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Abstract

Parental high-fat diet (HFD) programs for obesity and hypertension in female offspring in

rats, but it is unknown how the pregnancies of these offspring are impacted. Therefore, the

hypothesis was tested that parental HFD exaggerates obesity and hypertension during

pregnancy of the offspring. Wistar Hannover rat dams (the parental, P generation) were

maintained on normal-fat diet (NFD) or HFD from weaning and were kept on respective

diets through pregnancy and lactation. Their offspring (the first filial, F1 generation) were

weaned onto the same diet as the P generation, or they were changed to the other diet to

determine if combined HFD in the P and F1 generations exaggerates body weight and blood

pressure levels during pregnancy in these offspring. This diet paradigm resulted in the fol-

lowing groups of pregnant F1 offspring: P-NFD/F1-NFD, P-HFD/F1-NFD, P-NFD/F1-HFD,

and P-HFD/F1-HFD. Maternal body and adipose tissue weights were greatest in the P-

HFD/F1-HFD group compared to the other 3 groups by the end of pregnancy. Plasma leptin

and conscious mean arterial blood pressure were not significantly different between any

group, although there was a main effect for increased blood pressure in the F1-HFD groups.

Circulating levels of the antihypertensive pregnancy factor, placental growth factor (PlGF),

were assessed. Although average PlGF levels were similar among all groups, correlative

studies revealed that lower levels of PlGF were associated with higher blood pressure only

in the P-HFD/F1-HFD group. In summary, HFD feeding from the P generation exaggerated

HFD-induced body and adipose tissue weights in the pregnant offspring.

Introduction

Increasing evidence supports that insults in the parental (P) generation, including during the

perinatal period of gestation and lactation, have lasting effects on body weight and blood pres-

sure regulation in female offspring; this has been reported in several studies in rodents. It was

found that a high-fat diet (HFD) started at 3 weeks of age and maintained throughout preg-

nancy and lactation in the P generation resulted in offspring of the first filial (F1) generation

having increased body and adipose tissue (fat) weights along with elevations in blood pressure

[1, 2]. Another study showed that the combination of HFD feeding in the P generation and
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from weaning in the F1 generation resulted in exaggerated body and fat weights in these off-

spring, but not exaggerated blood pressure levels [3, 4]. These data support that HFD during

the P generation predisposes to exaggerated HFD-induced body fat weights in the female off-

spring accompanied by elevated blood pressure.

Although the above investigations showed that HFD in the P generation affects body weight

and blood pressure regulation in the F1 generation, those experiments were conducted in

non-pregnant female offspring. Therefore, it is unknown how HFD consumption in the P gen-

eration impacts the pregnancies of the F1 generation. What has been studied are the conse-

quences of HFD on pregnancies in the P generation of dams. We previously showed that HFD

feeding from early age and continued through pregnancy resulted in a slight increase in fat

weight and elevated blood pressure by the end of pregnancy at gestational day 19 in rats [5].

Others have also reported that HFD promotes increased fat weight in the P generation during

their pregnancies [6–9]. However, it has not been examined whether HFD feeding during

pregnancy in the P generation alters body or fat weights as well as blood pressure in the F1 off-

spring during their own pregnancies. Moreover, it is unknown whether combined HFD feed-

ing in the P and F1 generations would exaggerate body fat or blood pressure levels during

pregnancy of the F1 offspring. It is timely to assess whether there are multigenerational effects

of HFD on pregnancy because of the increasing prevalence of overweight or obesity occurring

in pregnancies around the world [10]. Epidemiologists have reported that increased maternal

body weight in the P generation is associated with the development of obesity in their offspring

[11]. However, little is known about body weight and adipose tissue mass during pregnancy in

these offspring, which highlights the novelty of the current study.

In this study, it was examined whether HFD compared to normal-fat diet (NFD) in the P

generation promotes obesity and hypertension in the F1 offspring during pregnancy in the

experimental groups named, P-NFD/F1-NFD and P-HFD/F1-NFD. It was also examined

whether a combination of HFD feeding during the P and F1 generations exaggerates obesity

and hypertension in the pregnant F1 offspring using the experimental groups named, P-NFD/

HFD and P-HFD/F1-HFD. Furthermore, circulating levels of the pregnancy factor, placental

growth factor (PlGF), were measured. PlGF is important for proper endothelial and vascular

function and blood pressure regulation during pregnancy [12–14]. Because PlGF is negatively

associated with body weight in pregnant women [15, 16], it was assessed whether PlGF levels

were altered in response to HFD in the pregnant offspring groups in this study.

