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Abstract: Contamination of edible oils with aflatoxins (AFs) is a universal issue due to the detrimen-
tal effects of aflatoxins on human health and the fact that edible oils are a major source of fungal
growth, particularly storage fungi (Aspergillus sp.). The objective of this study was to assess aflatoxin
B1 (AFB1) in edible oil used in fried food in order to determine the risk of cancer from AFB1 exposure
through cooked food using the FAO/WHO’s and EFSA’s margin of exposure (MOE) quantitative
liver cancer risk approaches. Using Mycosep 226 columns and HPLC-FLD, 100 samples of cooking
oils (soybean, canola, and sunflower oil) from different food points were analyzed for contamina-
tion with aflatoxins. Of all the samples tested, 89% were positive for total aflatoxins and AFB1,
with 65% indicating AF concentrations beyond permitted levels. Canola oil was found to con-
tain higher levels of AFB1 and AFs than soybean and sunflower oil. Almost 71 percent of canola
oil samples (range of 54.4–281.1 µg/kg) were contaminated with AF levels higher than the pro-
posed limits of the European Union (20 µg/kg). The consumption of canola oil samples used in
fried foods had MOE values that were significantly lower as compared to sunflower and soybean
oils, indicating that risk reduction is feasible. Additionally, compared to soybean and sunflower
oil, canola oil exhibited a greater threat of liver cancer cases linked to AFB1 exposure (17.13 per
100,000 males over 35 and 10.93 per 100,000 females over 35). Using a quantitative liver cancer
approach, health risk valuation demonstrated that males and females over the age of 35 are at signifi-
cant risk of developing liver cancer. The health risk assessment exposed that the males and female
over the age of 35 are at considerable risk of liver cancer by using a quantitative liver cancer approach.
The innovation of this study lies in the fact that no such study is reported related to liver cancer
risk evaluation accompanied with AFB1 exposure from consumed edible oil. As a result, a national
strategy must be developed to solve this problem so that edible oil products are subjected to severe
regulatory examination.

Keywords: AFB1; AFs; HPLC; dietary intake; MOE; quantitative liver cancer; risk assessment;
Faisalabad
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Key Contribution: In view of contamination of food items with AFs and their negative impact on
human health, commonly consumed edible oils were studied for AFB1 contamination, and detected
AFB1 levels were compared with international standards recommended for human consumption to
ensure safety for consumers.

1. Introduction

Edible cooking oils extracted from different seeds having a high content of natural
antioxidants and unsaturated fatty acids are good for cardiac health, due to their long
shelf-life [1]. Due to increasing health concerns in the twenty-first century, vegetable oils are
favored for food frying or use in food processing industries over animal oils [2]. Consumers
employ edible oil in their everyday routines because it avoids arteriosclerosis and lowers
blood lipid levels [3,4]. The demand and consumption of edible cooking oils have increased
globally, particularly in developed countries, as more consumers become aware of the
health benefits of using it [4]. The most widely used oils in the world are peanut, maize,
olive, canola, soybean, and sunflower oil, and their consumption is increasing. The Food
and Agriculture Organization (FAO) estimates that 244.8 million tons of oil and fats were
consumed worldwide in 2020–2021 [5]. The processing of oil, as well as production, pack-
aging, transportation, and storage, may lead to AF contamination. In addition, advances
in industrial processing, conventional agricultural methods, and climatic and pollution
conditions such as: water, phosphorus, invisible insoluble compounds, free fatty acids,
hexane, benzo pyrene, minerals, and pesticides; mycotoxins such as iron, lead, gossypol,
and copper; and various primary and secondary oxidation products may result in the
formation of novel harmful residues in edible oils [6,7].

Contamination of food and food commodities with aflatoxin (AF) is a potential hazard
to global food. These Afs are human liver carcinogens that are toxigenic, carcinogenic,
mutagenic, and teratogenic, causing serious health problems in humans and animals. They
are lethal secondary metabolites fashioned by Aspergillus flavus, A. prasiticus, and A. nomius:
the most toxic and active metabolite is AFB1 [8,9]. AFs predominantly damage the liver,
but they might also impact other tissues and organs, such as the lungs and kidneys, to a
lesser extent. Acute signs of aflatoxicosis in animals include bile duct development [10].

