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a b s t r a c t 

In this article, an abstract framework for annual averaged wind power output generation prediction of wind 

turbines is presented which is heavily based on large wind speed data sets and power curve data of wind 

turbines due to the rising interest in wind energy as one main future renewable energy source. As combinations 

of arbitrary power curve modeling techniques and arbitrary wind speed distributions based on wind speed data 

are seldom combined, the abstract combination of these two aspects in wind power output generation prediction 

in one pipeline is thoroughly described here. Conclusively, one detailed example wind speed data set from a 

weather station situation in Bremen, Germany illustrates applicability of the presented framework. 
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Introduction 

Interest in wind energy as one main future renewable energy source has risen constantly over the

past years [3] . Due to this rising importance of wind energy as one major ingredient to reduce carbon

dioxide emissions, prediction methods for wind power output are valuable tools for determination 

of wind turbine locations. For this purpose, one must model power curves from given power curve

data from manufacturers as summarized in [2] . Additionally, one needs to further identify possible

wind speed distributions from given large wind speed data sets [1,4] . Based on these articles,

Wacker, Seebaß and Schlüter proposed an abstract framework for annual averaged wind power output 

generation prediction of wind turbines which heavily relies on large wind speed data sets and

power curve data of wind turbines [3] because these methods are often considered separately in the

literature, and can scarce be found combined. However, it seems important to present algorithmic 

aspects of the aforementioned article in greater details. 

For these reasons, we present a complete pipeline for annual averaged wind power output 

generation prediction of wind turbines in this article which was first developed in [3] . This method

relies heavily on large wind speed data sets, arbitrary power curve modeling techniques and arbitrary

wind speed distributions. Finally, we provide one detailed example from a weather station situation 

in Bremen, Germany. 

As already mentioned, prediction of produced energy by a wind turbine is an important topic

because renewable energy sources are necessary to reduce carbon dioxide emissions. In this work, 

we provide details regarding our abstract pipeline’s framework for this goal. The following steps are

necessary ingredients. 

Step 1: Since wind speed data sets may come from different sources, different pre-processing steps

need to be taken into account. This includes adjusting wind speeds at different heights by so-called

power laws. 

Step 2: Different power curve models might be adapted to given power curve data. 

Step 3: We choose different wind speed probability distributions to fit our processed wind speed

data. 

Step 4: As our main output, we approximate integrals by finite sums to calculate semi-empirical

and estimated wind power output generation prediction values numerically. 

Step 5: We suggest different goodness-of-fit measures for evaluation purpose. 

https://doi.org/10.3390/app9224930
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ethod details 

Let 
{
v j 

}N 

j=1 
be a time series of measured wind speed at a certain weather station. Let ( v k , P k )

e measured power curve data of a manufacturer’s wind turbine prototype. These data sets build

ur foundation for our wind power output generation prediction algorithm. We portray the graphical

owchart of our algorithm in Figure 1 . All steps coincide with our procedure presented in our abstract.

e mainly follow our preprint but add further details regarding our methods. However, we especially

iscuss power curve modeling and uncertainty quantification in a more detailed manner. 

tep 1: Processing of wind speed data sets 

In our complete pipeline, we process wind speed data sets provided by the German Weather

ervice (DWD) [5] and National Centers for Environmental Information [6] . Since both data sets differ,

e have to adjust our processing steps accordingly. 

Let us first consider wind speed data sets from the German Weather Service. We take a closer

ook at data from the weather station located at Bremen, Germany (Station ID: 00691). Data can

e extracted from the corresponding ZIP -archive and data are contained in the text-file named

rodukt_ff_stunde_00691.txt . The fourth column consists of measured wind speed with physical

nit m 

s . 

Missing data are replaced by −999 . This fact implies that we have to delete these entries from our

ode. As an outlook, we also need to delete zero wind speed values from this column for estimation

f two-parameter Weibull distributions (compare Step 3). 

International data sets from National Centers for Environmental Information need different

reatment. A short extract of such files is given below. 