Materials and methods

Animals, diet protocols, and timed pregnancies

The Institutional Animal Care and Use Committee approved all animal protocols and rats

were housed in AAALAC accredited animal facilities at The University of Mississippi Medical

Center. Fig 1 illustrates the study design used for generating experimental rats, which were

generated from an in-house colony of Wistar Hannover (WH) rats maintained on Envigo

8640 standard chow. This diet is formulated to support growth and reproduction in rodents

and has a crude protein content of 22%. From this colony, female rats were weaned at 3 weeks

of age and started on purified diets of either normal-fat diet (NFD; Teklad cat# TD.07055;

composed of % kcal from: 13.0% fat, 68.0% carbohydrates, and 19.0% protein with a caloric

content of 3.6 kcal/g and 0.1% sodium) or high-fat diet (HFD; Teklad, cat# TD.07054; com-

posed of % kcal from: 39.7% fat, 41.5% carbohydrates, and 18.8% protein with a caloric content

of 4.3 kcal/g and 0.12% sodium). Rats were maintained on respective diets until ~16 weeks of

age when they were mated with WH males that had been maintained on standard chow. The

pregnant rats were maintained on their respective diets through the perinatal period, which
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includes the timeframe encompassing gestation of the fetus and lactation until their offspring

were weaned at 3 weeks of age. These pregnant dams were defined as the parental, P genera-

tion and termed P-NFD and P-HFD. There was no difference (P = 0.6) in the number of off-

spring (first filial, F1 generation) born from P-NFD (11±2) versus P-HFD (12±1) groups.

Upon weaning at 3 weeks of age, the female F1 offspring either remained on the same diets as

the P generation or changed to the other diet. These offspring were allowed to age to ~13

weeks old then mated with age-matched brothers on standard chow to generate timed-preg-

nant rats. Pregnancy was confirmed by observing sperm in the vaginal smear, which was indic-

ative of gestational day 0. The rate of generating successful pregnancies was calculated by

(number of successful pregnancies/total number of rats attempted to become pregnant)�100.

These breeding and diet paradigms generated 4 experimental groups of timed-pregnant

Fig 1. Scheme illustrating the series of events in generating the experimental timed-pregnant rats utilized in this study. At 3 weeks old,

Wistar Hannover female rats were started on NFD or HFD, and at ~16 weeks of age, rats were mated with males on Envigo 8640 standard

chow. These pregnant females were the parental (P) generation and maintained on respective NFD or HFD throughout pregnancy and

lactation during this perinatal period. The F1 generation of offspring were weaned onto either NFD or HFD that were then mated with Wistar

Hannover males to generate the following 4 groups of timed-pregnant experimental offspring: 1) P-NFD/F1-NFD (exposed to NFD during

perinatal period and from weaning through pregnancy), 2) P-HFD/F1-NFD (exposed to HFD during perinatal period but fed NFD from

weaning through pregnancy), 3) P-NFD/F1-HFD (exposed to NFD during perinatal period but fed HFD from weaning through pregnancy),

and 4) P-HFD/F1-HFD (exposed to HFD during perinatal period and from weaning through pregnancy).

https://doi.org/10.1371/journal.pone.0237708.g001
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offspring: 1) P-NFD/F1-NFD (N = 6), 2) P-HFD/F1-NFD (N = 8), 3) P-NFD/F1-HFD (N = 7),

and 4) P-HFD/F1-HFD (N = 11).

Body and fat weight assessment

In each of the offspring groups, body weight was assessed from weaning at 3 weeks of age until

timed pregnancies were generated at ~13 weeks of age. Body weight was also measured at ges-

tational day 0 and 19.