Pakistan is a tropical country; hence the climatic variables are likely to be favorable
for the synthesis of fungal metabolites. Aflatoxigenic fungus thrives in environments with
high temperatures and humidity levels. In several surveys conducted around the world,
exposure to AFs in vegetable oils has been reported. In most cases, fungal contamination in
edible cooking oils emerges as a consequence of moisture or temperature. Mold growth is
fostered substantially by improper storage conditions and other eco-physiological factors,
which are especially prevalent in the tropics and subtropics (where high temperatures and
humidity prevail). However, AFs were found in high concentrations in animal feed as
well as in food samples (cereal products) [11–15]. To the best of our knowledge, no prior
research has been conducted in Pakistan regarding the risk assessment of liver carcinoma
related to AFB1 in edible cooking oil.

Hepatocellular carcinoma (HCC) causes liver cancer and in developing countries is
the third highest source of cancer deaths, with a 16–32 times greater risk of mortality [16].
About 25,200–155,000 new incidences of liver cancer are reported globally each year, which
might be related to the consumption of peanuts and maize contaminated with AFs: people
with HBV (hepatitis B virus) are particularly susceptible to this [17]. Conditions in Pakistan
are far worse than those in Western Europe and North America, yet not as bad as that
in Sub-Saharan Africa [18]. Today, reports and updated databases on fungal incidence
and mycotoxin contaminations in marketed commodities are readily accessible. Health
regulatory authorities have imposed rigorous regulations, notably for imported commodi-
ties [19,20]. In addition, aflatoxin B1 (AFB1) has a toxic effect on the liver. As a result,
AFB1 has a substantial impact on the liver’s ability to metabolize lipids, carbohydrates, and
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proteins. The toxin hinders RNA polymerase and consequent synthesis of proteins at a
higher rate in ducks than in rats, which is likely due to the fact that ducks have faster liver
metabolism of AFB1 and mechanism for the same has been reported elsewhere [21].

Therefore, the purpose of this research was to estimate the level of aflatoxins
(AFB1, AFB2, AFG1, and AFG2) in edible oils from various local restaurants through-
out Punjab, Pakistan, as well as to perform a cancer risk evaluation of AFs owing to the use
of these edible oils through risk characterization in males and females of different ages.

2. Results and Discussion
2.1. Screening of Edible Oil Samples for AF Contamination

As presented in Table 1, aflatoxin B1 (AFB1) and total aflatoxin (AF) contamination
were in found in twenty-seven (87.9%) out of thirty-one samples of canola oil, twenty-two
(61.1%) out of thirty-six samples of sunflower oil, and twenty (63.5%) out of thirty-two
samples of soybean edible cooking oil (single and double frying oils). In canola oil, all single
step frying oil samples were positive for AFB1 as well as AF contamination: 23.52% (4/17)
were contaminated with total AFs below the permissible limits and 76.47% (13/17) showed
AF levels above the permissible limits, whereas the two step frying oil samples showed
28.57% (4/14) below and 71.42% (10/14) above the permissible limits (20 µg/kg) set by
the IAEA and WHO. The effect of single step and double step frying was not statistically
significant for the incidence of total AFs, which can be justified by the fact that AFs are
highly thermostable compounds: if an oil sample is contaminated with AFs, cooking
practices are inadequate to degrade/remove contaminating AFs [22]. In sunflower oil,
single step and double step frying samples showed 33.3% (6/18) and 44.44% (8/18) of
AFs below and 66.67% (12/18) and 55.56% (10/18) of AFs above the permissible limits,
respectively. An approximately similar incidence of AFs was observed in soybean oil, with
the highest contamination of 69.23% (9/13) above the permissible limits in double frying
oil samples.

