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Abstract: (1) Objective: Identification of potential genetic biomarkers for various glomerulonephritis
(GN) subtypes and discovering the molecular mechanisms of GN. (2) Methods: four microarray
datasets of GN were downloaded from Gene Expression Omnibus (GEO) database and merged to
obtain the gene expression profiles of eight GN subtypes. Then, differentially expressed immune-
related genes (DIRGs) were identified to explore the molecular mechanisms of GN, and single-sample
gene set enrichment analysis (ssGSEA) was performed to discover the abnormal inflammation in GN.
In addition, a nomogram model was generated using the R package “glmnet”, and the calibration
curve was plotted to evaluate the predictive power of the nomogram model. Finally, deep learning
(DL) based on a multilayer perceptron (MLP) network was performed to explore the characteristic
genes for GN. (3) Results: we screened out 274 common up-regulated or down-regulated DIRGs
in the glomeruli and tubulointerstitium. These DIRGs are mainly involved in T-cell differentiation,
the RAS signaling pathway, and the MAPK signaling pathway. ssGSEA indicates that there is a
significant increase in DC (dendritic cells) and macrophages, and a significant decrease in neutrophils
and NKT cells in glomeruli, while monocytes and NK cells are increased in tubulointerstitium. A
nomogram model was constructed to predict GN based on 7 DIRGs, and 20 DIRGs of each subtype
of GN in glomeruli and tubulointerstitium were selected as characteristic genes. (4) Conclusions:
this study reveals that the DIRGs are closely related to the pathogenesis of GN and could serve as
genetic biomarkers in GN. DL further identified the characteristic genes that are essential to define
the pathogenesis of GN and develop targeted therapies for eight GN subtypes.

Keywords: glomerulonephritis; immune-related genes; immune infiltration; machine learning;
deep learning

1. Introduction

Glomerulonephritis (GN) is an important public health problem worldwide that can
cause end-stage renal disease (ESRD) [1]. It affects people of all regions and all ages,
is usually more prevalent among young people, and is difficult to treat [2]. GN can be
divided into primary and secondary GN [3], and it can present in a variety of ways, but
is usually accompanied by clinical features of hematuria, proteinuria, hypertension, and
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renal failure [3]. It is worth mentioning that GN is not only a single entity, but is potentially
linked to many diseases and other systems [4]. GN diagnosis relies on kidney biopsy, the
results of which separate glomerulonephritis into a variety of more specific pathologies.

Current treatments for GN focus on optimizing supportive therapy [5]. Immunosup-
pressants and monoclonal antibodies are not effective enough to prevent the development
of GN [6], which further indicates the importance of early diagnosis and personalized treat-
ment for the prevention and treatment of GN. Rapid advances in sequencing technologies
revealed several disease-causing genes susceptibility loci and disease-causing genes for
different subtypes of GN [7], which brings new light in the precise diagnosis and treatment
of GN. Although there is abundant sequencing data of different GN subtypes, researchers
performing conjoint analysis of these data are rare. As machine learning (ML) and deep
learning (DL) are more used in genomics and provide promising results [8,9], they becomes
more reliable to explore the unique genetic signatures of GN.

In this light, microarray data of several subtypes of GN were downloaded from the
Gene Expression Omnibus (GEO) database [10] and merged to further identify differentially
expressed genes in glomeruli and tubulointerstitium, in order to explore the molecular
mechanism of GN. Additionally, abnormal immune infiltration was studied to investigate
the immune microenvironment of GN. ML and DL were performed to identify genetic
biomarkers of eight GN subtypes, which offers a molecular perspective to understand the
molecular mechanisms and develop personalized treatment of GN.

2. Materials and Methods
2.1. Data Collection and Processing

To discover the potential signatures of different subtypes of GN, the keyword “glomeru-
lonephritis” was used to search the gene expression profiles of GN in the GEO database.
To reduce batch effects and improve the accuracy of the analysis, datasets containing mul-
tiple subtypes of GN were selected. Four datasets were finally filtered and downloaded,
then log2 transformation and gene symbols conversion were performed for gene expres-
sion profiles using R language (version 4.1.0). To combine multiple datasets, the R software
package “inSilicoMerging” (version 2.1.0) was used. Then, “combat” function was used to
remove the batch effect of merged data [11]. The details of the datasets are presented in
Table 1. Additionally, 1793 immune-related genes were obtained from the import database
(https://www.immport.org/shared/, accessed on 5 July 2022) [12] (Supplementary Table S1).