On gestational day 18, total fat and total lean body composition were examined using an

Echo-Magnetic Resonance Imaging (MRI)-700 body composition analyzer (Echo Medical Sys-

tems, Houston, TX, USA). Rats were placed in restraint cages and the average of two scans

recorded for each rat. On day 19, adipose tissues were harvested and wet weights recorded,

which included the visceral retroperitoneal adipose tissue surrounding the kidneys [17]; para-

metrial adipose tissue; and subcutaneous adipose tissue from the interscapular space.

Food intake

Rats were housed individually and cumulative food intake was assessed between gestational

days 0 and 19 in their home cages.

Blood pressure measurement

On gestational day 18, rats were anesthetized with 2–4% isoflurane then indwelling catheters

were implanted in the left carotid artery and exposed at the nape of the neck. Catheters con-

sisted of V/1 tubing attached to V/3 tubing (Scientific Commodities, Lake Havasu City, AZ,

USA). Approximately 2.5 cm of the V/3 end of the catheter was inserted into the carotid.

Catheters were filled with sterile heparin-0.9% saline solution (300 mg/mL; Pfizer, New York

City, NY, USA) and stoppered with a stainless-steel catheter plug (SP22/12; Instech Laborato-

ries, Plymouth Meeting, PA, USA) to maintain patency. Conscious mean arterial blood pres-

sure was measured on the next day at gestational day 19 as described previously [18]. For this

purpose, rats were placed in restrainers (Kent Scientific Corp, Torrington, CT, USA) and

catheters connected to pressure transducers (MLT0699; ADInstruments, Colorado Springs,

CO, USA) coupled to a computerized data acquisition system (PowerLab, ADInstruments).

Readings were calibrated on every rat then data acquired at 1k/s. Once blood pressure read-

ings stabilized (~1h), ~10 min of mean arterial blood pressure (MAP) data were collected

and averaged.

Blood collection and pregnancy biometrics

On gestational day 19, rats were anesthetized with 2–4% isoflurane then a midline incision was

made and uterine horns with fetuses exteriorized. Blood was collected from the abdominal

aorta into Vacutainer K2EDTA tubes (BD, Franklin Lakes, NJ, USA), spun at 2500 rpm for 12

min at 4˚C, and plasma stored at -20˚C. It was ensured that each fetus and matching placenta

were weighed and recorded as individual fetal-placental units. Average placental and fetal

weights were calculated per rat and then averaged for each experimental group. Placental

sufficiency = average viable fetal weight/average placental weight for each dam as a surrogate

measure of the nurturing capacity of the placenta, as previously described in humans [19].

Total viable fetuses were noted. Percent fetal resorption = (number of resorbed fetuses/total

number of fetuses)�100. Immediately following removal of tissues and blood, all animals were

killed under isoflurane anesthesia by thoracotomy and removal of the heart.
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Plasma biochemistry

Plasma levels of the adipokine, leptin, were examined using a Quantikine enzyme-linked

immunosorbent assay (ELISA) from R&D Systems (Minneapolis, MN, USA—MOB00).

Plasma free PlGF levels were also quantified by an ELISA kit from R&D Systems detecting

mouse PlGF-2 (Minneapolis, MN, USA—MP200).

Statistical analysis

Data were graphed and analyzed using GraphPad Prism version 8.1.2 (La Jolla, CA, USA).

Data are presented as mean ± standard error of the mean (SEM). Statistical significance was

defined as P<0.05 and determined between all 4 pregnant groups by a two-way ANOVA fol-

lowed by Tukey’s multiple comparisons tests. A two-way ANOVA with repeated measures fol-

lowed by a Tukey’s multiple comparisons test was used to assess significance of pre-pregnancy

body weights from 3 to 13 weeks of age between each of the 4 groups. Statistical symbols are

only presented in the graphs if the two-way ANOVA detected an interaction between the 2 fac-

tors of pre-natal (P) versus offspring post-natal (F1) diet groups and the post-hoc test indicated

specific differences between any of the 4 groups.

