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Cytosine modifications exhibit circadian
oscillations that are involved in epigenetic diversity
and aging
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Circadian rhythmicity governs a remarkable array of fundamental biological functions and is

mediated by cyclical transcriptomic and proteomic activities. Epigenetic factors are also

involved in this circadian machinery; however, despite extensive efforts, detection and

characterization of circadian cytosine modifications at the nucleotide level have remained

elusive. In this study, we report that a large proportion of epigenetically variable cytosines

show a circadian pattern in their modification status in mice. Importantly, the cytosines with

circadian epigenetic oscillations significantly overlap with the cytosines exhibiting age-related

changes in their modification status. Our findings suggest that evolutionary advantageous

processes such as circadian rhythmicity can also contribute to an organism’s deterioration.
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C ircadian rhythmicity is one of the oldest evolutionary
adaptations to day and night cycles. It regulates a wide
spectrum of biological phenomena, from temperature-

dependent fluctuations in biochemical reaction rates of prokar-
yotes, to sleep-wake cycles and higher-order behaviors in multi-
cellular organisms1. Disruptions of circadian rhythms have been
linked to human morbidities, including cancer, mood, and neu-
rodegenerative diseases2,3. Relatedly, numerous studies have
shown an association between circadian disruption and aging. For
instance, in older rodents, circadian regulation becomes weaker,
whereas mice deficient in key circadian genes have shorter life-
spans4. The cause-effect relationship and molecular mechanisms
of this association are yet to be uncovered.

The cell-autonomous circadian clock consists of a series of
transcription factors and regulators that coordinate feedback
loops. In mammals, the clock circadian regulator (CLOCK)
transcription factor forms a heterodimer with the aryl hydro-
carbon receptor nuclear translocator-like protein (ARNTL, also
known as BMAL1). This complex binds to the E-box response
elements to regulate expression of clock controlled genes5,6. This
set of activated genes includes Period (PER1, 2, and 3) and
Cryptochrome (CRY1 and CRY2), which initiate a negative feed-
back in this pathway. Circadian-regulated genes are ubiquitous
and partially tissue specific: up to 55% of protein-coding genes
exhibit circadian transcriptional oscillations in at least 1 of 12
mouse tissues7. A number of post-translational histone modifiers
also mediate circadian regulation. CLOCK, for instance, functions
as an acetyltransferase of histone H3 at K9 and K14 positions and
interacts with other histone acetyltransferases8. Similarly, other
circadian factors, directly or through formation of complexes with
other enzymes, control histone deacetylation9 and methylation10.
Genome-wide chromatin immunoprecipitation experiments have
demonstrated coordinated circadian oscillations of histone H3K4
trimethylation and H3K9/H3K27 acetylation at transcription start
sites of expressed genes, as well as H3K4 monomethylation and
H3K27 acetylation at enhancers11. Contrary to the strong evi-
dence for histone oscillations, the role of cytosine modification,
mainly comprised of 5-methyl- and 5-hydroxymethylcytosines
(hmCs), in the maintenance or modulation of the circadian clock
is unclear. Even though cyclical changes with 24 h periodicity
have been demonstrated in key elements of the cytosine mod-
ification machinery (such as DNA methyltransferases, Ten-eleven
translocation enzymes, and global DNA methylation levels12),

dedicated studies have previously failed to detect evidence for
robust 24 h periodicity of cytosine modification patterns in
mice13,14. In humans, a study of postmortem brain samples
revealed vestiges of circadian oscillations, which accounted for a
small fraction (< 0.3%) of the total inter-individual cytosine
modification variance15.

In this study (Fig. 1), we demonstrate that cytosine modifica-
tion profiles are changing in a circadian manner in the mouse
liver and lung. Oscillating modified cytosines (osc-modCs) are
more prevalent in both high expressing and circadian genes and
were enriched for E-box motifs. We also find that osc-modCs
were associated with the aging epigenome, where the amplitude
of the oscillation correlated with the magnitude of the aging
effect, implying common molecular mechanisms and shedding a
new light on the proximal causes of aging.

Results
Circadian oscillations of modCs. We investigated circadian
oscillations of cytosine modification in 9-, 15-, and 25-month-old
(mo) male mice (n = 36, 30, and 30, respectively) to represent an
aging spectrum from adult to the very old. All mice were indi-
vidually housed, with ad libitum access to food and water, and
entrained on a 12 h light : 12 h dark cycle, where Zeitgeber time
(ZT) 0 is light onset and ZT12 is light offset. The circadian
entrainment of mice was verified using locomotor activity and
messenger RNA profiles of two key circadian genes, Per2 and
Arntl1 (Fig. 2a-f). Liver and lung tissues, which exhibit robust
transcriptional oscillations and are frequently used in circadian
studies7, were collected every 2 h for at least 58 h starting at ZT0.