The ninth column contains wind speed values scaled by a factor of ten. For this reason, we have to

escale these data by dividing these values by a factor of ten. Since international data sets are archived

or every year, we must put together complete time series. If we want to adjust the given wind speeds

f the weather stations at reading height to hub height, we need so-called power laws [7,8] . If h r is

he reading height and v r is the measured wind speed at reading height, the extrapolation power law

or the new wind speed v at hub height h reads 

v = v r ·
(

h 

h r 

)α

here α is an empirical coefficient depending on the location’s roughness. For further details, we

efer interested readers to [7,8] . Concluding this step, we provide short pseudo-code which describe

ur wind speed processing procedure in Algorithm 1 . 

Since all following steps are the same for different time series of wind speeds, we restrict our

iscussion and results to the case of wind speeds measured at reading height. However, all our

entioned steps can still be carried out if we apply the power law to the wind speeds at our pre-

rocessing step 1. 
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Fig. 1. A flowchart of our abstract framework for annual averaged power output generation prediction 
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Algorithm 1: Pseudo-code for wind speed data processing 

Inputs: Wind speed data sets 

Step 1: Put all archived data files together such that one complete time series is available. This 

is only necessary for wind speed data from National Centers for Environmental Information. 

Step 2: Choose right column of wind speed data. 

Step 3: Delete non-zero entries for all wind speed probability distributions and additionally 

eliminate all zero entries for two-parameter Weibull distributions. 

Step 4: Rescale wind speed by a factor of ten. This is solely necessary for wind speed data from 

National Centers for Environmental Information. 

Step 5: If you adjust wind speeds to hub height, you have to apply the above mentioned 

power-law with respect to the wind speeds’ time series. 

Outputs: Prepared wind speed data sets 

Fig. 2. Plot of a general wind power curve 

S

 

a

 

w  

v  

P

 

f

tep 2: Power curve modeling 

A typical course of wind power curves is shown in Figure 2 . 

We observe that wind power curves can be described by piecewise defined functions. This general

pproach reads 

P Power ( v ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 , v ∈ 

[
0 , v cut-in 

)
q ( v ) , v ∈ 

[
v cut-in 

, v rated 

]
P rated 

, v ∈ 

(
v rated 

, v cut-off

)
0 , v ∈ 

[
v cut-off, ∞ 

) (1)

here q ( v ) is an arbitrary function on 

[
v cut-in 

, v rated 

]
. Here, v represents wind speed while v cut-in 

,

 rated 

and v cut-off denote cut-in wind speed, rated wind speed and cut-off wind speed respectively.

 rated 

is the rated power output. 

Before considering power curve modeling in more detail, we summarize given wind speed data

rom manufacturer Vestas [9] in Table 1 . 
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Table 1 

Hourly Power Output Data For Wind Turbine Vestas V112 

Wind Speed Power Output Wind Speed Power Output 

0.0 0 13.5 3075 

0.5 0 14.0 3075 

1.0 0 14.5 3075 

1.5 0 15.0 3075 

2.0 0 15.5 3075 

2.5 0 16.0 3075 

3.0 26 16.5 3075 

3.5 73 17.0 3075 

4.0 133 17.5 3075 

4.5 207 18.0 3075 

5.0 302 18.5 3075 

5.5 416 19.0 3075 

6.0 554 19.5 3075 

6.5 717 20.0 3075 

7.0 907 20.5 3075 

7.5 1126 21.0 3075 

8.0 1375 21.5 3075 

8.5 1652 22.0 3075 

9.0 1985 22.5 3075 

9.5 2282 23.0 3075 

10.0 2585 23.5 3075 

10.5 2821 24.0 3075 

11.0 2997 24.5 3075 

11.5 3050 25.0 3075 

12.0 3067 25.5 0 

12.5 3074 26.0 0 

13.0 3075 26.5 0 

 

 

 

We clearly see that we can algorithmically determine v cut-in 

, v rated 

and v cut-off from these data.

Determination of v cut-in 

is portrayed in Algorithm 2 . 

Algorithm 2: Pseudo-code for determination of v cut-in 

Inputs: Power curve data ( v k , P k ) with wind speed series { v k } and power output series { P k } 
for j ∈ 

{
1 , . . . , length 

({
v j 

})}
do 

while P j = 0 . 0 do 

j = j + 1 

end 

break 

end 

j cut-in = j 

v cut-in = v j cut-in 

Output: j cut-in and v cut-in 

Determination of v rated 

is shown in Algorithm 3 . 