Results

Pre-pregnancy body weights

Upon weaning at 3 weeks of age, body weight was significantly greater in the female F1 off-

spring from P-HFD versus P-NFD dams (Fig 2). Body weight was then tracked weekly until 13

weeks of age in each of the 4 groups of the female F1 offspring: 1) P-NFD/F1-NFD (N = 6), 2)

P-HFD/F1-NFD (N = 8), 3) P-NFD/F1-HFD (N = 7), and 4) P-HFD/F1-HFD (N = 11). As Fig

2 illustrates, body weight was numerically greater in the P-HFD/F1-HFD group by 6 weeks of

Fig 2. Continuous body weight measurements in non-pregnant P-NFD/F1-NFD, P-HFD/F1-NFD, P-NFD/F1-HFD, and P-HFD/

F1-HFD offspring groups. Body weights were assessed from weaning at 3 weeks of age until 13 weeks of age, which was directly before

timed pregnancies were generated. Inset are results from the two-way ANOVA. Results from Tukey’s multiple comparisons test:
�P<0.0001 for body weight in offspring from P-HFD vs. P-NFD at 3 weeks of age. ��P<0.001 for body weight in P-HFD/F1-HFD vs. all

other groups from 10–13 weeks of age.

https://doi.org/10.1371/journal.pone.0237708.g002
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age compared to all other 3 groups. However, their body weight did not reach statistical signifi-

cance until 10 weeks of age and continued to be greater through 13 weeks of age (Fig 2).

Cumulative weight gain from 3 to 13 weeks of age was also greatest (P = 0.002) in the P-HFD/

F1-HFD group (242±10 g), as compared to P-NFD/F1-NFD (210±4 g), P-HFD/F1-NFD (202

±6 g), and P-NFD/F1-HFD (209±6 g) groups. Overall, pre-pregnancy body weight was greatest

in the P-HFD/F1-HFD before timed pregnancies were generated at ~13 weeks old.

Pregnancy success rates

The number of days (i.e., smears performed) while attempting to generate timed-pregnant rats

were not significantly different (P = 0.2) between any of the groups (P-NFD/F1-NFD: 4±1

days, P-HFD/F1-NFD: 10±3 days, P-NFD/F1-HFD: 6±2 days, and P-HFD/F1-HFD: 7±1

days). The rate of generating successful pregnancies was 86% in P-NFD/F1-NFD, 75% in

P-HFD/F1-NFD, 100% of rats in P-NFD/F1-HFD, and 71% in the P-HFD/F1-HFD group.

Food intake during pregnancy

Cumulative food intake from gestational day 0–19 was 320±10 g for P-NFD/F1-NFD, 322±14

for P-HFD/F1-NFD, 267±2 for P-NFD/F1-HFD, and 284±21 for P-HFD/F1-HFD. The two-

way ANOVA detected a significant main effect (P = 0.007) in the post-natal F1-HFD vs.

F1-NFD diet groups.

Body and fat weights during pregnancy

It was examined if HFD feeding during the P generation exaggerated HFD-induced increases

in body and fat weights in the pregnant F1 offspring. Gestational weight gain from gestational

day 0–19 was comparable (P = 0.2) between all 4 groups: P-NFD/F1-NFD (71±1 g), P-HFD/

F1-NFD (71±1 g), P-NFD/F1-HFD (64±8 g), and P-HFD/F1-HFD (75±7 g). At the end of

pregnancy, body weight, total body fat, retroperitoneal fat, parametrial fat, and subcutaneous

fat were weights were evaluated. Body weight (Fig 3A) and total body fat (Fig 3B) were not dif-

ferent between P-NFD/F1-NFD, P-HFD/F1-NFD, or P-NFD/F1-HFD but were significantly

greater in P-HFD/F1-HFD compared to all other pregnant groups. Retroperitoneal fat (Fig

3C) and parametrial fat (Fig 3D) were similar between P-NFD/F1-NFD, P-HFD/F1-NFD,

P-NFD/F1-HFD, and P-HFD/F1-HFD pregnant groups; however, the two-way ANOVA

detected a main effect for the post-natal F1-HFD vs. F1-NFD diet groups for retroperitoneal

(P<0.0001) and parametrial fat (P = 0.001) weights. Subcutaneous fat weights were similar

(P = 0.9) among all 4 groups: P-NFD/F1-NFD (0.97±0.08 g), P-HFD/F1-NFD (0.96±0.08 g),

P-NFD/F1-HFD (0.97±0.08), and P-HFD/F1-HFD (0.96±0.08 g).