Table 1. The information of the datasets used for analysis.

Number Platform Tissue Data Sources

GSE99339
GPL19109 Glomeruli

Shved, Natallia et al. [13]GPL19184 Glomeruli

GSE104948
GPL22945 Glomeruli Grayson, Peter C et al. [14]
GPL24120 Glomeruli

GSE99325
GPL19109 Tubulointerstitium

Shved, Natallia et al. [13]GPL19184 Tubulointerstitium

GSE104954
GPL22945 Tubulointerstitium Grayson, Peter C et al. [14]
GPL24120 Tubulointerstitium

2.2. Identification of Differentially Expressed Genes and Enrichment Analysis

The differentially expressed genes (DEGs) of glomeruli and tubulointerstitium were
identified using “limma” package [15]. Genes with a p value < 0.05 were considered as signif-
icant DEGs. The significant DEGs of glomeruli and tubulointerstitium in GN were combined
to identify the differentially expressed immune-related genes (DIRGs) with predictive and
diagnostic significance. Furthermore, the package “clusterProfiler” (Version 3.14.3) was used
for enrichment analysis to explore the function of genes based on the Kyoto Encyclopedia of
Genes and Genomes (KEGG) and Gene Ontology (GO) analysis [16].

https://www.immport.org/shared/
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2.3. Immune Signatures of Different Subtypes of Glomerulonephritis

Multiple immune-cell-mediated inflammation is a crucial feature of GN. To explore
the infiltration of immune cells in different subtypes of GN, R package “ImmuCellAI” was
used to perform single-sample gene set enrichment analysis (ssGSEA), which simulated
the flow cytometry process to predict 24 cell types abundance by hierarchical strategy.
Thr 24 types of immune cells contain two layers: layer 1 consists of 10 cell types (DC,
B-cell, monocyte, macrophage, NK, neutrophil, CD4 T, CD8 T, NKT, and Tgd), while layer
2 consists of 14 T-cell subtypes (CD4 naive, CD8 naive, Tc, Tex, Tr1, nTreg, iTreg, Th1, Th2,
Th17, Tfh, Tcm, Tem, and MAIT) [17]. Additionally, the Wilcoxon rank sum test was used
to compare the differences in immune cells between GN patients and healthy controls, and
p values less than 0.05 were considered significant.

2.4. Machine Learning

The area under the receiver operating characteristic curve (AUC) of DIRGs was cal-
culated using R package “pROC” (Version 1.17.0.1) [18]. The DIRGs with the top 20% of
the AUC value both in glomeruli and tubulointerstitium were screened out for ML. Then,
data 1 were employed for the training set, while data 2 were utilized as the test set, as the
data in data 1 are more evenly distributed, and the main features of glomerulonephritis
are in the glomeruli. The R package “glmnet” was used to obtain the DIRGs for optimal
models and regression analysis was performed by LASSO-Cox function [19]. Furthermore,
a nomogram model was established for the prediction and diagnosis of GN using the
package “rms” [20], and the calibration curve was plotted to evaluate the predictive power
of the nomogram model [21]. Additionally, the AUC value in the test set was calculated to
evaluate the accuracy of the model.

2.5. Deep Learning

The biomarkers are critical to explore the pathogenesis, diagnosis, prognosis, and
drug development of diseases. However, traditional ML methods are unable to classify
multiple diseases and identify markers for each one of them. The characteristic genes of a
disease can only be screened out by comparing the differences between a single disease
and the control group, which results in a loss of meaningful information and a decrease in
accuracy. Thus, to identify the unique biomarkers of each subtype of GN, a DL network
was constructed based on multilayer perceptron (MLP) [22].

We constructed a 3-layer MLP network under the PyTorch framework [23], using
274 candidate genes that are commonly up-regulated or down-regulated in both glomeruli
and tubulointerstitium as input data, and subtypes of GN as output results. First, (drop
out value = 0.5), “batchnormal” function was used for the regularization of the network,
and “ReLU” was selected as the activation function [24]. “Softmax” function was applied
to achieve multi-classification and the “CrossEntropyLoss” function was used as the loss
function when processing data [25].

After establishing the MLP network, a method called “Layerwise relevance propaga-
tion” (LRP) was used to evaluate the effect of DIRGs on the predicted results [26], and we
scored the importance of each gene in each subtype of GN. Finally, the unique biomarkers
of each subtype of GN were screened out according to the score of DIRGs.