Finally, our procedure for calculation of v cut-off is given in Algorithm 4 . 

Now, we can use these results to interpolate power curve data points by certain power curve

models. We restrict ourselves to two methods of cubic spline interpolation and logistic regression. 

For further models, we refer interested readers to [2] . 

At first, we begin with cubic spline interpolation. Let v 1 , . . . , v M 

∈ 

[
v cut-in 

, v rated 

]
be M ascending

data points in the interval of interest, i.e. 

v = v 1 < v 2 < . . . < v M−1 < v M 

= v . 
cut-in rated 
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Algorithm 3: Pseudo-code for determination of v rated 

Inputs: Power curve data ( v k , P k ) with wind speed series { v k } and power output series { P k } and 

j cut-in 

for j ∈ 

{
j cut-in , length 

({
v j 

})}
do 

while P j � = P j+1 do 

j = j + 1 

end 

break 

end 

j rated = j 

v rated = v j rated 

Output: j rated and v rated 

Algorithm 4: Pseudo-code for determination of v cut-off

Inputs: Power curve data ( v k , P k ) with wind speed series { v k } and power output series { P k } , 
j cut-in and j rated 

for j ∈ 

{
j rated , length 

({
v j 

})}
do 

while P j � = 0 . 0 do 

j = j + 1 

end 

break 

end 

j cut-off = j 

v cut-off = v j cut-off

Output: j cut-off and v cut-off

O
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o

ur cubic spline interpolation model q cub reads 

q cub 

(
v 
∣∣θcub 

)
= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

a 1 · v 3 + b 1 · v 2 + c 1 · v + d 1 , v ∈ [ v 1 , v 2 ) 
a 2 · v 3 + b 2 · v 2 + c 2 · v + d 2 , v ∈ [ v 2 , v 3 ) 
... ... 

a M 

· v 3 + b M 

· v 2 + c M 

· v + d M 

, v ∈ [ v M−1 , v M 

] 

(2)

here a l , b l , c l , d l for l ∈ { 1 , . . . , M } are all cubic interpolation parameters and θcub all summarizes

hem in one vector. To build the linear system, all data points have to be passed and first derivatives

ust be continuous. We further need to define appropriate boundary conditions. For further details on

ubic spline interpolation methods, we refer interested readers to Fritsch and Carlson [10] or Hyman

11] . With respect to the scripting language R , all these variants are implemented by splinefun . 

Let us now consider logistic regression. The logistic regression model function q log is defined by 

q log 

(
v 
∣∣∣θlog 

)
= 

B 

C + D · exp ( −E · v + F ) 
(3)

here B, C, D, E, F are all logistic regression parameters which are summarized in θlog . To apply

rdinary least-squares regression, we define an optimization cost function J by 

J 

(
θlog 

)
= 

M ∑ 

j=1 

(
q log 

(
v j 

∣∣∣θlog 

)
− P j 

)2 

(4)

here 
(
v j , P j 

)
are given power curve data points. We refer interested readers to the optimization book

f Nocedal and Wright for details on different algorithms to solve this problem formulation [12] . 
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Step 3: Wind speed probability distribution modeling 

A given time series { v k } N j=1 of N wind speed data points is our input for wind speed probability

distribution modeling. Since we only can provide a non-exhaustive overview on this vast field, we

refer interested readers to the review by Wang and co-authors [13] . 

We concentrate on three probability speed distribution models which are often applied in wind

speed modeling [4] - two-parameter Weibull distributions, four-parameter Kappa distributions and 

five-parameter Wakeby distributions. 

Let us start with the two-parameter Weibull distribution, the most-common used wind speed 

probability distribution in wind speed analytics. It is often obtained by maximizing log-likelihood 

functions. This method has favorable statistical properties. Recently, Wacker, Kneib and Schlüter 

also proved that this functional has a unique global maximizer [14] . Hence, numerical optimization

simplifies in this case. 