We targeted chromosome 7, which is relatively small and gene
dense, to gain sufficient depth of sequencing. In order to gain
precise measurements of oscillating cytosine modifications all
experiments were performed in technical triplicates, and the
cytosine modification measurements were filtered for sites that
showed a greater degree of biological variation than technical
variation (henceforth referred to as epigenetically variable
cytosines (EVCs); see Methods for more details). We performed
mapping of osc-modCs at the single nucleotide resolution using
10,696 bisulfite padlock probes16, each targeting a unique 130-
140 bp region of chr 7, followed by sequencing to an average
mapped read depth of ~ 1,800 × per CpG (Supplementary Fig. 1).
Out of the 37,249 targeted CpGs (Supplementary Data 1), we

Osc-modCs using
harmonic regression

Bisulfite DNA sequencing
using padlock probes 

Oxidative bisulfite DNA
sequencing using padlock probes

Identification of
epigenetically variable

cytosines using ANOVA

Osc-mCs using
harmonic regression

Oscillation analysis of circadian
and tissue-specific mRNA 

Data generation Data filtering Data for secondary analysis

· 12 h light : 12 h dark
entrainment

· Sacrificed at 9, 15, 25
months

· Liver and lung
harvested every 2 h

Age-modCs using
linear regression

Osc-hmCs (difference of
mCs and modCs) using

harmonic regression

Fig. 1 Experimental workflow summary. We investigated 9-, 15-, and 25-month-old (mo) male mice entrained on a 12 h light : 12 h dark cycle with ad libitum
access to food. The circadian entrainment of mice was verified using locomotor activity and mRNA profiles of key circadian genes. The confounding effects
of cellular heterogeneity were examined using cell-specific non-circadian mRNAs. All sequencing experiments were performed in technical triplicates.
ANOVA was used to select for cytosines whose variation of modification densities were larger in the biological samples compared with technical replicates,
which we refer to as epigenetically variable cytosines (EVCs). 5-Hydroxymethylcytosine densities were estimated by subtracting mC from modC densities
on CpG sites that are intersected across EVCs. Aging and oscillating cytosines were identified using linear and harmonic regression models, respectively.
Age-modC, age-correlated cytosine modifications; Osc-hmC, oscillating 5-hydroxymethylcytosines; Osc-mC, oscillating 5-methylcytosines; Osc-modC,
oscillating modified cytosines
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successfully captured ~ 28,000 CpGs, of which ~ 13,000 were
epigenetically variable.

We plotted the average modification density within 1Mb
windows of chromosome 7 and observed a synchronized pattern
of oscillation in the lung samples, whereas a less organized
pattern was detected in the liver. Harmonic regression analysis,
which can identify sinusoidal patterns with 24 h periodicity, was
used to determine the periodic relationship between ZT and
modification levels. It showed that chromosome-wide average
modification oscillated with a 24 h periodicity in the lung (p =
2.9 × 10−7) but not in the liver (p = 0.74) (Fig. 3a-b). Principal
component analysis (PCA) revealed that the oscillating first
principal component (harmonic regression p = 1.8 × 10−6)
explained 25% of the cytosine modification variance in the lung,

whereas PCA in the liver interestingly revealed oscillating
principal components 2 and 3 (harmonic regression p = 0.028
and 0.015, respectively), which cumulatively explained 13% of the
variance (Fig. 3c-d). Analysis of individual CpGs revealed osc-
modCs in 8.2% (permuted p = 0.046) and 35.6% (permuted p< 10−4)
of EVCs in the liver and lung, respectively (Fig. 4a-f,
Supplementary Fig. 2, and Supplementary Data 2-3). The mean
amplitudes of oscillation were 3.2± 1.8% (mean± SD) and 4.5±
2.2%, with maximum amplitudes of 14% and 17%, in the liver
and lung, respectively. Some osc-modCs were not tissue specific,
as genomic positions of osc-modCs significantly overlapped
between the liver and lung (odds ratio (OR) (95% confidence
interval) = 2.0 (1.7-2.4); p = 1.2 × 10−20), and shared a similar
acrophase (ZT when oscillation reaches its peak) with a median
absolute acrophase difference of 2.1 h (permuted p< 1.0 × 10−4;
Supplementary Fig. 3).

Consistent with the general trend of diminishing circadian
effects with age3,4, we observed a decreasing proportion of osc-
modCs in the older animals. Compared with the 9-mo cohort,
lung osc-modCs were reduced slightly in the 15-mo mice (28.1%)
and dropped more dramatically in the 25-mo mice (13.9%;
Supplementary Fig. 4 and Supplementary Data 4-5), and these
effects were not influenced by differences in cohort sample sizes
(Supplementary Table 1). Liver did not exhibit significant
oscillations in the older age cohorts (Supplementary Fig. 4 and
Supplementary Data 6-7). As only 9-mo mice showed consis-
tently significant oscillations in both tissues, we focused primarily
on this group for all subsequent circadian cytosine modification
analyses.

Mechanistically, genuine osc-modCs must involve DNA
demethylation, probably by the oxidation of 5-methylcytosine
(mC) to hmC17, followed by remethylation. Using oxidative
bisulfite (oxBS) conversion18 followed by sequencing using
padlock probes, we detected mostly significant oscillations in
both hmC and mC densities (permuted p = 0.011 and 0.095, for
liver; p = 0.012 and 7.8 × 10−3, for lung; Supplementary Fig. 5a-l
and Supplementary Data 8-11). Although both types of oscillating
modifications overlapped (OR = 6.3 (5.2–7.6) and 10.2 (5.7-18.4);
p = 9.2 × 10−71 and 7.4 × 10−16 in the liver and lung, respectively),
their respective acrophases were in antiphase with one another
(11.2 and 11.0 h median absolute acrophase difference between
the two; permuted p< 1 × 10−4 and 5.4 × 10−3 in the liver and
lung, respectively; Supplementary Fig. 5m-p). This indicates
coordinated timing of DNA demethylation and remethylation
during the circadian cycle.