At the end of pregnancy, total body lean mass values were 254±2 g for P-NFD/F1-HFD, 270

±3 g for P-HFD/F1-NFD, 248±3 g for P-NFD/F1-HFD, and 283±8 for the P-HFD/F1-HFD

pregnant group. The two-way ANOVA detected a significant main effect (P = 0.003) for the

pre-natal P-HFD vs. P-NFD diet groups. Tibia lengths were measured in a subset of rats and

were similar (P = 0.5) between P-NFD/F1-NFD (3.6±0.03 cm, N = 4), P-HFD/F1-NFD (3.6

±0.02 cm, N = 3), P-NFD/F1-HFD (3.6±0.03 cm, N = 6), and P-HFD/F1-HFD (3.7±0.07 cm,

N = 3).

Circulating leptin during pregnancy

Plasma leptin levels were similar (P = 0.6) among the P-NFD/F1-NFD, P-HFD/F1-HFD,

P-NFD/F1-HFD, and P-HFD/F1-HFD pregnant groups on gestational day 19 (Fig 4).
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Blood pressure during pregnancy

Conscious mean arterial blood pressure (MAP) was comparable (P = 0.6) between P-NFD/

F1-NFD, P-HFD/F1-NFD, P-NFD/F1-HFD, and P-HFD/F1-HFD pregnant offspring groups

at gestational day 19 (Fig 5). However, the two-way ANOVA detected a significant main effect

(P = 0.02) for post-natal F1-HFD vs. F1-NFD diet groups.

Circulating PlGF during pregnancy

Regarding average values for plasma concentrations of PlGF on gestational day 19, the two-

way ANOVA detected an interaction (P = 0.04) between the 2 factors of pre-natal (P) versus

offspring post-natal (F1) diet groups; however, the post-hoc analysis did not reveal any specific

differences between the P-NFD/F1-NFD, P-HFD/F1-HFD, P-NFD/F1-HFD, and P-HFD/

F1-HFD pregnant groups (Fig 6). It was observed that PlGF levels were quite variable. There-

fore, it was assessed whether there were any correlations between PlGF and blood pressure lev-

els. PlGF is important for proper blood pressure regulation during pregnancy [12]. There were

no significant correlations detected between circulating PlGF and blood pressure levels in

P-NFD/F1-NFD (Fig 7A), P-HFD/F1-NFD (Fig 7B), or P-NFD/F1-HFD (Fig 7C) pregnant

groups. In contrast, there was a significant correlation between these 2 variables in the P-HFD/

F1-HFD pregnant group (Fig 7D), whereby those that had the lower levels of PlGF had higher

blood pressure levels.

Fig 3. Body and fat weights during pregnancy. Body weight (A), EchoMRI total body fat (B), isolated retroperitoneal fat (C),

and parametrial fat (D) in P-NFD/F1-NFD, P-HFD/F1-NFD, P-NFD/F1-HFD, and P-HFD/F1-HFD pregnant groups at

gestational day 18–19. Inset are results from the two-way ANOVA. �P = 0.02 and ��P = 0.04 for P-HFD/F1-HFD vs. all other

groups.

https://doi.org/10.1371/journal.pone.0237708.g003
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Fig 4. Circulating levels of the adipokine, leptin. Plasma leptin was measured in P-NFD/F1-NFD, P-HFD/F1-NFD,

P-NFD/F1-HFD, and P-HFD/F1-HFD pregnant groups at gestational day 19. Inset are results from the two-way

ANOVA.

https://doi.org/10.1371/journal.pone.0237708.g004

Fig 5. Mean arterial blood pressure (MAP) levels. MAP was measured in P-NFD/F1-NFD, P-HFD/F1-NFD, P-NFD/

F1-HFD, and P-HFD/F1-HFD pregnant groups at gestational day 19. Inset are results from the two-way ANOVA.

https://doi.org/10.1371/journal.pone.0237708.g005
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Pregnancy biometrics

Pregnancy biometrics were measured on gestational day 19. Average placental weights (Fig

8A) and average fetal weights (Fig 8B) were similar (P = 0.5 and P = 0.7, respectively) between

all 4 groups of P-NFD/F1-NFD, P-HFD/F1-NFD, P-NFD/F1-HFD, and P-HFD/F1-HFD

pregnant rats. Placental sufficiency was comparable (P = 0.4) in P-NFD/F1-NFD (0.43±0.02),

P-HFD/F1-NFD (0.41±0.01), P-NFD/F1-HFD (0.46±0.02), and P-HFD/F1-HFD (0.46±0.03)

groups. The number of live fetuses was similar (P = 0.9) among all 4 pregnant groups (Fig 8C).