The two-parameter Weibull distribution reads 

p Wei 

(
v 
∣∣A Wei , k Wei 

)
= 

k Wei 
A Wei 

·
(

v 
A Wei 

)k 
Wei 

−1 

· exp 

( 

−
(

v 
A Wei 

)k 
Wei 

) 

(5) 

for all v > 0 where A Wei denotes the scale parameter and k Wei the shape parameter of the

corresponding distribution [15] . The corresponding maximum log-likelihood function is defined by 

L 

(
A Wei , k Wei 

)
= N · ln 

(
k Wei 

)
− N · k Wei · ln 

(
A Wei 

)
+ 

(
k Wei − 1 

)
·

N ∑ 

j=1 

ln 

(
v j 

)

−
N ∑ 

j=1 

(
v j 

A Wei 

)k 
Wei 

. (6) 

We determine first derivatives of L by 

∂L 

(
A Wei , k Wei 

)
∂A Wei 

= − N · k Wei 
A Wei 

+ 

N ∑ 

j=1 

k Wei 
A Wei 

·
(

x j 

A Wei 

)k 
Wei 

(7) 

and 

∂L 

(
A Wei , k Wei 

)
∂k Wei 

= 

N 

k Wei 
− N · ln 

(
A Wei 

)
+ 

N ∑ 

j=1 

ln 

(
v j 

)

−
N ∑ 

j=1 

ln 

(
v j 

A Wei 

)
·
(

v j 
A Wei 

)k 
Wei 

(8) 

respectively. If we set these equations equal to zero, we will obtain a nonlinear system of equations

which can be solved, for example, by Newton methods [12] . We use such methods which are supplied

by R -packages EnvStats [16] or fitdistrplus [17] . 

Let θKap 

= 

(
A Kap 

, k Kap 

, μKap 

, h Kap 

)
be the summarizing vector of all four parameters for the 

Kappa distribution. The four-parameter Kappa distribution is then defined by 

p Kap 

(
v 
∣∣∣θKap 

)
= 

1 

A Kap 

·

⎧ ⎨ 

⎩ 

1 −
k Kap 

·
(

v − μKap 

)
A Kap 

⎫ ⎬ 

⎭ 

1 
k 
Kap 

−1 

·
{ 

F 
Kap 

( v ) 
} 1 −h Kap 

(9) 
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or all v ≥ 0 with scale parameter A Kap 

, shape parameter k Kap 

, location parameter μKap 

and second

hape parameter h Kap 

. Here, the cumulative distribution function is given by 

F Kap 

(
v 
∣∣∣θKap 

)
= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 − h Kap 

·

⎧ ⎨ 

⎩ 

1 −
k Kap 

·
(

v − μKap 

)
A Kap 

⎫ ⎬ 

⎭ 

1 
k 
Kap 

⎫ ⎪ ⎬ 

⎪ ⎭ 

1 
h 
Kap 

. (10)

Finally, let θWak = 

(
A Wak , γWak , k Wak , μWak , h Wak 

)
be the summarizing vector of all five

arameters for the Wakeby distribution. The five-parameter Wakeby distribution is then defined by 

p Wak 

(
v 
∣∣θWak 

)
= 

{ 

A Wak ·
{

1 − F Wak ( v ) 
}γ

Wak 
−1 

+ k Wak ·
{

1 − F Wak ( v ) 
}−k 

Wak 
−1 

} −1 

(11)

or all v ≥ 0 with scale parameter A Wak , second scale parameter γWak , shape parameter k Wak ,

ocation parameter μWak and second shape parameter h Wak . Here, the cumulative distribution

unction is implicitly given by 

F −1 

Wak 

(
v 
∣∣θWak 

)
= μWak + 

A Wak 
μWak 

·
{ 

1 −
(
1 − F Wak ( v ) 

)γ
Wak 

} 

− k Wak 
h Wak 

·
{ 

1 −
(
1 − F Wak ( v ) 

)−h 
Wak 

} 

. (12)

n contrast to two-parameter Weibull and four-parameter Kappa distributions, this implies that five-

arameter Wakeby distributions are only implicitly defined. An often applied method to estimate

arameters in four-parameter Kappa and five-parameter Wakeby distributions is the estimation

ethod of L-moments. This method is implemented in the R -package lmomco from Hosking. For

etails on this estimation technique, we refer interested readers to Hosking’s paper [18] since we

se Hosking’s Fortran implementation. 

tep 4: Calculation of annual averaged wind power output generation values 

The important output of algorithmic procedure are semi-empirical and estimated annual averaged

ind power output generation values from from arbitrary power curves P Power and arbitrary wind

peed probability distributions p Wind 

. This calculation is based on approximations of finite integrals.