3. Results
3.1. Data Processing

Microarray data from glomeruli and tubulointerstitium were combined into data 1
and data 2 (Supplementary Table S2), respectively. To ensure the accuracy and reliability
of the results, we only retained GN with a sample size greater than 20. The information
of data 1 and data 2 are shown in Table 2. After merging and removing batch effects, the
data distribution of each dataset is consistent, and the UMAP plot shows the distribution
characteristics of each data before and after removing batch effect (Figure 1). In addition,
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the boxplot was used to show the data distribution of each sample after removing the batch
effect (Supplementary Figure S1).

Table 2. The information of all samples in data 1 and data 2.

Groups
The Number of Samples

Data 1 (Glomeruli) Data 2 (Tubulointerstitium)

Control 21 25
Diabetic nephropathy (DN) 26 35

Focal and segmental glomerulosclerosis (FSGS) 40 25
Hypertensive nephropathy (HT) 33 40

IgA nephropathy (IgAN) 53 49
Minimal change disease (MCD) 27 25

Membranous glomerulonephritis (MGN) 42 36
Rapidly progressive glomerulonephritis (RPGN) 45 42

Lupus nephritis (LN) 62 62
Total 349 339
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Figure 1. Merging datasets and removing batch effect. (A) The UMAP of sample distribution of each
dataset of glomeruli before the removal of batch effect, samples from individual datasets are clustered
separately, which indicates the existence of batch effect. (B) The UMAP of sample distribution of
each dataset of glomeruli after the removal of batch effect, the samples of each datasets are clustered
together, suggesting a good removal of batch effect. (C) The UMAP of sample distribution of each
dataset of tubulointerstitium before the removal of batch effect, samples from individual datasets
are clustered separately, which indicates the existence of batch effect. (D) The UMAP of sample
distribution of each dataset of tubulointerstitium after the removal of batch effect, the samples of
each datasets are clustered together, suggesting a good removal of batch effect.

3.2. Identification of Differentially Expressed Genes

A total of 5510 DEGs between GN and the control group in data 1 are identified
with p value < 0.05, including 3474 up-regulated and 2036 down-regulated genes. Also,
2338 up-regulated and 2441 down-regulated genes are obtained from data 2 (Figure 2A,B).
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In addition, there are 274 common differentially expressed IRGs (DIRGs) in glomeruli
and tubulointerstitium (Figure 2C). Moreover, we found 170 common up-regulated and
104 common down-regulated DIRGs, which are considered candidate genes for ML and
DL. In addition, 19 oppositely expressed DIRGs in the glomerulus and tubulointerstitium
are also identified, and a log2FC–log2FC plot is used to visualize them (Figure 2D).
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Figure 2. Identification of common DIRGs in data 1 and data 2. (A) Volcano map of all DEGs of data
1, there are 3474 up-regulated and 2036 down-regulated genes. (B) Volcano map of all DEGs of data 2,
there are 2338 up-regulated and 2441 down-regulated genes. (C) Venn diagram of DEGs and IRGs,
there are 274 common DIRGs in glomeruli and tubulointerstitium. (D) log2FC–log2FC plot of data 1
and data 2, there are 170 common up-regulated, 104 common down-regulated, and 19 oppositely
expressed DIRGs.

3.3. Enrichment Analysis

The enrichment analysis reveals the function of DIRGs in glomeruli and tubulointer-
stitium. In terms of the 170 common up-regulated DIRGs, they are related to phagosome;
antigen processing and presentation; natural killer cell-mediated cytotoxicity; Th1, Th2,
and Th17 cell differentiation; and T-cell receptor signaling pathway in KEGG enrichment
analysis, while they are associated with innate immune response, the cytokine-mediated
signaling pathway, and type I interferon signaling pathway (Figure 3A,B). Simultaneously,
104 common down-regulated DIRGs are mainly enriched in the ErbB signaling pathway,
cytokine–cytokine receptor interaction, and the Ras signaling pathway (Figure 3C,D). We
also performed enrichment analysis on the 19 oppositely expressed DIRGs and found
that they are mainly involved in the NF-kappa B signaling pathway, TNF signaling path-
way, and negative regulation of vascular-associated smooth muscle cell differentiation
(Supplementary Figure S2).
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3.4. Immune Signatures of Different Subtypes of Glomerulonephritis