Fetal absorption rates were comparable (P = 0.8) in P-NFD/F1-NFD (23±8%), P-HFD/

F1-NFD (8±3%), P-NFD/F1-HFD (27±7%), and P-HFD/F1-HFD (17±4%) pregnant groups.

Discussion

In this study, HFD consumption in the P generation consisted of feeding from weaning and

continued through gestation and lactation. Their F1 offspring either remained on the same

diet as the P generation or were changed to the other diet. This diet paradigm resulted in 4

groups of experimental F1 offspring: P-NFD/F1-NFD, P-HFD/F1-NFD, P-NFD/F1-HFD, and

P-HFD/F1-HFD. Before generating timed-pregnancies, it was noted that the P-HFD/F1-NFD

were heavier than any other diet group in the non-pregnant state. Timed-pregnant rats were

then generated with pregnancy outcomes assessed at the end of pregnancy between gestational

days 18 and 19. Body weight, total body fat mass, and visceral fat weight were similar during

pregnancy among the P-NFD/F1-NFD, P-HFD/F1-NFD, and P-NFD/F1-HFD groups. The

novel finding was that combined HFD during the P and F1 generations exaggerated obesity

and fat mass in the P-HFD/F1-HFD group compared to all other groups.

Circulating levels of the adipokine, leptin, were assessed in this study. Leptin has been

shown to be increased in obese patients [20] and to mediate the development of obesity

Fig 6. Average circulating placental growth factor (PlGF) levels. Plasma levels of PlGF were measured in P-NFD/

F1-NFD, P-HFD/F1-NFD, P-NFD/F1-HFD, and P-HFD/F1-HFD pregnant groups at gestational day 19. Inset are

results from the two-way ANOVA.

https://doi.org/10.1371/journal.pone.0237708.g006
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hypertension in studies using non-pregnant rodents; this occurs via downstream signaling of

the melanocortin-4 receptor (MC4R) in the brain that promotes sympathetic drive and hyper-

tension [21]. Others have found that MC4R signaling mediates hypertension in those non-

pregnant female offspring derived under maternal obesity [22]. However, in this study, leptin

and blood pressure levels were similar between all 4 pregnant groups of P-NFD/F1-NFD,

P-HFD/F1-NFD, P-NFD/F1-HFD, and P-HFD/F1-HFD rats. Thus, we did not detect

increased blood pressure in the pregnant offspring borne from dams on HFD (namely, the

P-HFD/F1-NFD and P-HFD/F1-NFD groups), like was shown in other studies using non-

pregnant female offspring. We currently do not know the mechanisms whereby these pregnant

rats, especially the P-HFD/F1-HFD that had increased body fat, do not have increased blood

pressure levels beyond the finding that leptin levels were not altered.

Although there were no differences in the average blood pressure between all 4 groups of

pregnant offspring, some of the highest individual blood pressure values were found in the

P-HFD/F1-HFD pregnant group of F1 offspring. Recall that the P-HFD/F1-HFD group also

had some of the highest body fat weights detected in this study. Human studies have shown a

negative association of body weight and circulating levels of the anti-hypertensive factor, PlGF

[15, 16]. As PlGF is critically important for proper blood pressure regulation in pregnancy,

correlative statistics were performed to assess whether PlGF concentrations were associated

with blood pressure levels. Although average PlGF levels were similar between all groups, PlGF

Fig 7. Correlations between plasma placental growth factor (PlGF) levels and mean arterial blood pressure (MAP). Correlations

were calculated in P-NFD/F1-NFD (A), P-HFD/F1-NFD (B), P-NFD/F1-HFD (C), and P-HFD/F1-HFD (D) pregnant groups at

gestational day 19. Inset are the results for the linear regression analyses and the correlative statistics. Significance was only detected

in the P-HFD/F1-HFD group.

