol-
ogy of CKD with relevant involvement in cardiovascular compli-
cations [89–91]. In fact, inflammatory biomarkers [e.g., C reactive
protein (CRP), interleukins-6 and -1β, and tumor necrosis factor-
α] progressively increase as kidney function declines and predict
cardiovascular events in CKD patients [62, 63]. In accordance,
the CANTOS trial (Canakinumab Anti-Inflammatory Thrombo-
sis Outcome Study) focusing on 10061 stable postmyocardial in-
farction patients with high high-sensitivity CRP levels demon-
strated a benefit of inhibiting interleukin-1β with canakinumab
on the incidence of cardiovascular events, which was larger in
patients with estimated glomerular filtration rate (eGFR) <60
mL/min/1.73 m2 than in those with eGFR ≥60 mL/min/1.73 m2

[92]. Recently, two studies performed in stages 3–5 CKD pa-
tients [93] and patients on hemodialysis [94] demonstrated that
blockade of interleukin-6 with ziltivekimab markedly reduced
biomarkers of inflammation (e.g., CRP) relevant to atherosclero-
sis. In addition, ziltivekimab also reduced a biomarker of throm-
bosis [93] and erythropoiesis-stimulating agent requirements
and increased serum albumin [94].

Myocardial fibrosis is a frequent finding in endomyocardial
biopsies and necropsy studies in patients with CKD [95, 96].
Interestingly, recent studies have identified causal connections
between CKD and myocardial fibrosis [97]. Furthermore, it has
been proposed that myocardial fibrosis may play a key role in
the development and progression of CHF in CKD patients [98].
Of notice, CKD patients with CHF exhibit a pattern of myocar-

dial fibrosis circulating biomarkers that differs from non-CKD
patients with CHF, and characterized by increased C-terminal
propeptide of procollagen type I and by a low C-terminal
telopeptide of collagen type I to matrix metalloproteinase
type 1 ratio [64]. This pattern is thought to reflect extensive
deposition of highly stiff collagen type I fibers and is associated
with severe adverse macroscopic LV remodeling [64].

It has been proposed that AKI induces structural cardiac
damage characterized by myocardial inflammation and cellular
apoptosis and necrosis developing within days and myocardial
fibrosis developing months or years later [99]. Of note, analyses
of claims databases show that patients with AKI are more likely
than patients without AKI to develop subsequent hypertension
[69]. Chronic pressure overload associated to systemic hyperten-
sion is a major inducer of myocardial microscopic adverse re-
modeling (namely, fibrosis) associated with CHF [100].

Data suggest that FGF23 excessmight be future sensitive and
specific marker for cardiovascular disease associated with both
CKD and AKI. It is not clear, however, that this is the case for its
co-receptor α-Klotho. Currently, CKD is considered as a state of
α-Klotho deficiency [101] and results from animal experiments
showed that α-Klotho deficiency causes vascular calcification,
and cardiac hypertrophy and fibrosis [102–104]. Furthermore,
intravenous delivery of a transgene encoding soluble α-Klotho
ameliorated cardiac hypertrophy in CKD mice with Klotho
deficiency [104]. Circulating levels of soluble α-Klotho (which
results either from the release of the extracellular domain of
membrane α-Klotho after cleavage by the ADisintegrin andmet-
alloproteinases 10 and 17 or by alternative splicing) are directly
correlated with eGFR and inversely correlated with circulating
FGF23 in CKD patients [105]. Interestingly, a recent clinical study
in subjects with established cardiovascular disease and pre-
served renal function showed that lower soluble α-Klotho levels
are associated with a proinflammatory status [65]. Moreover,
lower soluble α-Klotho levels are independently associated with
subclinical atherosclerosis in patients with moderate-to-severe
CKD [66]. However, a cohort study of 444 patients with CKD
stages 2–4 showed that plasma-soluble α-Klotho did not predict
atherosclerotic events, CHF or cardiovascular death after 2.6
years of follow-up [106]. Further studies are required to eluci-
date the role of α-Klotho in cardiovascular disease that develops
in kidney disease. In this regard, technology to assess α-Klotho
levels should be further optimized [107].

Low circulating soluble TWEAK, which results from the pro-
teolytic processing of the full-length protein by furin, is indepen-
dently associated with both atherosclerosis burden [67] and pro-
gression [68] in CKD patients. This is consistent with the devel-
opment of hypersensitivity to TWEAK related to increased cell
membrane Fn14 [108]. Indeed, Fn14 upregulation during tissue
stress or injury is the main mechanism driving TWEAK–Fn14
signaling. Thus, decreased soluble TWEAK levels may reflect ac-
tivation of the TWEAK–Fn14 axis, analogous to low complement
levels reflecting complement activation. Alternatively, soluble
TWEAK may also bind to the scavenger receptor CD163, which
might be a compensatory mechanism to protect from excessive
TWEAK–Fn14 signaling [108].More research is necessary to char-
acterize and clinically validate soluble TWEAK as a biomarker of
cardiovascular risk in CKD patients.