Circadian oscillations of cytosine modifications may be
confounded by cyclic influx of white blood cells into solid
tissues19,20. In such cases, changes in the proportions of cells may
mimic osc-modCs due to contrasting epigenomes between
penetrating blood cells and native tissue cells. If cell counts are
a confounder, cell-specific non-circadian mRNAs should exhibit
evidence for circadian oscillations. We investigated two non-
circadian mRNAs for each of hepatocytes, pneumocytes, and
macrophages. None of these cell-specific transcripts showed
significant circadian oscillations (Supplementary Fig. 6 and
Supplementary Table 2), suggesting that osc-modC were not
simulated by changing cell counts.

Osc-modCs in circadian genes and E-box motifs. To test the
functional association between osc-modCs and mRNA levels, we
compared tissue-matched public circadian transcriptomic data
sets7 (n = 72 for both the liver and lung) with cytosine mod-
ification oscillations detected in each tissue. The oscillations for a
given gene were summarized as the median coefficient of
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Fig. 2 Locomotor activity and molecular markers verifying circadian
entrainment of mice. a-c Representative actograms of individual mice from
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tissues of all three age cohorts. The data are double plotted by convention.
Shading around the regression lines represents the 95% confidence band.
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determination (i.e., R2 of the harmonic regression fit) of all EVCs
within that gene. Our observations were threefold.

First, mRNA levels positively correlated with their correspond-
ing cytosine modification oscillations in liver and lung tissues
(weighted Pearson’s r = 0.14 and 0.19; p = 4.1 × 10−6 and 1.4 × 10−10,
respectively), suggesting that genes with more robust oscillations
tend to be more abundantly expressed (Supplementary Data 12-
13). Second, circadian oscillations of mRNA were positively

correlated with oscillations of their corresponding gene modifica-
tions (weighted Pearson’s r = 0.075 and 0.19; p = 0.015 and 4.3 ×
10−10, for the liver and lung, respectively), indicating that
circadian transcripts tend to oscillate together with osc-modCs
in their gene body. Third, acrophases of mRNAs were shifted by
0-6 h (range of significant phase shifts with Bonferroni corrected
permuted p< 0.05) from the nadir (ZT when oscillation reaches
its minimum) of their matched, modC densities (Fig. 5a-b and
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Supplementary Fig. 7), suggesting a temporal relationship
between the two events. As circadian mRNAs only partially
reflect oscillations in nascent transcription11 and given the
regulatory proximity of cytosine modification to nascent
transcription, osc-modCs may be more robustly associated with
oscillations in nascent transcription than mature mRNA.

Sequences flanking osc-modCs contained both canonical
(CANNTG) and non-canonical (CANNNTG, GANNTG) E-box
motifs21 (e-value = 8.3 × 10−26-5.2 × 10−212; Fig. 5c-d and Supple-
mentary Data 14-15). E-box response elements play key roles in
regulation of circadian transcripts5,6. It has been shown that Myc-
MAX heterodimer complex can interact with E-box motifs22 and
Myc can in turn interact with DNA methyltransferase 3A23 to
methylate proximal CpG sites. In all, our findings show that osc-
modCs are intricately linked to circadian transcriptomics.

Differential acrophase timing of osc-modCs. We categorized
osc-modCs into “sleep acrophases” (ZT0-12) and “wake acro-
phases” (ZT12-24) (Fig. 3i-j), and observed that the acrophase
time was associated with the osc-modC average modification
density. In both liver and lung tissues, osc-modCs with wake
acrophases showed a significantly higher average cytosine mod-
ification density (mean± SE; 67± 1.20% and 62± 0.74%,
respectively) compared with osc-modCs with sleep acrophases

(54± 1.25% and 50± 0.36%, respectively). Modification densities
of oscillating cytosines from the two acrophase peaks exhibited
the largest modification differences during ZT12-24, whereas
during ZT0-12 the densities were closest to each other (Fig. 5e-f).
Borrowing from the field of astronomy, the cytosine modification
densities were at their “apogee” at ~ ZT18, as the distance between
the two sinusoidal functions arrived at its maximum, and con-
versely reached their “perigee” at ~ ZT6, as the distance between
the two arrived at its minimum.

Osc-modCs’ association with age-correlated changes. Although
aging and the disruption of circadian processes are closely
linked3,4, the molecular mechanisms of this association are not
clear. It is conceivable that DNA modification can provide the
platform to mediate this association due to its role in both the
aging and circadian processes. Therefore, we investigated whether
osc-modCs are related to age-correlated cytosine modifications
(age-modCs).