ssGSEA was performed on data 1 and data 2 to explore the abnormal immune in-
filtration in the glomeruli and tubulointerstitium of GN. The immune invasion of GN
varies with subtypes and tissues (Figure 4A,B). From a holistic perspective, GN patients
show a significant increase in DC and macrophage in glomeruli, although NK cells have
a comparable level in both con and GN, but there is a significant decrease in neutrophils
and NKT cell in glomeruli of GN, while monocytes and NK cells are increased in the
tubulointerstitium of GN. (Figure 4C,D). There are significant changes in 14 T-cell subtypes:
decreased iTreg, and increased MAIT, Tex, and Tem are observed in both glomeruli and
tubulointerstitium (Figure 4E,F). Moreover, in terms of the eight GN subtypes, each of them
has their own unique characteristics of immune infiltration (Figure 4G,H), which are the
immune signatures that differentiate them from healthy kidney tissue.
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Figure 4. Immune signatures of the glomeruli and tubulointerstitium in GN. (A) Bar graph of 10 major
types of immune cells in the glomeruli of 8 GN subtypes. (B) Bar graph of 10 major types of immune
cells in the tubulointerstitium of 8 GN subtypes. (C) Boxplot of 10 major types of immune cells in
the glomeruli of GN and healthy controls. (D) Boxplot of 10 major types of immune cells in the
tubulointerstitium of GN and healthy controls. (E); Boxplot of 14 T-cell subtypes of immune cells in
the glomeruli of GN and healthy controls. (F): Boxplot of 14 T-cell subtypes in the tubulointerstitium
of GN and healthy controls. (G): Heatmap of 10 major types of immune cells in 8 GN subtypes and
healthy controls. (H): Heatmap of 14 T-cell subtypes in 8 GN subtypes and healthy controls.

3.5. Machine Learning

AUC values of 274 common up-regulated or down-regulated DIRGs in data 1 and data
2 were calculated using package “pROC” and are shown in the AUC–AUC plot (Figure 5A,
Supplementary Table S3). To perform LASSO-Cox analysis, 11 DIRGs (CX3CR1, TLR1, LYZ,
TRIM27, HRG, LTB, LYN, CSHL1, TMSB10, ARG2, LTF) with the top 20% AUC values both
in glomeruli and tubulointerstitium were screened out as candidate genes. We used the
package “glmnet” and performed 10-fold cross-validation to obtain the optimal model.
Finally, 7 DIRGs (ARG2, CSHL1, CX3CR1, LTF, LYZ, TMSB10, TRIM27) were obtained with
a criterion of λ(lambda) = 0.2 (Figure 5B,C).



Biomolecules 2022, 12, 1276 8 of 15

Biomolecules 2022, 12, 1276 8 of 16 
 

 

Figure 4. Immune signatures of the glomeruli and tubulointerstitium in GN. (A) Bar graph of 10 
major types of immune cells in the glomeruli of 8 GN subtypes. (B) Bar graph of 10 major types of 
immune cells in the tubulointerstitium of 8 GN subtypes. (C) Boxplot of 10 major types of immune 
cells in the glomeruli of GN and healthy controls. (D) Boxplot of 10 major types of immune cells in 
the tubulointerstitium of GN and healthy controls. (E); Boxplot of 14 T-cell subtypes of immune cells 
in the glomeruli of GN and healthy controls. (F): Boxplot of 14 T-cell subtypes in the 
tubulointerstitium of GN and healthy controls. (G): Heatmap of 10 major types of immune cells in 
8 GN subtypes and healthy controls. (H): Heatmap of 14 T-cell subtypes in 8 GN subtypes and 
healthy controls. 

3.5. Machine Learning 
AUC values of 274 common up-regulated or down-regulated DIRGs in data 1 and 

data 2 were calculated using package “pROC” and are shown in the AUC–AUC plot 
(Figure 5A, Supplementary Table S3). To perform LASSO-Cox analysis, 11 DIRGs 
(CX3CR1, TLR1, LYZ, TRIM27, HRG, LTB, LYN, CSHL1, TMSB10, ARG2, LTF) with the top 
20% AUC values both in glomeruli and tubulointerstitium were screened out as candidate 
genes. We used the package “glmnet” and performed 10-fold cross-validation to obtain 
the optimal model. Finally, 7 DIRGs (ARG2, CSHL1, CX3CR1, LTF, LYZ, TMSB10, 
TRIM27) were obtained with a criterion of λ(lambda) = 0.2 (Figure 5B,C). 