ADDRESSING THE CHALLENGE OF
RENOCARDIAC SYNDROMES

The aspects developed in the two preceding sections are
just some examples supporting the concept that a new
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Table 2. Some examples of aspects related to renocardiac syndromes that remain to be investigated and developed in the context of
cardionephrology (adapted from Hatamizadeh [114])

Aspects Examples

Epidemiology High prevalence of CV-related conditions beyond CHF or ADHF in CKD and AKI patients, respectively
Risk factors Common classical and emerging risk factors to CKD and chronic CV disease, and to AKI and acute CV disease
Pathophysiology Emerging pathogenic connections between the kidney and the heart when CKD or AKI are present
Diagnosis Interference of CKD or AKI on clinical presentation, and indication and interpretation of biomarkers of CV injury and/or

dysfunction
Prognosis Influence of coexisting kidney and CV injury/dysfunction on mutual worsening function and clinical outcomes
Prevention Modified prophylactic targets of CV disease when CKD or AKI are the initiating conditions
Treatment Interference of CKD or AKI on the indication of certain modalities of CV therapy
Monitoring Influence of CKD and AKI on follow-up strategies of associated chronic and acute CV complications
Research Identify differential phenotypes of renocardiac syndromes using personalized medicine-based approaches

Abbreviations: ADHF, acute decompensated HF; AKI; acute kidney injury; CHF, chronic heart failure; CKD, chronic kidney disease; CV, cardiovascular.

comprehensive approach to renocardiac syndromes in partic-
ular, and likely to CRS in general, warrants a subspecialty that
combines scientific knowledge and clinical skills from both
nephrology and cardiology (i.e., cardionephrology) [109–111] and
that is developed in a physical and organizational context of
multidisciplinarity (i.e., cardiorenal units) [112, 113].

Aspects related to cardionephrology

There is an extensive relationship between nephrology and car-
diology in a variety of aspects, including epidemiology, risk fac-
tors, pathophysiology, diagnosis, prognosis, prevention, treat-
ment,monitoring and research, that involve both the kidney and
the heart in cardiorenal patients, particularly in those present-
ing with renocardiac syndromes (Table 2) [114]. The subspecialty
of cardionephrology is aimed at the study of themultidirectional
interplay of kidney and heart disease from all these standpoints
to provide high-quality care in the vulnerable cardiorenal popu-
lation [114].

As is illustrated by renocardiac syndromes, the interactions
between nephrology and cardiology are broad, complex, and
include subtleties that are not routinely discussed in either
nephrology or cardiology [111]. Any nephrologist or cardiolo-
gist should be familiar with those topics, and a cardionephrol-
ogist must master them. Cardionephrologists should also lead
additional translational research to further discover the extent
of those interactions and to establish the optimal clinical ap-
proaches to those complexities.

In this regard, it is relevant to emphasize that although the
field of oncology has made significant steps toward individual-
ized precision medicine, cardiology and nephrology still often
use a “one size fits all” approach. This applies to the intersec-
tion of the heart–kidney interaction and the CRS as well [115].
As reviewed here, the pathophysiologic and clinical heterogene-
ity of renocardiac syndromes is so extensive that more research
is needed to bring precision medicine into routine clinical prac-
tice for the care of patients with CRS.

Aspects related to cardiorenal units

The clinical rationale of the cardiorenal units is to provide co-
ordinated multidisciplinary care for patients hospitalized with
concomitant kidney and heart disease, thereby improving pa-
tient outcomes and optimizing utilization of resources. Prelim-
inary data recently published on the impact of a cardiorenal
unit on the clinical course and outcomes of patients with AKI

and ADHF are encouraging, although they need to be verified in
larger series of patients and over a longer period of follow-up
[116].

Inpatient cardiorenal units provide support for nephrologists
and cardiologists on regular medical floors, telemetry units and
intensive care units. Cardiorenal units should allow for a more
consistent dialogue between the two specialties, thus provid-
ing nephrologists and cardiologists with the clinical and edu-
cational environment and activities that allow one to gain sub-
stantial experience in solving cardiovascular and renal problems
in cardiorenal patients.

In addition, cardiorenal units should contribute to building a
foundation to advance research in CRS in general and renocar-
diac syndromes in particular. Collecting longitudinal electronic
medical record data on cardiorenal patients and recruiting di-
rectly these patients into clinical research studies are the cor-
nerstones of the scientific component of cardiorenal units. In
this regard, it is mandatory to remember that there is an unmet
need for evidence-based therapy for patients with chronic reno-
cardiac syndrome, particularly for thosewith advanced CKD and
CHF [117].

CONCLUSIONS

The time has come to move from a taxonomic approach to the
concurrence of kidney and heart diseases to a broader approach
based on the view of patients primarily diagnosed with either
kidney disease or heart disease as cardiorenal patients. This
means moving from the limited opportunities for diagnosis and
treatment offered by the CRS classification to the growing possi-
bilities for knowledge and clinical development inherent in the
subspecialty of cardionephrology.

That said, nephrologists (and cardiologists) should always be
grateful to the pioneerswho coined anddeveloped the classifica-
tion of renocardiac syndromes (and other CRS) because thanks
to them, todaywe can realistically consider the new subspecialty
of cardionephrology aimed at stimulating us as clinicians and
scientists and, above all, to improve the care,prognosis and qual-
ity of life of cardiorenal patients.
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