We used a linear regression model to detect cytosine
modification changes that either increased or decreased with
age in the 9-, 15-, and 25-mo mice. We found that liver samples
had more age-modCs compared with the lung (24.1% and 8.4% of
EVCs, with p< 0.05 after Bonferroni correction, in the liver and
lung, respectively; Supplementary Fig. 8 and Supplementary
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Data 16-17). Osc-modCs from the 9-mo mice showed a strong
association with age-modCs in both the liver and lung tissues
(OR = 2.3 (2.0-2.7) and 1.4 (1.2-1.6); p = 2.6 × 10−24 and 4.0 × 10−5,
respectively). In addition, the circadian amplitudes were corre-
lated with the magnitude of the epigenetic aging effects and
accounted for 18.4% (Pearson’s r = 0.43; p = 1.3 × 10−14) and
72.8% (Pearson’s r = 0.85; p = 3.4 × 10−111) of the age-dependent
variance, in the liver and lung, respectively (Fig. 6a-b).

The associations between sleep or wake acrophases and age-
dependent gain or loss of cytosine modification were highly
asymmetric; cytosines with sleep acrophases that exhibited an
aging effect showed increased modification with age, whereas
those with wake acrophases predominantly lost modification with
age (OR = 68 (30-166) and 394 (113-1,875); p = 1.4 × 10–44 and
9.6 × 10−46, in liver and lung tissues, respectively; Fig. 6c-f). The
association between osc-modC acrophase time and direction of
change in age-modC may provide insights into why genomic
elements that are polarized in terms of DNA modification
densities converge toward the mean in the aging epigenome24,25.

If osc-modCs have a causative influence on age-dependent
epigenetic changes, the former would precede the latter
chronologically. Therefore, osc-modCs that are exclusively
present in younger animals (i.e., 9-mo) should be enriched for
cytosines whose modifications show an aging trend after
9 months. Conversely, if aging induces osc-modCs, age-modCs
should become more abundant amongst the osc-modCs specific
to the older groups (i.e., 15- and 25-mo). Consistent with a
circadian causative direction, cytosines oscillating only in the 9-
mo showed an enrichment of age-modCs (binomial p = 3.5 × 10−8;
12.4% age-modCs), whereas cytosines oscillating only in the 15-
mo or only in the 25-mo showed no enrichment or even
depletion of age-modCs (binomial p = 0.42 and 0.0018; 7.6% and
4.3% age-modCs, respectively; Fig. 6g). Interestingly, osc-modCs
common to all three age groups also showed a significant
depletion of age-modCs (binomial p = 0.0057; 5.3% age-modCs),
suggesting that the proposed circadian-aging conversion has not
occurred yet but may take place in the animals living longer than
25 months. We repeated this analysis using matched sample sizes
or matched proportions of osc-modCs across all age groups and
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arrived at the same conclusions (Supplementary Fig. 9). These
findings suggest that oscillations of cytosine modification could
precede age-correlated cytosine modification changes, but addi-
tional experiments are required to establish causality.

As epigenetic factors are intimately related to transcription, we
asked whether associations between circadian rhythmicity and
aging also extend to the transcriptome. We compared publicly
available circadian7 (n = 72 for liver and lung) and aging26,27 (n =
7 and 9 for liver and lung, respectively) transcriptomes
(Supplementary Data 18-19) of mouse tissues and detected a
significant overlap between the two (OR = 1.3 (1.2-1.4) and 1.6
(1.5-1.8); p = 1.3 × 10−8 and 1.3 × 10−25 for the liver and lung,
respectively). We also found that amplitudes of oscillating
transcripts correlate with magnitudes of aging effects (r = 0.65
and 0.56; p = 4.4 × 10−170 and 9.4 × 10−83 in the liver and lung,
respectively) (Supplementary Fig. 10a-b). Gene Ontology (GO)
analysis of the mRNAs common to both data sets showed
enrichment of various terms including catabolic and metabolic
processes in the liver (false discovery rate (FDR) q = 0.05-8.9 × 10−24;
Supplementary Fig. 10c and Supplementary Data 20), and cell
adhesion and migration in the lung (FDR q = 0.05-1.5 × 10−6;
Supplementary Fig. 10d and Supplementary Data 21). These
findings suggest that the circadian-aging association could be
universal and therefore also detectable in metabolomic and
proteomic studies.

Discussion
The evidence for daily cyclical patterns of cytosine modifications
reported in this study makes cytosine modification a bona fide
member of the cellular circadian machinery alongside oscillating
RNAs, histone modifications, proteins, and metabolites. The
underpinnings of the circadian regulation include numerous
interdependent feedback loops, which precludes a clear demar-
cation of the hierarchy of such elements. Consideration of the
temporal dimension is necessary for unravelling the complex
molecular circuitries of the cell.

Circadian patterns of cytosine modification may help elucidate
several poorly understood epigenetic phenomena. Osc-modCs
can, in part, explain the occurrence of ongoing active demethy-
lation and production of hmC in differentiated somatic cells.

Osc-modCs can explain a large fraction of variation in cytosine
modifications and therefore this work indicates that circadian
mismatched samples could result in findings that are confounded
by oscillations. Failure to perform experiments in a circadian-
informed manner may conflate epigenetic (alongside tran-
scriptomic, metabolomic, and proteomic) differences arising from
circadian mismatches with those attributed to underlying traits.