The semi-empirical averaged hourly wind power output generation value reads 

P Hourly,Semi −Emp. ≈
N ∑ 

j=1 

P Power 

(
v j 

)
N 

(13)

or all wind speed data v j ≥ 0 for all j ∈ { 1 , . . . , N } with physical unit kW h 

−1 . Finally, the semi-

mpirical averaged annual wind power output generation value is obtained by calculating 

P Ann., Semi-Emp. = 

365 · 24 · P Hourly, Semi-Emp. 

10 0 0 0 0 0 
(14)

ith physical unit GW 

year . These values serve as comparative values for our estimations. 

Now, we are able to approximate estimation values based on finite integrals. Let us begin with

stimated hourly averaged wind power output generation values. We calculate them by 

P Hourly, Th. = 

∫ ∞ 

0 
P Power 

(
v 
∣∣θPower 

)
· p Wind 

(
v 
∣∣θWind 

)
d v 

≈
∫ v 

cut-off

v 
cut-in 

P Power 

(
v 
∣∣θPower 

)
· p Wind 

(
v 
∣∣θWind 

)
d v . (15)
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For example, one could use left-sided Riemannian sums 

P Hourly, LRS ≈
10 ·v 

cut-off∑ 

m =10 ·v 
cut-in 

p Wind 

(
m 

10 

∣∣θWind 

)
· P Power 

(
m 

10 

∣∣θPower 

)
· 1 

10 
(16) 

because wind speeds are normally measured in 0.1 steps. Other possibilities are right-sided 

Riemannian sums, trapezoidal approximations or Simpson’s rule. Since numerical integration is a vast 

field, we refer interested readers to the book by Davis and Rabinowitz [19] . This integral yields one

hourly averaged wind power output generation value with physical unit kW h 

−1 . Finally, the annual

averaged wind power output generation value is given by 

P Ann., Th. = 

365 · 24 · P Hourly,T h 

10 0 0 0 0 0 
(17) 

and the physical unit of annual averaged wind power output generation values reads GW 

year . 

Step 5: Goodness-of-fit measures and uncertainty quantification 

Since we want to compare different fits to curves, we often challenge the problem of

comparing them. Coefficients of determination are applied to compare parametric models. Let v i ∈[
v cut-in 

, v cut-off

]
be all measured wind speeds which are larger than the cut-in wind speed 

v cut-in 

and which are smaller than the cut-off wind speed v cut-off. Denote empirical wind speed

probabilities by p Emp. ( v i ) and estimated wind speed probabilities of certain wind speed distribution 

models by p Wind 

( v i ) . The mean of all empirical wind speed probabilities is represented by p Emp. ( v i ) .
The coefficient of determination reads 

R 2 = 1 −

∑ 

v i 

(
p Emp. ( v i ) − p Wind 

( v i ) 
)2 

∑ 

v i 

(
p Emp. ( v i ) − p Emp. ( v i ) 

)2 
(18) 

where summations are performed over all measured wind speeds which are larger than v cut-in 

and

which are smaller than v cut-off. 

We discuss error analysis on this two-parameter Weibull distributions in a more detailed manner. 

Our analysis relies on Taylor’s book [20] . Our starting point is (15) . Assume both functions p Wei and

P Power to be uncertain. Here, the wind speed probability distribution function is the two-parameter

Weibull distribution. Assume that the variables x 1 , . . . , x n are measured with uncertainties δx 1 , . . . , δx n 
and these values are used to compute a function value f ( x 1 , . . . , x n ) . If formula (3.48) 