 
Figure 5. Gene screening and regression model establishment. (A) AUC−AUC plot of 274 common 
up-regulated or down-regulated DIRGs in data 1 and data 2, the DIRGs with top 20% AUC values 
both in glomeruli and tubulointerstitium are deep red. (B) The elastic net of 11 DIRGs in data 1. (C) 
Seven DIRGs were screened based on lambda = 0.02. 

A nomogram was constructed using data 1 as a training set based on seven DIRGs 
using logistic regression model. (Figure 6A). Then, a calibration curve was plotted to 
evaluate the predictive power of the nomogram model. When the risk of GN is between 
0.5 and 0.7, the model predicts a slightly lower value than the actual, while the predicted 
value is higher than actual when the risk is between 0.7 and 0.8. Undoubtedly, actual risk 
and the predicted risk are very close in the nomogram model, suggesting it has high 

Figure 5. Gene screening and regression model establishment. (A) AUC−AUC plot of 274 common
up-regulated or down-regulated DIRGs in data 1 and data 2, the DIRGs with top 20% AUC values
both in glomeruli and tubulointerstitium are deep red. (B) The elastic net of 11 DIRGs in data 1.
(C) Seven DIRGs were screened based on lambda = 0.02.

A nomogram was constructed using data 1 as a training set based on seven DIRGs
using logistic regression model. (Figure 6A). Then, a calibration curve was plotted to
evaluate the predictive power of the nomogram model. When the risk of GN is between 0.5
and 0.7, the model predicts a slightly lower value than the actual, while the predicted value
is higher than actual when the risk is between 0.7 and 0.8. Undoubtedly, actual risk and
the predicted risk are very close in the nomogram model, suggesting it has high accuracy
to predict and diagnose GN (Figure 6B). Additionally, the AUC value of 85.5935% further
indicates that the nomogram model has excellent predictive power (Figure 6C).

3.6. Deep Learning

A MLP network containing three layers was constructed to classify eight subtypes
of GN based on 274 candidate DIRGs from data 1 and data 2, and the scheme of the DL
model is shown in Figure 7. With the increase in training times (x-axis), the change in loss
value (y-axis) gradually decreases and finally converges around 14 in both the input data
of glomeruli and tubulointerstitium (Figure 8A,B). Then, the “LRP” function was used to
assess the importance score of each DIRGs for each subtype. Then, the top 20 DIRGs of
each subtype of GN in glomeruli and tubulointerstitium were selected as characteristic
genes (Supplementary Table S4), which can be considered as unique genetic biomarkers of
the disease. Table 3 shows the top five DIRGs in glomeruli and tubulointerstitium of each
subtype. Moreover, we used a confusion matrix to summarize the prediction results, and
ROC curve to evaluate the accuracy of the DL model. The characteristic genes identified by
DL have an AUC value of more than 0.8 for each subtypes of GN, in both the glomeruli
and tubulointerstitium (Figure 8C–F), which indicates that eight subtypes of GN could be
distinguished using 274 DIRGs and the characteristic genes may serve as unique genetic
biomarkers for them.



Biomolecules 2022, 12, 1276 9 of 15

Biomolecules 2022, 12, 1276 9 of 16 
 

 

accuracy to predict and diagnose GN (Figure 6B). Additionally, the AUC value of 
85.5935% further indicates that the nomogram model has excellent predictive power 
(Figure 6C). 

 
Figure 6. Construction and assessment of machine learning model. (A) Nomogram model for GN 
diagnosis, based on the 7 DIRGs (ARG2, CSHL1, CX3CR1, LTF, LYZ, TMSB10, TRIM27). (B) 
Calibration curve to evaluate the nomogram model. The actual GN risk and the predicted risk are 
very close. (C) The ROC curve to assess the nomogram model. The AUC value of the nomogram 
model in data 2 is 0.855935. 