Epigenetic variation due to cytosine oscillation may even be
larger than our estimates. In our study, we captured the com-
posite effect of oscillations that occur in a large population of
cells. Individual cells may exhibit differences with respect to the
specific cytosine positions that undergo circadian oscillations
within a genomic region. These subtle intercellular variations in
daily reprogramming can create epigenetic heterogeneity within a
specific region or genomic element. This could be a potential
mechanism generating intermediate cytosine modifications in
regulatory elements such as DNase hypersensitive sites and
enhancers28.

We observed similarities and distinct differences in aging and
osc-modC profiles between the mouse liver and lung tissues,
namely a smaller number of osc-modCs but a larger number of
age-modCs in the liver. It is possible that a faster rate of aging in
liver can lead to diminished oscillations and this difference in
signal-to-noise ratio would reduce the robustness of the osc-
modC/age-modC association in the liver.

At present, opinions regarding the contribution of circadian
dysfunction to aging differ significantly3,29. We detected that osc-
mCs are strongly associated with age-dependent changes in the
epigenome and attempted to uncover the direction of such
association. To address the relationship between the two epige-
nomic phenomena, Bradford Hill’s causality criteria30 may be
used. Four of the criteria supported a causal role for osc-modCs
in aging by a varying extent: (I) circadian oscillation of cytosine
modifications preceded age-modC (temporality); (II) amplitudes
of circadian oscillation correlated with the size of the aging effect
(gradient); (III) both cytosine modification and transcriptomes
showed robust circadian-aging associations (consistency); and
(IV) it is conceivable that daily epigenetic reprogramming errors
gradually accrue over time converting the circadian epigenome
into the aging epigenome (plausibility).

The circadian DNA modification may shed a new light on the
associations between aging epigenomes and complex diseases,
especially the ones with late age of onset. Deterministic, and not
stochastic, accumulation or loss of modCs during the lifetime of
an individual explains why DNA modification markers can be
precise predictors of biological age31. Accelerated epigenetic
aging, which is associated with increased morbidity and mortal-
ity32–34, may be a result of deviated trajectories of circadian DNA
modification. Our finding of the circadian origin of epigenetic
convergence is relevant not only to aging but also to carcino-
genesis; it suggests a common mechanism between age-
dependent DNA modification changes and cancer epigenome35.
Hypothetically, even a small (e.g., 0.1%) unidirectional daily
asymmetry in circadian DNA demethylation–remethylation cycle
can result in a bona fide epigenomic state of a malignancy in
several months.

The circadian clock evolved before the advent of air travel, light
bulbs, and constant food availability; it does not contain the
necessary counterbalances for these stressors36. The plasticity and
programmability of cytosine modification and the circadian clock
make them amenable to continuous environmental inputs that
can ultimately facilitate both circadian dysregulation or the cor-
rection of such dysregulations. Circadian parameters can be
altered by various factors, including diet and chemical com-
pounds, and such circadian manipulations may have an impact
on the molecular trajectories during aging. In other words, it may
be possible to potentially influence aging outcomes by modifying
circadian epigenomes and transcriptomes at a younger age.

Methods
Sample information. C57BL/6JRj male mice were obtained from Janvier Labs. The
animals were singly housed in polypropylene cages (44 × 22 × 19 cm) to facilitate
assessment of activity. They were given ad libitum access to food, water, and a 17
cm diameter running wheel mounted in the cage. The animals were entrained to a
24 h light–dark cycle maintained at 12 h light and 12 h dark, where ZT0 refers to
the light onset, for a minimum of 30 days. Wheel running activity was monitored
using Vitalview (Phillips-Respironics) and circadian entrainment (i.e., wheel run-
ning activity onset) was verified using Actiview (Phillips-Respironics). At ages 9,
15, or 25 months (mo), mice were killed by cervical dislocation every 2 h over the
course of 58 h (minimum). Collected tissues were snap frozen in liquid nitrogen
and stored at − 80 °C.

Ethical approval. All experiments were approved by the Centre for Addiction and
Mental Health Research Ethics Board (protocol 567), the University of Toronto
Animal Care Committee (protocol 20010315), and performed in accordance with
relevant guidelines and regulations.

DNA and RNA extraction. Frozen mouse tissues were digested in lysis buffer (35
mM EDTA, 75 mM NaCl, 10 mM Tris-HCl pH 8.0, 1% SDS, and 2 mgml–1

Proteinase K) overnight and extracted using the phenol : chloroform method.
Genomic DNA quality and quantity were examined on a 1% agarose gel, a
NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific), and a Qubit 2.0
fluorometer (Invitrogen).
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For RNA studies, frozen tissues were treated with RNAlater-ICE Frozen Tissue
Transition Solution (Ambion) and total RNA was extracted with an RNeasy Mini
Kit (Qiagen). Total RNA was quantified using a NanoDrop 2000
Spectrophotometer (Thermo Fisher Scientific) and an Agilent 2100 Bioanalyzer
with a RNA 6000 Nano Kit (Agilent). The investigated RNA samples had
minimum RNA Integrity Number of 7.5.