δ f ≤
n ∑ 

j=1 

∣∣∣∣ ∂ f 

∂x j 

∣∣∣∣ · δx j 

for the uncertainty δ f of f from [20] is applied, the lower bound error of p Wei reads 

p Wei 

(
v 
∣∣A Wei , k Wei 

)
− δp Wei ≥ p Wei 

(
v 
∣∣A Wei , k Wei 

)
−

∂ p Wei 

(
v 
∣∣A Wei , k Wei 

)
∂v 

· �v 

−
∂ p Wei 

(
v 
∣∣A Wei , k Wei 

)
∂A Wei 

· σA 
Wei 

−
∂ p Wei 

(
v 
∣∣A Wei , k Wei 

)
∂k Wei 

· σk 
Wei 

where σA 
Wei 

and σk 
Wei 

are standard deviations of A Wei and k Wei respectively and �v is the

absolute measurement error in wind speed measurements. The lower bound error of P Power is given

by 

P Power 

(
v 
∣∣θWind 

)
− δP Power ≥ P Power 

(
v 
∣∣θWind 

)
−

∂P Power 

(
v 
∣∣θWind 

)
∂v 

· �v 
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here we neglect uncertainties in our parameter vector θWind 

because we mainly apply cubic spline

nterpolation. Consequently, the absolute error �P Hourly,T h. is calculated by 

�P Hourly,T h. = 

10 ·v 
cut-off∑ 

m =10 ·v 
cut-in 

(
1 

10 
· p Wind 

(
m 

10 

∣∣θWind 

)
· P Power 

(
m 

10 

∣∣θPower 

)

×
{∣∣∣∣∂ p Wind 

∂v 

(
m 

10 

∣∣θWind 

)∣∣∣∣ · �v + 

∣∣∣∣∂ p Wind 

∂A Wei 

(
m 

10 

∣∣θWind 

)∣∣∣∣ · σA 
Wei 

+ 

∣∣∣∣∂ p Wind 

∂k Wei 

(
m 

10 

∣∣θWind 

)∣∣∣∣ · σk 
Wei 

}
+ 

∣∣∣∣∂P Power 
∂v 

(
m 

10 

∣∣θPower 

)∣∣∣∣ · �v 

−
∣∣∣∣∂P Power 

∂v 

(
m 

10 

∣∣θPower 

)∣∣∣∣ · �v ·
{∣∣∣∣∂ p Wind 

∂v 

(
m 

10 

∣∣θWind 

)∣∣∣∣ · �v 

+ 

∣∣∣∣∂ p Wind 

∂A Wei 

(
m 

10 

∣∣θWind 

)∣∣∣∣ · σA 
Wei 

+ 

∣∣∣∣∂ p Wind 

∂k Wei 

(
m 

10 

∣∣θWind 

)∣∣∣∣ · σk 
Wei 

})
(19)

s we multiply p Wei 

(
v 
∣∣A Wei , k Wei 

)
− δp Wei and P Power 

(
v 
∣∣θWind 

)
− δP Power to obtain our

pproximate lower bound. The same argument holds for upper bounds. The first derivatives of two-

arameter Weibull distributions read 

∂ p Wei 

(
v | A Wei , k Wei 

)
∂v 

= 

(
k Wei − 1 

)
· k Wei · exp 

(
−
(

v 
A 
Wei 

)k 
Wei 

)
·
(

v 
A 
Wei 

)k 
Wei 

−2 

A 

2 

Wei 

−
k 2 

Wei 
· exp 

(
−
(

v 
A 
Wei 

)k 
)

·
(

v 
A 
Wei 

)2 ·k 
Wei 

−2 

A 

2 

Wei 

, 

∂ p Wei 

(
v | A Wei , k Wei 

)
∂A Wei 

= 

k 2 
Wei 

· exp 

(
−
(

v 
A 
Wei 

)k 
Wei 

)
·
(

v 
A 
Wei 

)2 ·k 
Wei 

A Wei · v 

−
k 2 

Wei 
· exp 

(
−
(

v 
A 
Wei 

)k 
Wei 

)
·
(

v 
A 
Wei 

)k 
Wei 

A Wei · v 

nd 

∂ p Wei 

(
v | A Wei , k Wei 

)
∂k Wei 

= 

exp 

(
−
(

v 
A 
Wei 

)k 
Wei 

)
·
(

v 
A 
Wei 

)k 
Wei 

−1 

A Wei 

+ 

k Wei · exp 

(
−
(

v 
A 
Wei 

)k 
Wei 

)
·
(

v 
A 
Wei 

)k 
Wei 

−1 

· ln 

(
v 

A 
Wei 

)
A Wei 

−
k Wei · exp 

(
−
(

v 
A 
Wei 

)k 
Wei 

)
·
(

v 
A 
Wei 

)2 ·k 
Wei 

−1 

· ln 

(
v 

A 
Wei 

)
A Wei 

. 