3.6. Deep Learning 
A MLP network containing three layers was constructed to classify eight subtypes of 

GN based on 274 candidate DIRGs from data 1 and data 2, and the scheme of the DL 
model is shown in Figure 7. With the increase in training times (x-axis), the change in loss 
value (y-axis) gradually decreases and finally converges around 14 in both the input data 
of glomeruli and tubulointerstitium (Figure 8A,B). Then, the “LRP” function was used to 
assess the importance score of each DIRGs for each subtype. Then, the top 20 DIRGs of 
each subtype of GN in glomeruli and tubulointerstitium were selected as characteristic 
genes (Supplementary Table S4), which can be considered as unique genetic biomarkers 
of the disease. Table 3 shows the top five DIRGs in glomeruli and tubulointerstitium of 
each subtype. Moreover, we used a confusion matrix to summarize the prediction results, 
and ROC curve to evaluate the accuracy of the DL model. The characteristic genes 
identified by DL have an AUC value of more than 0.8 for each subtypes of GN, in both the 
glomeruli and tubulointerstitium (Figure 8C–F), which indicates that eight subtypes of 
GN could be distinguished using 274 DIRGs and the characteristic genes may serve as 
unique genetic biomarkers for them. 

Figure 6. Construction and assessment of machine learning model. (A) Nomogram model for GN
diagnosis, based on the 7 DIRGs (ARG2, CSHL1, CX3CR1, LTF, LYZ, TMSB10, TRIM27). (B) Calibration
curve to evaluate the nomogram model. The actual GN risk and the predicted risk are very close. (C) The
ROC curve to assess the nomogram model. The AUC value of the nomogram model in data 2 is 0.855935.

Biomolecules 2022, 12, 1276 10 of 16 
 

 

 
Figure 7. Workflow of the deep learning. Firstly, we downloaded microarray data from GEO 
database, screened candidate genes, and constructed MLP network. Then, LRP algorithm was used 
to calculate the characteristic genes of each GN subtypes. 

Table 3. The top five characteristic genes of eight GN subtypes. 

Subtypes of GN Glomeruli Tubulointerstitium 
DN AVPR1A, GDF9, SEMA6C, ADA2, SSTR2 PLSCR1, CXCL8, TRIM22, CXCL1, PLXND1 

FSGS NFYA, MDK, BRD8, ADA2, JAK1 ADA2, VEGFC, NPY, ZAP70, IFNGR2  
HT TYMP, GRN, AMBN, CRIM1, SHC3 NR4A3, NR4A1, S100A8, ADIPOR2, SEMA6C 

IgAN INSR, PSMD7, GRN, TYMP, GDF9 MAP2K1, CSF1R, PTPN6, ZAP70, CD86 
MCD PSMD7, GRN, TNFRSF11B, TYMP, GIPR MDK, PPARG, NFYA, CRABP1, ZAP70 
MGN NFKBIE, IL32, AVPR1A, PSMD7, CCL25 ZAP70, VEGFC, MAP2K1, GDF15, PPARG 
RPGN PAK4, CALCA, C3, C3AR1, ITGAL OAS1, MAP2K1, GDNF, GDF2, FGF 

SLE GRN, B2M, DDX58, EIF2AK2, PTGDS ADIPOR2, OAS1, EIF2AK2, MX1, PLSCR1 

Figure 7. Workflow of the deep learning. Firstly, we downloaded microarray data from GEO database,
screened candidate genes, and constructed MLP network. Then, LRP algorithm was used to calculate
the characteristic genes of each GN subtypes.



Biomolecules 2022, 12, 1276 10 of 15
Biomolecules 2022, 12, 1276 11 of 16 
 

 

 
Figure 8. The loss curves, confusion matrix, and ROC curves of deep learning. (A) The loss curve of 
274 candidate DIRGs based on data 1. (B) The loss curve of 274 candidate DIRGs based on data 2. 
(C) The confusion matrix of 274 candidate DIRGs based on data 1. (D) ROC curves of characteristic 
genes for each GN subtype in data 1. (E) The confusion matrix of 274 candidate DIRGs based on 
data 2. (F) ROC curves of characteristic genes for each GN subtype in data 2. 

4. Discussion 
The incidence of GN is increasing worldwide, and although it could partly be related 

to changes in renal biopsy policy [27], it is certain that GN has become a vital part of renal 
disease due to the high risk of developing ESRD [28]. The diagnosis and treatment of GN 

Figure 8. The loss curves, confusion matrix, and ROC curves of deep learning. (A) The loss curve of
274 candidate DIRGs based on data 1. (B) The loss curve of 274 candidate DIRGs based on data 2.
(C) The confusion matrix of 274 candidate DIRGs based on data 1. (D) ROC curves of characteristic
genes for each GN subtype in data 1. (E) The confusion matrix of 274 candidate DIRGs based on data
2. (F) ROC curves of characteristic genes for each GN subtype in data 2.



Biomolecules 2022, 12, 1276 11 of 15

Table 3. The top five characteristic genes of eight GN subtypes.