Bisulfite and oxBS conversion. A total of 750 ng of genomic DNA was bisulfite
converted using an EZ DNA Methylation Kit (Zymo) according to the manu-
facturer’s protocol for the HumanMethylation450 BeadChip (Illumina), with the
following modifications suggested by the manufacturer for a more stringent con-
version: 7.5 µl of M-dilution buffer was used for the reaction, which was incubated
at 42 °C for 30 min before addition of the CT-Conversion Reagent. A total of 185
µL of the M-dilution buffer was used in the preparation of the CT-Conversion
Reagent, and only 97.5 µlL of the reagent was added per reaction. oxBS conversion
was performed using a TrueMethyl kit (CEGX) as per the manufacturer’s
recommendations. Using CpH methylation as a proxy for bisulfite conversion
efficiency, the mean non-conversion rate for all experiments were estimated at 0.6
± 0.6% (mean± SD).

Bisulfite padlock probe and library preparation. Bisulfite padlock probes were
designed using the ppDesigner 2.0 software16. The reference mouse genome
(mm10) was masked for genomic variations and repeats (dbSNP 138, Micro-
satellites, RepeatMasker, Segmental Dups, Simple Repeats, and WindowMasker +
SDust). For the remaining (non-repetitive) chr 7 sequence, all possible probe arms
were designed and filtered for the presence of at least one CpG and less than 10% of
the masked genomic sequence within the targeted region. Seven basepair unique
molecular identifiers (UMIs) were added to the common sequence of each probe
immediately adjacent to the probe annealing arms and later used for removal of
PCR duplicates. The probes were printed by CustomArray (Bothell, WA, USA) and
prepared according to the published protocol16 with minor modifications.

Briefly, 1–100 nM of the synthesized probes were amplified using 400 nM of
pAP1V61U (5′-G*G*G TCATATCGGTCACTGTU-3′) and AP2V6 (5′-5Phos-
CACGGGTAGTGTGTATCCTG-3′) primers, and 1 × KAPA SYBR Fast qPCR mix
in four separate 50 µl reactions. The following cycling conditions were used: 95 °C
for 30 s, 15 cycles of 95 °C for 10 s, 55 °C for 20 s, and 70 °C for 30 s, with a final
extension of 70 °C for 2 min. The amplicons were pooled and purified using
QIAquick PCR purification kit (Qiagen) following the manufacturer’s
recommendation. The final product (0.2 nM) was used as template for a large-scale
production PCR involving a minimum of four 96-well plate reactions amplified in
identical conditions to the first round. The amplicons were then pooled and
concentrated using ethanol precipitation. The amplicons were re-purified using
QIAquick PCR purification kit (Qiagen) following the manufacturer’s
recommendation. Amplification adaptors were then removed using three
enzymatic digestions. First, 15–20 µg of the purified amplicon were mixed with 50
units of lambda exonuclease (New England Biolabs) in a 150 µl reaction containing
1 × lambda exonuclease buffer and incubated for 1 h at 37 °C, to remove the bottom
strand. The digested amplicons were purified using ssDNA/RNA clean &
concentrator kit (Zymo) using the manufacturer’s protocol. Second, 3–5 µg of the
single-stranded probes were then digested with 5 units of USER (New England
Biolabs) in an 80 µl reaction containing 1 × DpnII buffer (New England Biolabs)
and incubated for 1 h at 37 °C. Next, 5 µl of 100 µM guide oligo (5′-
GTGTATCCTGATC-3′), 2 µl of 10 × DpnII buffer and 8 µl of water were added to
the mix and the reaction was incubated at 94 °C for 2min, followed by 3min at 37 °C.
Third, 250 units of DpnII (New England Biolabs) were added and the reaction was
incubated at 37 °C for 2 h followed by heat inactivation at 75 °C for 20 min. The
probes were then purified using a TBE-Urea denaturing gel and cutting the band
corresponding to ~ 120 bp.

For the padlock library preparation, 1.5 ng of the purified probes was mixed
with 200 ng bisulfite-treated genomic DNA (quantified using Qubit ssDNA Assay
Kit) in a 20 µl reaction containing 1 × ampligase buffer and covered with 20 μl of
mineral oil to prevent evaporation. The reaction was then incubated at 94 °C for 30
s and gradually lowered (− 0.5 °C/25 s) to 55 °C and incubated for an additional 20
h. With the plate still in the thermocycler, a 6.5 µl mixture containing 2.5 µl 10 ×
NAD+ (NEB), 0.85 µl dNTP (1 mM), 0.85 µl ampligase (Epicentre, Madison,
Wisconsin, USA), 0.85 µl 10 × ampligase buffer, and 1.5 µl of preheated PfuTurbo
Cx Hotstart DNA Polymerase (Agilent Genomics) was added. The unligated
products were removed using 20 units of exonuclease I and 200 units of
exonuclease III (Epicentre). The circularized DNA was then enriched by PCR using
5 µl of the reaction in a 50 µl volume containing 200 nM of Amp_F_SE and
SE_Amp_IndX indexing primers (Supplementary Data 22) and 1 × KAPA SYBR
Fast qPCR master mix using a StepOnePlus Real-Time PCR System (Thermo
Fisher Scientific) at the following cycling conditions: 95 °C (30 s); 8 cycles of 95 °C
(10 s), 58 °C (30 s), and 72 °C (20 s); 15 cycles of 95 °C (10 s) and 72 °C (20 s); and a
final extension at 72 °C (3 min). The PCR products were purified using 0.7×
volume of AMPure magnetic beads (Beckman Coulter) with two 70% ethanol
washes, and quantified using a Qubit dsDNA HS assay (Thermo Fisher Scientific).
Equal amounts of each sample were pooled, and the band at ~ 360 bp was excised
and purified using standard agarose gel extraction methods. The purified libraries
were quantified for sequencing using KAPA Library Quantification kits.