Except in the double step frying sunflower oil sample, the highest level of AFB1 was
in all canola single and double step frying oil samples were above 20 µg/kg, and the
lowest observed level of AFB1 was in soybean single step frying oil, as shown in Figure 1.
Thirty-six sunflower oil samples (single and double step frying oils) had AFB1 and AF
ranges of 0.025–61.1 and 0.039–231.5 µg/kg, while thirty-two soybean oil samples (single
and double oils) had ranges of AFB1 and AFs of 0.002–64.2 and 0.006–141.3 µg/kg, re-
spectively, as shown in Figure 2. In addition, 31 samples of canola oil (single and double
oils) had AFB1 and AFs concentrations ranging from 0.003–72.5 and 0.007–281.1 µg/kg,
respectively, as shown in Figure 3. The HPLC chromatograms are shown in Figure 4
for AFTs.
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Table 1. Level of AFB1, AFB2, AFG1, and AFG2 with total AFs in canola oils, sunflower oils, and soybean oils from different places of Faisalabad, Pakistan.

Edible Oils Step N
Positive

Samples N
(%)

Below
Permissible

Limit
<20 µg kg−1

Above
Permissible

Limit
>20 µg kg−1

AFB1
µg/kg

(Mean ± SD)

AFB2
µg/kg

(Mean ± SD)

AFG1
µg/kg

(Mean ± SD)

AFG2
µg/kg

(Mean ± SD)

AFs
µg/kg

(Mean ± SD)

Ranges
(µg/kg)

AFB1 AFs

Canola
oil

1 Step
Frying 17 17 (100) 4 13 24.64 ± 0.82 6.90 ± 0.74 3.80 ± 0.67 52.16 ± 0.52 87.51 ± 0.91 0.003–72.5 0.007–281.1

2 Step
Frying 14 10 (7142) 4 10 11.98 ± 0.93 26.96 ± 0.58 30.13 ± 0.89 15.33 ± 0.65 82.93 ± 0.88 0.012–62.4 0.016–241.5

Sunflower
oil

1 Step
Frying 18 12 (66.66) 6 12 6.76 ± 0.69 41.98 ± 0.96 3.74 ± 0.79 19.9 ± 0.81 72.38 ± 0.95 0.025–61.1 0.039–231.5

2 Step
Frying 18 10 (55.55) 8 10 8.56 ± 0.68 10.24 ± 0.91 6.73 ± 0.66 8.97 ± 0.78 34.5 ± 0.82 0.045–27.1 0.071–54.4

Soybean
oil

1 Step
Frying 13 9 (69.23) 4 9 5 ± 0.71 7.96 ± 0.56 22.61 ± 0.90 7.87 ± 0.62 43.44 ± 0.68 0.038–16.6 0.088–71.2

2 Step
Frying 20 11 (57.89) 9 11 8.65 ± 0.61 13.39 ± 0.82 13.64 ± 0.71 39.98 ± 0.53 5.66 ± 0.97 0.002–64.2 0.006–141.3

Total 100 89 (89.00) 35 65
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Faisalabad, Pakistan.
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from Faisalabad, Pakistan.
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B2 (AFB2), and aflatoxin B1 (AFB1) in the single and double step frying canola oil collected from
Faisalabad, Pakistan.

Previous reported work showed that Beheshti and Asadi [23] observed a lower fre-
quency and level of AFs in Iran than the current report’s results. They detected AFB1
contamination in 111 (64%) of 173 sunflower samples, with 103 samples (83.7%) of saf-
flower seeds with an average of 2.81 to 0.44 ng/g and 8 samples (16%) of sunflowers with
an average of 40.68 ng/g. Only five and two samples of sunflower and safflower seed,
correspondingly, exceeded the EU limit (20 µg/kg). Similarly, Karunarathna et al. [11]
studied 59 edible oil samples (43 imported and 16 native) from the same geographical
region in Sri Lanka (sunflower, sesame, coconut, corn, olive, palm, and soybean oil). They
concluded that 12 (37.5 percent) of the 32 coconut samples were infected with aflatox-
ins. They reported that AFB1 and total AF levels ranged from 2.25 to 72.70 µg/kg and
1.76 to 60.92 µg/kg, respectively, with two out of twelve oil samples exceeding the EU’s
high permissible limit of 2 µg/kg for AFB1. Mohammed et al. [24] investigated 40 samples
of sunflower seeds and crude sunflower oil samples (n = 21) from Tanzania and discovered
that 6 (15%) samples were contaminated with AFB1, ranging from the limit of detection to
218 ng/g, which is lower than the results of the current investigation. Three samples exceed
the acceptable limits set by the Tanzanian Bureau of Standards (TBS) and the European
Commission/European Union (EC/EU).