Subtypes of GN Glomeruli Tubulointerstitium

DN AVPR1A, GDF9, SEMA6C, ADA2, SSTR2 PLSCR1, CXCL8, TRIM22, CXCL1, PLXND1
FSGS NFYA, MDK, BRD8, ADA2, JAK1 ADA2, VEGFC, NPY, ZAP70, IFNGR2
HT TYMP, GRN, AMBN, CRIM1, SHC3 NR4A3, NR4A1, S100A8, ADIPOR2, SEMA6C

IgAN INSR, PSMD7, GRN, TYMP, GDF9 MAP2K1, CSF1R, PTPN6, ZAP70, CD86
MCD PSMD7, GRN, TNFRSF11B, TYMP, GIPR MDK, PPARG, NFYA, CRABP1, ZAP70
MGN NFKBIE, IL32, AVPR1A, PSMD7, CCL25 ZAP70, VEGFC, MAP2K1, GDF15, PPARG
RPGN PAK4, CALCA, C3, C3AR1, ITGAL OAS1, MAP2K1, GDNF, GDF2, FGF

SLE GRN, B2M, DDX58, EIF2AK2, PTGDS ADIPOR2, OAS1, EIF2AK2, MX1, PLSCR1

4. Discussion

The incidence of GN is increasing worldwide, and although it could partly be related
to changes in renal biopsy policy [27], it is certain that GN has become a vital part of
renal disease due to the high risk of developing ESRD [28]. The diagnosis and treatment
of GN has made great progress in the last 20 years, which benefits from the continuous
exploration of molecular biology and pathophysiology. Exploring the genomics of kidney
disease permits to better understand the link between pathophysiology and molecular
function, and further accelerates advances in targeted therapies [29]. Genetic biomarkers
are not only a bridge between clinical findings and molecular mechanisms of diseases, but
also a sharp sword to achieve precision diagnosis and treatment.

To explore the characteristic genes and molecular mechanism of GN, two datasets
containing glomeruli and tubulointerstitium sequencing data for eight subtypes of GN were
downloaded and merged into data 1 and data 2. Further differential analysis and log2FC–
log2FC comparison indicates that the DIRGs expression in glomeruli and tubulointerstitium
of GN tends to be consistent. Although the pathophysiological changes of GN usually
start from glomeruli, the glomeruli and tubulointerstitium are inseparable, sharing similar
molecular mechanisms and, ultimately, leading to unique pathological changes [30]. Two
hundred and seventy four common up-regulated or down-regulated DIRGs in glomeruli
and tubulointerstitium represent the unique immunophenotypes of GN that could serve
as candidate genes to explore the immune mechanism and genetic biomarkers of GN.
Although renal biopsy provides the most accurate evidence for the precise diagnosis of GN,
histopathological categories are not sufficient to explore the different molecular mechanisms
of disease progression and response to treatment to achieve the most desired therapy [29].
The pathogenesis of renal impairment in GN can vary with different pathological types as
well as clinical stages [31,32]. The mechanisms of GN are not very clear, but epigenetics
and genetics are implicated in the pathogenesis [33]. Therefore, redefining diseases from
the genetic level and tapping into the underlying immune mechanisms appears to be
particularly important.

Different subtypes of GN have distinct molecular mechanisms, but there remains similar
pathophysiological processes and immune mechanisms [34]. The KEGG enrichment analysis
of 170 common up-regulated DIRGs indicates that the cytotoxicity mediated by NK cells and
the differentiation of T-cells are crucial parts of the molecular mechanism of GN kidney in-
flammation. Numerous researchers have pointed out that NK cells can play an important role
in renal injury [35], especially in inflammatory injury and fibrosis within the tubulointerstitial
compartment [36]. In addition, the differentiation of Th1 and Th17 mediates the immune
responses, and leads to proliferative and crescentic forms and renal inflammation in GN [37],
while Th2 is mainly related to membranous patterns of injury [38]. The differentiation of
Th1, Th2, and Th17, and the release of related cytokines, have a central role in inflammation
and progression of kidney injury [39,40]. Regarding biological process, these 170 common
up-regulated DIRGs in glomeruli and tubulointerstitium are significantly implicated in the
type I interferon signaling pathway and interferon-gamma-mediated signaling pathway.
Interferon (IFN) is related to the induction and progression of renal fibrosis [41]. Moreover,
the 104 common down-regulated DIRGs are involved in the Ras signaling pathway, PI3K–Akt