Since one main goal of this article is the prediction of annual averaged wind power output

eneration values, absolute differences of such values are suitable comparative measures. The absolute

ifference between semi-em pirical and estimated annual averaged wind power output generation

alues reads 

�P = 

∣∣∣P − P 

∣∣∣. (20)
Values Ann., Semi-Emp. Ann., Th. 
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Table 2 

Collected results 

Number Result 

1 Station identification number 

2 Location 

3 Longitude 

4 Latitude 

5 Station height 

6 Reading height 

7 Number of data 

8 Mean wind speed 

9 Standard deviation of wind speed data 

10 Minimum of wind speed data 

11 Maximum of wind speed data 

12 k Wei 
13 A Wei 
14 Semi-empirical annual averaged power output generation values 

15 Estimated annual averaged power output generation values by 

Weibull distributions 

16 Errors of Weibull estimates 

17 Absolute differences between semi-empirical values and Weibull 

estimates 

18 Estimated annual averaged power output generation values by 

Kappa distributions 

19 Absolute differences between semi-empirical values and Kappa 

estimates 

20 Estimated annual averaged power output generation values by 

Wakeby distributions 

21 Absolute differences between semi-empirical values and Wakeby 

estimates 

Table 3 

Data for Bremen, Germany 

Data Value 

Station identification number 00691 

Location Bremen, Germany 

Longitude 8.80 

Latitude 53.05 

Station height 4.10 [m] 

Reading height 10 [m] 

Starting date 1926/01/01 

Ending date 2018/12/31 

 

 

Step 6: Summary of results 

All obtained data are summarized in one file. We list the important results that one might want

access. 

These data are saved in one file named Results_01.txt . A reduced version of collected data is saved

in one file named Results_02.txt . 

Example: Bremen, Germany 

We first summarize some important data regarding weather station no. 00691 located at Bremen, 

Germany in Table 3 . 

These data is taken from a meta-data-file which accompanies the weather-station-data-file. After 

calculation, we obtain the following results. All these results are summarized in Table 4 . 

The empirical histogram of wind speeds and wind speed probability distributions are portrayed in 

Figure 3 . 
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Fig. 3. Frequency histogram and wind speed probability distributions for Bremen, Germany 
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Table 4 

Results for Bremen, Germany 

Data Results 

7 from Table 2 639270 

8 from Table 2 4.36 [ m / s ] 

9 from Table 2 2.43 [ m / s ] 

10 from Table 2 0.0 [ m / s ] 

11 from Table 2 28.3 [ m s ] 

12 from Table 2 1.89 

13 from Table 2 4.93 

14 from Table 2 3.49 [ GW / year ] 

15 from Table 2 3.56 [ GW / year ] 

16 from Table 2 0.23 [ GW / year ] 

17 from Table 2 0.07 [ GW / year ] 

18 from Table 2 3.51 [ GW / year ] 

19 from Table 2 0.02 [ GW / year ] 

20 from Table 2 3.53 [ GW / year ] 

21 from Table 2 0.04 [ GW / year ] 

Table 5 

R 2 -values for 

Bremen, Germany 

R 2 Value 

R 2 
Wei 

0.918 

R 2 
Kap 

0.922 

R 2 
Wak 

0.919 

 

e

C

 

2  

h  

f  

s

D

C

 

R  

R

R

 

 

The cubic spline interpolation of power curve data is presented in Figure 4 . 

We conclusively report the R 2 -values of all three wind speed probability distribution for this

xample in Table 5 . 

ode availability and data availability 

The R [21] and GNU Octave [22] codes can be downloaded from https://github.com/bewa87/

020- Energy- AAPOGFWT . Data for the presented wind turbine from Vestas can be obtained from

ttps://www.wind- turbine- models.com/turbines/7- vestas- v112- onshore#datasheet . Wind speed data

or all German weather stations are available under [5] and wind speed data for worldwide weather

tations can be accessed under [6] . 
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