Banu and Muthumary [25] found AFB1 contamination in 10 (43.4%) of 23 sunflower
oil samples from India, and entirely refined samples had levels below the LOD. Mariod
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and Idris [26] identified AFB1 contamination in 54.8 percent of groundnut samples and
14.5 percent of 8 samples of sunflower oil from Sudan. Nabizadeh et al. [27] analyzed
97 edible oil samples from 6 different types (canola, olive, sunflower, and blend, frying,
and crude olive oil). They reported that AFB1 levels were lower than the LOD in 98 percent
of samples and that all positive samples for aflatoxins were below the EU’s 20 µg/kg limit.
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In many places around the world, edible oil is regarded as a lucrative cash crop.
Nevertheless, the safety and excellence of crops are questioned owing to the use of outdated
traditional agricultural methods and inadequate knowledge among traders and farmers
regarding toxic fungi. Edible oils (coconut, sunflower, and olive) are frequently stored
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in cotton sacks for extended periods of time under situations such as contact with the
ground, wetness, and temperature extremes. The prolonged period encourages the growth
of molds, which favors the colonization of toxicogenic molds [28]. Droughts may impact
agriculture during the preharvest period, resulting in the growth of fungi such as Aspergillus
flavus. To avoid aflatoxigenic fungi growth, extreme temperature and humidity must be
regulated, which is a serious concern in humid countries like Pakistan [29]. Additionally,
the invasion of AFs in food varies depending on a number of parameters, including the
analytical methodologies utilized, ambient conditions, crops, and harvesting practices.
The aflatoxigenic fungi can be reduced in food and food products by following excellent
postharvest management practices at the level of transportation, processing, packaging,
and storage techniques.

2.2. Risk Assessment for Health

Several probabilistic studies regarding public health and water and food sources
containing various hazards, such as pesticide residues in edible oils [30,31] and polycyclic
aromatic hydrocarbons (PAHs) in edible oils, have been performed in recent years [32,33].

Since AFB1 was identified in frying cooking oil samples from Faisalabad, Pakistan, a
cancer-causing risk evaluation was carried out based on a per capita ingestion of edible
cooking oils used in food products, as well as AFB1 contamination from the consumed edi-
ble oils. A comparison of the levels of contaminants with the accepted limits is insufficient
to identify the health state of the exposed population; thus, a health risk assessment should
be conducted.

2.3. Dietary AFB1 Exposure

Table 2 illustrates the estimated daily intake of edible frying oils (sunflower, canola,
and soybean oil) used in various fast/fried food items in various age groups of male and
female populations from different places in Faisalabad (Pakistan). The most commonly
used edible cooking oils in Pakistan were canola, sunflower, and soybean oils, therefore
estimating dietary intake from these oils was the most realistic procedure. Local canola oil
samples had the highest dietary intake (255.6 and 163.2 µg/kg/day) in male and female
adults (over 35 years old), while sunflower oil (100 and 64 µg/kg/day) and soybean oil
(78.8 and 50.3 µg/kg/day) samples had lower consumption in male and female adults
(over 35 years old) than the canola oil samples. According to the findings, the highest
food consumption values were seen in both male and female adults over 35 years of age.
Local samples of canola oil revealed the highest levels of dietary intake in both male and
female participants as compared to the other oils (sunflower and soybean oils). There
were no comparable data available to relate with the results of the present study. Because
the country previously lacked adequate health facilities, high AFB1 dietary intake levels
from canola, soybean, and sunflower consumption would have severe consequences for
consumers’ health. Nonetheless, overlooking the individuals’ dieting patterns, seasons,
and conventional dietary habits may impact the outcome of dietary intake evaluations.
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Table 2. Risk characterization on margin of exposure (MOE) and population risk approach for canola
oil, soybean oil, and sunflower oil (based on a model formulated by EFSA 2005–2007). Exposure
evaluation had an average body weight of 55 kg. Population risk is estimated from the prevalence
rate of 21% HBsAg.