Biomolecules 2022, 12, 1276 12 of 15

signaling pathway, MAPK signaling pathway, and others. The activity of RAS has many
pathophysiologic functions in the progression of GN, and has become an important therapeu-
tic target to improve proteinuria, hypertension, and other clinical symptoms [42]. Meanwhile,
the MAPK signaling pathway and PI3K–Akt signaling pathway play an important role in
glomerulosclerosis, and are the potential pathways of GN treatment [43]. There are also
19 oppositely expressed DIRGs that relate to T-cell differentiation or the MAPK pathway, but
the genetic variation and molecular mechanisms in glomeruli and tubulointerstitium remain
similar. The pivotal pathways and the genes involved are potential targets for understanding
GN pathogenesis and exploring effective treatment.

The immune microenvironment is a central feature of inflammatory diseases, and
ssGSEA was performed to further identify the unique immune infiltration mediated by
multiple immune cells. The DCs and macrophages are increased in the glomeruli of GN.
It is worth mentioning that DCs and macrophages constitute the main component of the
immune system in the kidney, which could trigger the initiation of an immune response
and lead to inflammation [44]. Moreover, there are more NK cells and monocytes in the
tubulointerstitium, NK cells serve as an important source of IFN-γ in the fibrotic kidney, and
there is a significant correlation between the number of NK cells and the histological severity
of interstitial fibrosis [45]. In addition, monocytes are involved in the renal interstitial
fibrosis through mutual activation with renal tubular epithelial cells [46]. Additionally,
NKT and MAIT cells are significantly reduced in both glomeruli and tubulointerstitium.
Their role in GN remains largely unclear, but there is no doubt that they are involved in
the regulation of renal homeostasis through the secretion of pro-inflammatory and anti-
inflammatory cytokines [47]. Furthermore, decreased iTreg and Th17 are observed in both
glomeruli and tubulointerstitium. However, the abundance of Th17 in GN and control
groups is numerically close.

iTregs can protect the kidney from injury in a variety of renal diseases by secreting
a multitude of anti-inflammatory factors to suppress both adaptive and innate immune
cells [48]. The defect in the quantity of Tregs make the inflammation more active in the
kidney, which could be an important cause of GN [49]. Amplifying and inducting Tregs to
restore immune homeostasis and tolerance may be a potential way to cure or control GN [50].
Current research show several discordant conclusions in the immune microenvironment of
GN, but it is undeniable that there are many commonalities in different types of GN, and
each of them has its unique characteristics of immune infiltration, which eventually leads to
different pathological manifestations. Exploration of immune signatures are an important
part in the realization of targeted and personalized therapy of GN.

As an efficient method to identify biomarkers, ML is widely used in the research
of various diseases [51]. We screened seven genes (ARG2, CSHL1, CX3CR1, LTF, LYZ,
TMSB10, TRIM27) based on regression analysis, and established a nomogram model for the
diagnosis and prediction of GN. The calibration curve of the nomogram model indicates
that it possesses a great prediction performance at a risk threshold from 0.1 to 0.9, and the
high AUC value of the model in the validation set demonstrates its accuracy. However, it is
difficult to distinguish multiple disease subtypes simultaneously using ML; for this reason,
we tried to establish, for the first time, a DL model to identify characteristic genes of the
eight GN subtypes. Twenty genetic biomarkers for glomeruli and tubulointerstitium of
each GN subtype were screened out, and the DL models have an AUC value of more than
0.8 for each GN subtype. These genetic biomarkers are essential to define the pathogenesis
of GN, develop targeted therapies, and offer a molecular perspective on the state of renal
inflammation to search for key information for diagnosis and therapeutic management.

Regarding the limitations of this study, the clinical information is not rich enough to
explore the biomarkers and molecular mechanism of disease severity and progression, and
also further research is warranted to verify the results.
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5. Conclusions

In this study, we screened out 274 common up-regulated or down-regulated DIRGs in
the glomeruli and tubulointerstitium of GN and explored their functions. ssGSEA was also
performed to identify the unique immune signatures of GN. In addition, seven genes (ARG2,
CSHL1, CX3CR1, LTF, LYZ, TMSB10, TRIM27) were considered to be important biomarkers
of GN diagnosis and prediction, and 20 DIRGs in glomeruli and tubulointerstitium of each
subtype of GN were selected as characteristic genes based on DL.
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