Preprocessing of sequencing data. The libraries were sequenced on a HiSeq 2500
platform (Illumina) at 2 × 125 paired-end reads by using custom sequencing pri-
mers (Supplementary Data 22). For each FASTQ file, the UMIs were removed from
the start of the reads and saved for later processing. The FASTQ reads were quality
trimmed using Trimmomatic37 for trailing bases with a phred score < 30 and all
reads with post-trimming length < 50 bp. The trimmed reads were then aligned to
a masked genome (mapping only to regions within a 100 bp window of the known
probe locations) using Bismark v0.14.338 and Bowtie 2 v2.2.239. The aligned reads
were further filtered to only include reads that had start and end positions
matching the padlock probe annealing arm sequence with no more than one
mismatch. The filtered reads were subsequently PCR de-duplicated using the
UMIs. The filtered read pairs were then converted to modification calls using the
Bismark methylation extractor tool38.

Samples with low coverage were removed based on a comparison relative to
other samples within the same experiment. Individual CpGs were required to have
a minimum coverage of 30 reads in each sample for inclusion in the analysis. β-
Values were calculated as the proportion of cytosines and thymines for a given
CpG; β=M/(M +U), where M = number of cytosines (modCs) and U = number of
thymines (unmodified cytosines). All samples for a given age and tissue were
internally correlated to identify outliers, and samples with average inter-sample
correlation value more than 3 SD below the mean were excluded from further
analysis.

hmC data were derived from the set of cytosines which were epigenetically
variable (see “Detection of EVC in mouse tissues”) in either mC (from oxBS
padlock sequencing) or modC (from bisulfite padlock sequencing) data sets. hmC
values were estimated by subtracting the oxBS sequencing densities from the
bisulfite sequencing densities following the TrueMethyl kit (Cambridge Epigenetix,
Cambridge, UK) recommendations.

Lung mC data were obtained from a larger set of probes that, in addition to
chromosome 7, targeted other chromosomes. Only probes overlapping with the
primary chromosome 7 probe list were used for analysis. Outlier samples were
calculated and removed prior to subsetting.

Detection of EVCs. To detect EVCs, whose biological signal exceeded technical
variation, we analyzed three technical replicates for each biological sample. A one-
way analysis of variance test comparing the variance between technical and bio-
logical replicates was performed on every cytosine. Each tissue and age groups were
analyzed separately and cytosines with p < 0.05 were identified as EVCs. Following
EVC identification, the cytosine modification values of the three technical repli-
cates were averaged using the median, in order to obtain a single robust biological
data point for further analyses.

Detection of circadian oscillations. A harmonic linear regression model was used
to identify circadian oscillations. The period was fixed to 24 h, and the phase and
the amplitude were modeled as a linear combination of sine and cosine terms as
follows:

y ¼ b0 þ b1 sin
2πZT
24

� �
þ b2 cos

2πZT
24

� �
þ ϵ: ð1Þ

where y is the observed modification level, b0–2 are regression coefficients, ZT is the
time of observation, and ε is the error term. P-values were obtained by comparing
this model to the null model without the sine and cosine terms using an F-test.
Cytosines with harmonic regression p< 0.05 were identified as osc-modCs with
their amplitude (A) and acrophase (ϕ) defined as:

A ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ b22

q
; ð2Þ

ϕ ¼ 12
π
atan2 b1; b2ð Þmod 24: ð3Þ

To determine whether the average proportion of variance explained by
oscillations is higher than expected by chance, 10,000 permutations were
performed by shuffling ZT labels and the mean R2 value was calculated across the
EVCs in each permutation. The permutation p-value was derived as a fraction of
permutations with the permuted mean R2 value greater than the observed.

PCA was used to quantify the amount of variability explained by oscillations.
Principal components were calculated via singular value decomposition of the
mean centered data matrix. The resulting scores of four main principal
components were inspected for oscillations by fitting the harmonic regression
model described above.

Analysis of circadian and tissue-specific transcripts. mRNAs of two key cir-
cadian genes, period circadian clock 2 (Per2) and aryl hydrocarbon receptor
nuclear translocator like (Arntl), were used to confirm the circadian entrainment of
mice1. Liver-, lung-, and macrophage-specific mRNA targets were selected using a
public microarray expression data set (Gene Expression Omnibus (GEO) accession:
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GSE113340). The data were queried for genes whose expression exhibited the
highest fold change between the tissue of interest and other tissues. Absence of
circadian variation in the mRNA transcripts specific to hepatocytes, pneumocytes,
and macrophages was verified using the CircaDB database41.