Edible
Cooking

Oil (Frying)
Type

Male Female

Age Group Age Group

≤22 ≤27 >35 ≤22 ≤27 >35

Canola

Contamination (µg/g) 18.34 18.34 18.34 18.34 18.34 18.34

Consumption (g/day) 226 355 885 142 354 565

Exposure (ng/kg/day) 65.29 102.56 255.68 41.02 102.2 163.23

MOE for human *
BMDL10 13.32 8.47 3.40 21.20 8.51 5.32

Population risk *
(cancers/year/100,000) 4.37 6.87 17.13 2.74 6.85 10.93

Soybean

Contamination (µg/g) 6.96 6.96 6.96 6.96 6.96 6.96

Consumption (g/day) 226 355 885 142 354 565

Exposure(ng/kg/day) 20.13 31.62 78.84 12.65 31.53 50.33

MOE for human *
BMDL10 43.21 27.51 11.03 68.77 27.59 17.28

Population risk *
(cancers/year/100,000) 1.34 2.11 5.28 0.84 2.11 3.37

Sunflower

Contamination (µg/g) 7.66 7.66 7.66 7.66 7.66 7.66

Consumption (g/day) 226 355 885 142 354 565

Exposure (ng/kg/day) 25.64 40.27 100 16.11 40.16 64.14

MOE for human *
BMDL10 33.93 21.60 8.66 54 21.66 13.56

Population risk *
(cancers/year/100,000) 1.71 2.69 6.72 1.07 2.69 4.29

* Benchmark dose (BMD) lower limit for 10% extra risk, taken as 870 ng/kg/day. * Population risk for primary
liver cancer (cancers/year/100,000 persons).

2.4. Risk Characterization Using Margin of Exposure (MOE) Approach

Table 3 shows that the margin of exposure (MOE) values for AFB1 exposure from
frying cooking oil consumption are based on EDI values calculated from consumption
data that were collected across Faisalabad, a city in Punjab Province, using the level of
AFB1 identified in edible cooking oils (canola, sunflower, and soybean oil) used in fried
foods. In comparison to other oils (soybean and sunflower oils), the value of MOE based
on human BMDL10 in canola oil samples was substantially lower than 10. The MOE values
for consumption of fried oil items from Faisalabad (Pakistan) in canola oil samples were
lower than the safe margin of 10,000, as indicated in Table 3. The results show that a
number of MOE values were below 10,000, indicating that risk management is possible.
Furthermore, the European Commission’s Scientific Panel stated that no findings had been
reached regarding human information concerning MOE levels that would be deemed
as being of low public health concern. According to a study conducted by the EFS in
2020, predominantly for the younger respondents, the calculated MOEs for all five AFs
including AFB1 and AFM1 were found to be 10,000. This poses an alarming health risk.
The assessed cancer perils in humans subsequent to exposure to aflatoxin M1 (AFM1) and
aflatoxin B1 (AFB1) are in-line with the deduction drawn from the MOEs (EFS, 2020) [34].
No comparable data have been reported to corroborate our conclusion as far as prevalence
of food and feed products of Pakistan are concerned. As a result, the BMD and MOE
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approaches clearly highlighted the need for Pakistan’s risk managers to take action to avoid
the negative impact of AFs on consumer health, since these are highly toxic.

Table 3. An overview of contact assessment and risk characterization for aflatoxin in various food
products in different countries using occurrence.

Sr. No. Country Food Item Contamination
(ng/g)

Consumption
(g Food
Day−1)

Exposure
(ng/kg Body

Weight
Day−1)

PRPLC * Ref.