https://doi.org/10.1371/journal.pone.0237708.g007
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Fig 8. Pregnancy biometrics. Average placenta weight (A), average fetal weight (B), and number of liver fetuses (C) in

P-NFD/F1-NFD, P-HFD/F1-NFD, P-NFD/F1-HFD, and P-HFD/F1-HFD pregnant groups at gestational day 19. Inset

are results from the two-way ANOVA.

https://doi.org/10.1371/journal.pone.0237708.g008
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was correlated with blood pressure only in the P-HFD/F1-HFD pregnant group. This correla-

tion suggested that blood pressure regulation in the P-HFD/F1-HFD group is sensitive to

changes in circulating PlGF levels during pregnancy.

It has been noted that human pregnancies complicated by the hypertensive disorder of pre-

eclampsia have placental ischemia and hypoxia [23]. Preeclamptic patients and experimental

animal models of placental ischemia in non-human primates and rodents have increased blood

pressure and reduced circulating PlGF levels [13, 24, 25]. When recombinant human PlGF is

administered into rats with placental ischemia resulting from reduced uterine perfusion pres-

sure (RUPP), it lowers their blood pressure and restores the expression of endothelial NOS

(NOS3) in aortic tissue [12, 26]. PlGF mediates vasorelaxation via activation of NOS in the

endothelium, which has been demonstrated in pressurized small mesenteric arteries isolated

from late-pregnant rats [14]. Based on the above findings, it would be predicted that the

P-HFD/F1-HFD group would have a greater blood pressure response to insults that reduce

PlGF; this includes placental ischemia-induced hypertension. We propose that a greater depen-

dence on PlGF during pregnancy in the P-HFD/F1-HFD group may predispose to greater pla-

cental ischemia-induced hypertension and vascular dysfunction following the RUPP procedure.

Future experiments will assess this proposal using methods to continually measure blood pres-

sure throughout pregnancy. The pregnant P-HFD/F1-HFD model could be useful to study the

mechanisms underlying the observation that obesity increases the risk for preeclampsia [27].

A limitation of the current experimental design was that blood pressure levels were not

examined prior to pregnancy. As it has been demonstrated that non-pregnant F1 offspring

reared from the P-HFD generation have increased blood pressure [1], it could be that we did

not find a significant difference between any of our 4 pregnant groups because pregnancy

masked non-pregnant raised blood pressure. Upcoming research will track blood pressure

before and throughout pregnancy in this novel HFD model. Moreover, future experiments

should examine the mechanisms within the adipose tissue that mediate increased HFD-

induced adiposity in the P-HFD/F1-HFD pregnant group, a candidate is adrenergic receptor

(AR) signaling. There is reduced β3-AR mRNA expression in adipose tissue in non-pregnant

offspring derived from diet-induced obese dams [28]. It was learned from β3-AR knockout

mice that reductions in this signaling pathway increases the susceptibility to HFD-induced

obesity [29]. It has also been demonstrated in humans that activation of β-AR signaling signifi-

cantly reduces body weight and fat [30]. It would be interesting to examine if activating this

receptor system before and/or during pregnancy would attenuate the exaggerated body weight

and adipose tissue amounts during P-HFD/F1-HFD pregnancies.

Conclusions

The present study examined the generational impact of HFD feeding on pregnancy outcomes.

It is known that obesogenic conditions like adverse diets increase the risk for altered cardio-

metabolic function during pregnancy in the mother and her offspring. Previous studies in

these offspring have mainly focused on the non-pregnant state. Studies like the present one in

rats and observations in humans indicate that environmental and social stressors in prior gen-

erations increase the vulnerability for adverse environments in their offspring [31, 32]. Our

experiments are some of the first, to our knowledge, that explored the generational effect of

HFD in the P and F1 generations on pregnancy outcomes in the F1 offspring using animal

models. Such studies might provide rationale for clinicians to ascertain a woman’s metabolic

status not only during her own pregnancy but previous pregnancies in her family, which could

direct dietary and/or exercise regimens to prevent complications associated with increasing

obesity in pregnant women [33–35].
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