Quantification of relative mRNA levels was performed on an Applied
Biosystems ViiA 7 Real-Time PCR System (Applied Biosystems). First-strand
complementary DNA synthesis was performed with a SuperScript III First-Strand
Synthesis System (Thermo Fisher Scientific) on DNase I-treated RNA. Real-time
PCR was performed in triplicate using Power SYBR Green PCR Master Mix
(Applied Biosystems), with 400 nM primers (Supplementary Table 3) in a total
reaction volume of 10 µl and at the thermal cycling conditions recommended by
the manufacturer. Glyceraldehyde-3-phosphate dehydrogenase (Gapdh) mRNA
levels were used as endogenous controls. The results were analyzed using ViiA
7 software and R42.

Analysis of the transcriptomic datasets. Pre-normalized public circadian tran-
scriptomic microarray (GEO accession: GSE546507) and aging transcriptomic data
sets (GEO accession: GSE5780926 and GSE659127 for the liver and lung, respec-
tively) were used for detection of circadian (see “Detection and analysis of circadian
epigenetic oscillations”) and nominally significant aging mRNAs (see “Aging
analysis for the mouse tissue DNA samples”). Data sets were matched by RefSeq ID
or gene symbol and genes with missing mRNA data were removed.

GO enrichment analysis on the public transcriptomic dataset was performed
using GREAT 3.043. A hypergeometric test was performed using oscillating and
aging transcripts as foreground and all transcripts as background. The resulting p-
values were FDR adjusted and significance threshold was set as q< 0.05. To reduce
the dimensionality of the GO enrichment terms to the most informative ones, the
list of enriched terms (q < 0.05) was submitted to REViGO44 and terms with
similar gene lists were reduced by merging terms with dispensability score < 0.7.

Pearson’s correlations between circadian transcriptomic data and median R2 of
cytosine modification data were weighted by the number of cytosines within the
gene.

Cytosine modification and circadian mRNA phase shift. Each mRNA transcript
was paired with the corresponding EVCs within its gene body. For each transcript,
the harmonic model estimate from mRNA was correlated with the mean cytosine
modification values within the same gene (Pearson’s correlation). The overall
correlation was summarized as the mean correlation value across all mRNA
transcripts. In order to estimate the strength of each phase shift between mRNA
and modification, the above procedure was repeated 24 times, each time shifting
the obtained harmonic model fit by 1 h. The procedure for a single phase shift can
be represented as:

yip ¼ b0i þ b1i sin
ðZT� pÞ2π

24

� �
þ b2i cos

ðZT� pÞ2π
24

� �
þ ϵi; ð4Þ

rip ¼ corðxi; yipÞ; ð5Þ

rp ¼
PN

i¼1 rip
N

: ð6Þ

where yip is a vector of mRNA estimates at phase shift p, for each time of observed
cytosine modification, ZT, for gene i. b0i–2i are the mRNA harmonic regression
coefficients and εi is the error term. cor is the function for Pearson’s correlation
coefficient and xi is a vector of mean modification values. The summarized strength
of the correlation for phase shift p is estimated by rp, the mean of all genes’
Pearson’s r, rip.

To generate a null distribution, permutations (N = 10,000) were performed by
shuffling the ZT times and pairing of mRNA and modification values. Each
permutation produced 24 overall correlation estimates (i.e., 10,000 values for each
phase shift) and for each phase shift the permutation p-value was calculated as the
fraction of permutations with overall correlation greater than the observed value.
The permutation p-values were corrected for multiple testing using the Bonferroni
procedure.

Aging analysis. Only cytosines that were epigenetically variable across all three age
groups were considered for aging effects. Cytosines exhibiting age-dependent
modification across the three age groups (9-, 15-, and 25-mo) were identified using
an F-test between a null intercept-only model ynullð Þ and a linear model using age
as a predictor yalternativeð Þ defined as:

ynull ¼ b0 þ ε; ð7Þ

yalternative ¼ b0 þ b1ageþ ε: ð8Þ

Cytosines whose modification showed a significant correlation with age
(Bonferroni corrected p < 0.05) were called age-correlated cytosines (age-modC)

and the slope of the regression line (coefficient b1 in yalternative model) was used to
determine the direction of change.

Motif analysis. Sequence motifs were examined at the oscillating cytosine position
± 100 bp. Overlapping 200 bp regions (i.e. redundant sequences) were merged into
one sequence. MEME suite 4.10.245 was used to identify overrepresented sequences
using the following parameters: -dna, -mod anr, -maxsites 1000, -nmotifs 20, -evt
1e-10, -revcomp, -maxsize 1,00,00,000.

Analysis of differences in acrophase timing. Absolute acrophase differences
(minor arc length) between paired data sets (liver 9-mo modC and lung 9-mo
modC; liver hmC and mC; and lung hmC and mC) were calculated for each
cytosine and averaged by taking the median. Permuted values were calculated by
randomly shuffling acrophase pairings of one data set relative to the other and
again computing median absolute acrophase differences. P-value was measured as
the number of permutations with a value greater than (or less than, depending on
the alternative hypothesis) observed in the real data.

Circadian-aging association analysis. Associations between osc-modC and aging
probes were estimated using two-sided Fisher’s exact test. Only EVCs were used to
compute the contingency table. All computational analyses were performed in R42

unless specified otherwise.

Data availability. Next-generation sequencing data that support the findings of
this study have been deposited in the GEO with the accession code GSE83947.
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