1. Tanzania Beer 23 1048 402 33.1 [35]

2. Ghana Kenkey 51 1000 850 70.1 [36]

3. Botswana Peanut butter 23 20 23 1.9 [37]

4. Kenya Maize(commercial) 20 400 133 11 [38]

5. Gambia Maize 9.7 22 3.6 0.3 [35]

6. Kenya Maize (rural market) 53 400 353 29.2 [39]

7. Gambia Groundnut 15 65 16 1.3 [40]

8. Brazil Maize - - 3.0–17.1 0.057–0.467 [41]

9. Brazil Brazil nuts - - 6.6–6.8 0.0731–0.0753 [42]

10. China Maize - - 0.11–5.8 0.003–0.2 [43]

11. Iran Bread and peanuts - - 3.6 - [44]

12. New Zealand Dried fruits and maize - - 0.09 0.0015–0.0019 [45]

13. Tanzania Unrefined sunflower oil 0.23 - - - [24]

14. Iran Sunflower oil 0.12 - - - [23]

15. Sudan Sunflower oil 52.3 - - - [46]

16. Sudan Sesame oil 187.6 - - - [46]

17. China Oil products 35.0 - - - [47]

* Population Risk for Primary Liver Cancer (Cancers/Year Per 100,000).

2.5. Risk Characterization Using Quantitative Liver Cancer Approach

Table 3 shows an approximation of the population risk (represented as cancers per
million) for liver cancer based on a prevalence rate of hepatitis B of 21% acquired from the
DHQ hospital in Faisalabad, Pakistan. AFB1-related cancer incidence was assessed using
0.0709 cancers per 100,000 people. Table 3 shows that, in a number of circumstances, rela-
tively substantial population hazards are associated with AFB1 exposure. Risk managers
should consider taking action in a variety of circumstances based on the levels among the
demographic groups most vulnerable to exposure. Overall liver cancer occurrence and
mortality in Punjab varied greatly among different age groups, with high rates in canola oil
(17.13 per 100,000 males over 35 years and 10.93 per 100,000 females over 35 years) and low
rates in soybean oil (5.28 per 100,000 males >35 years and 3.37 per 100,000 females over
35 years). According to our conclusions, a quantitative liver cancer approach exposed those
males and females of the over 35 age group are at a significant risk of liver cancer in canola
oil samples compared to other oils (sunflower and soybean oils). There were no previous
data that could be used to compare with this study.

3. Conclusions

The present study presents the very first reports of the surveillance of AF contami-
nation in edible oils from Faisalabad, Punjab, Pakistan, to evaluate the risk of liver can-
cer caused by the exposure of AFB1 from consumed edible oil. Furthermore, using a
quantitative liver cancer approach and margin of exposure, the cancer-causing risk of
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AFs from edible oils (single or double stage frying) used in fried food was assessed in
males and females of various ages. AF contamination was identified in over 71% (ranges
0.007–281.1 µg/kg) of canola oil samples, some which were above the European regu-
lation’s (20 g/kg) limit. Furthermore, according to the health risk evaluation using the
margin of exposure approach (MOE) and the quantitative liver cancer approach, males and
females above the age of 35 are at a higher risk of liver cancer as a result of AFB1 owing to
higher canola oil consumption than other oils. Overall, the assessment highlights the need
for AFB1 risk assessment throughout Punjab. By using a quantitative liver cancer approach,
health risk evaluation stated that males and females over 35 are at considerable risk of liver
cancer. Frequent sampling of feed and food samples, as well as training for farmers, mer-
chants, and exporters, could assist in creating awareness of AFs’ toxicity. Additionally, the
Punjab Food Authority has undertaken checking food safety and quality, which is a positive
step ahead.

4. Materials and Methods
4.1. Chemicals and Reagents

AF (AFB1, AFB2, AFG1, and AFG2) standards (HPLC grade) were obtained from
Sigma-Aldrich Co. (St. Louis, MO, USA). Reagents and chemicals obtained included the
following: methanol (PubChem CID:34860; ≥99.9%) and acetonitrile (PubChem CID:34998;
≥99.9%), Trifluoroacetic acid (PubChem CID: 302031; ≥99.0%), acetic acid (PubChem
CID:695092; ≥99.7%), sodium chloride (NaCl) (Sigma–Aldrich, St. Louis, MO, USA) and
moreover, deionized water (PubChem CID: 962) was used in every step of the experiment.
Mycosep 226 (AflaZon+) immunoaffinity columns were purchased from Romers Labs
(Union, MO, USA).

4.2. Sampling

From January 2019 to March 2020, a hundred single and double step frying oil (sun-
flower, soybean, and canola oil) samples were collected from different local restaurants
in Faisalabad (Pakistan). There were three different types of oils, in which sunflower oil
samples (n = 36) were obtained from four different brands, canola oil samples (n = 31) were
obtained from five different brands, and (n = 33) of soybean oil samples were obtained
from six different brands. Each sample of frying cooking oil was picked manually from
various restaurants at random. The sample size was kept at 0.5 kg each.

4.3. Screening of Cooking Oils for AF Contamination
Extraction of AFs from Frying Cooking Oil Samples

The method outlined by Karunarathna et al. [11] for extraction of AFs from frying
cooking oils was modified: 25 mL of sample was combined with 125 mL of water:methanol:
(45:55 v/v) and 5 g NaCl. In glass flasks covered with aluminum foil, the mixture was
blended at 200 rpm. The Buchner funnel was used to filter the mixture, 70 µL of acetic acid
was added to each 9 mL of extract. These acidified extracts were passed through MycoSep
226 immunoaffinity columns (IAC) at a flow rate of around 1 mL/min. Prior to analysis,
the obtained AF elute evaporated and was stored for pre-column derivatization. Dried AF
residues were mixed with 100 µL trifluoroacetic acid (TFA). For further HPLC analysis, the
solutions were kept at room temperature for 20 min in the dark.

4.4. HPLC Analysis

For qualitative and quantitative estimation of aflatoxins, all analyses were achieved
on an LC-system with the following specifications: HPLC apparatus (ProminanceTM,
shimadzu®, Kyoto, Japan) containing a Shimadzu LC software package designed for
HPLC real-time and post-operative analysis operated through a computer equipped with
Mediterranean Sea 18® 5 µm 25 cmx 0.46 Serial No. N45074 (teknokroma, Sant Cugat del
Vallès, Spain) fitted with a CTO-20A® (Shimadzu, Japan) column oven and an LC-20AT®

(Shimadzu, Japan) pump. The isocratic mobile phase (20:20:60) of acetonitrile, methanol,
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and water was used. Flow rate was kept at 1.5 mL/min. Injection volume was 20 µL:
Rheodyne® sample injector with 20 µL sample loop. The elute was detected using a
spectrofluorometer detector RF-10AXL ® (shimadzu, Japan) set at emission 440 nm and
excitation at 360 nm.

4.5. Parameters for Method Validation in AF Analysis

Over the entire range of AFs injected, the standard calibration curves were linear.
The concentration range for AFG1 was determined to be 0.005–20 ng mL−1, for AFB1
0.005–150 ng mL−1, for AFB2 0.002–20 ng mL−1, and for AFG2 0.002–6.0 ng mL−1. Limit
of detection (LOD) was calculated using a signal to noise ratio (S/N) of 3 and limit of
quantification (LOQ) was calculated using a signal to noise ratio (S/N) of 10. In the Table 4,
the correlation coefficients are presented.

Table 4. Method validation for HPLC analysis for the detection of AFs.

Aflatoxin Rt (min) LOD *
(ng mL−1)

LOQ *
(ng mL−1) Calibration Curve R2

AFB1 5.24 0.002 0.005 y = 67093x + 33.842 0.9997

AFB2 4.02 0.001 0.002 y = 45747x − 709.54 0.9995

AFG1 2.71 0.002 0.005 y = 33025x + 27.800 0.9996

AFG2 2.50 0.001 0.002 y = 63802x − 85.618 0.9991
LOD * = limit of detection. LOQ * = limits of quantification. Rt = retention time.

4.6. Online Survey from Different Places in Faisalabad

A survey using a questionnaire was conducted to estimate the consumption data
of edible cooking oils (single and double frying) used in fried foods and fast foods for
approximately 121 participants and to ask them about the fried food oils consumed in
the previous two years. The participants’ average weight was 55 kg. The survey took
into account all factors of oil consumption, including food additives and consistency
Figure 5. These studies determined the exact amount of edible cooking oil used in food
products (both single and double frying). https://docs.google.com/forms/d/1NvbQU_
khyhnMMgRFW7Q9g1yhj-62uoPPub5lH3vmMw0/edit. Accessed on 12 September 2020.

https://docs.google.com/forms/d/1NvbQU_khyhnMMgRFW7Q9g1yhj-62uoPPub5lH3vmMw0/edit
https://docs.google.com/forms/d/1NvbQU_khyhnMMgRFW7Q9g1yhj-62uoPPub5lH3vmMw0/edit
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4.7. Estimation of Daily Food Intake

Equation (1) was used to analyze the estimated daily intake (EDI) provided by [48].

Dietary food intake (µg/kg/day) =
n

∑
i=1

=
Ci × Di

BW
(1)
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Ci represents AFB1 concentration (µg/kg), Di represents dietary intake of edible
cooking oil (single and double frying) used in fried foods and fast foods (g/person/day),
and BW depicts mean body weight (kg).

4.8. Risk Assessment

Two different methods have been proposed to assess risk. International regulatory
agencies have employed the EFSA’s margin of exposure (MOE) approach [48] as well as
the FAO and WHO’s quantitative liver cancer risk approach [49].

4.8.1. MOE (Margin of Exposure) Approach

The EFSA systematized the approach to the margin of exposure (MOE) to evaluate
the threat of a genotoxic and carcinogenic material [50]. The MOE is not used to measure
the safety of regulated substances consciously supplemented in the food chain but is a
proportion of two aspects which estimates for a specific population the dose at which
a modest but quantifiable adverse effect is first noticed at the level of exposure to the
element under consideration. The EFSA Scientific Panel on Contaminants in the Food
Chain advocated describing the MOE using the benchmark dose lower confidence limit
for 10% excess risk (BMDL10) [51]. The EC Scientific Panel [52] established BMDL10 for
a 10% enhanced cancer risk using human data (870 ng/kg body weight/day) for the risk
valuation of AFB1. The MOE is the combination of the BMDL10 and the EDI. If the BMDL10
is employed as the MOE calculation parameter, the EDI is regarded to be of public health
concern and the MOE value will be less than 10,000 [53]. It should be noted that MOE
values do not quantify danger, but rather these suggest a level of concern: the lower the
margin of exposure value, the greater the level of concern [54].

4.8.2. Quantitative Liver Cancer Risk Approach

The FAO and WHO have embarked on a project to quantitatively assess the risk of
liver cancer induced by AFB1 exposure [49]. The carcinogenic potency (represented in the
range of cancers/year/100,000 populations/ngAFB1/kg/day) is multiplied by the total
consumption of AFB1 (articulated in ng AFB1/kg/day) [55]. Actually, the carcinogenic
potency was studied in both people with hepatitis B (using the HBsAg+) and persons who
did not have hepatitis B (using the HBsAg−). Hepatitis B is known to enhance the risk of
AFB1-induced liver cancer in a synergistic manner [56]. In the current study, the prevalence
rate of hepatitis B positive patients from Faisalabad (Pakistan) was 21 percent, which was
used to estimate the risk.

Cancer risk was determined by using Equation (2) [22].

Average Potency = (PHBsAg +× pop.HBsAg+) + (PHBsAg −× pop.HBsAg−)
Cancer risk = Average Potency × EDI (Estimated Daily Intake)

(2)

The prevalence rate of hepatitis B positive patients associated with gender and age
group was obtained. These data aimed to evaluate the HBV occurrence rate and its risk
factors among the general population visiting the DHQ hospital of Faisalabad, Pakistan.

4.9. Statistical Analysis

The current study was statistically analyzed, and the consequences were described as
mean ± standard deviations. The results of an analysis of variance of data on aflatoxins
B1, B2, G1, and G2 in single and double frying oils from sunflower, canola, and soybean
oils show that the effect of treatment interaction between oil types (sunflower, soybean,
and canola oils) and single and double frying oils for aflatoxins B1, B2, G1, and G2 was no
significant difference (D. F = 3, p = 0.003, Fcal = 11.22 value).
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