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ABSTRACT

DOMINE is a comprehensive collection of known
and predicted domain–domain interactions (DDIs)
compiled from 15 different sources. The updated
DOMINE includes 2285 new domain–domain inter-
actions (DDIs) inferred from experimentally
characterized high-resolution three-dimensional
structures, and about 3500 novel predictions by five
computational approaches published over the last 3
years. These additions bring the total number of
unique DDIs in the updated version to 26 219 among
5140 unique Pfam domains, a 23% increase
compared to 20 513 unique DDIs among 4346
unique domains in the previous version. The
updated version now contains 6634 known DDIs,
and features a new classification scheme to assign
confidence levels to predicted DDIs. DOMINE will
serve as a valuable resource to those studying
protein and domain interactions. Most importantly,
DOMINE will not only serve as an excellent reference
to bench scientists testing for new interactions but
also to bioinformaticans seeking to predict novel
protein–protein interactions based on the DDIs. The
contents of the DOMINE are available at http://
domine.utdallas.edu.

INTRODUCTION

Protein domains are defined as structural or functional
subunits that make up proteins. They have the ability to
fold into a stable structure, evolve and function independ-
ently of the rest of the protein that contains them.
Domains have evolved to combine into different arrange-
ments to form multi-domain proteins with varying func-
tions. Proteins seldom function alone to carry out their

functions. They almost always interact either stably or
transiently with other proteins (as in a protein complex
or a biological pathway) to perform housekeeping as
well as critical cellular functions including cell signaling,
trafficking and stress response.

Given that a majority of proteins are multi-domain
proteins (1) and that an interaction between two
proteins most often involves only a pair of constituent
domains (one from each protein), understanding protein
interactions at the domain level becomes critical to under-
standing not only the binding interfaces but also, most
importantly, the causes of deleterious mutations at these
interfaces. While the former can help discover unrecog-
nized protein–protein interactions (2), the latter can help
in the development of drugs to inhibit pathological inter-
actions (3). For these simple reasons, understanding inter-
action between proteins at the domain level seems to be a
logical step toward understanding interactions at the
residue level.

Experimentally determined high-resolution three-
dimensional (3D) structures are a prime resource for
understanding how interactions between domains/
proteins are mediated (4,5). However, the number of
domain–domain interactions (DDIs) inferred from struc-
tures can only explain �5% of protein protein–protein
interactions (PPIs) in yeast and �19% of PPIs in human
(6). To expedite the discovery of previously unrecognized
DDIs, computational approaches based on correlated
sequence signatures and sequence co-evolution (7–9),
gene-fusion (10,11), phylogenetic profiling (12), gene
ontology (11,13), statistical/probabilistic frameworks
(11,14–17), parsimonious principle (18,19) and machine
learning (20–22) have been proposed. While these
approaches have immensely contributed to the discovery
of novel DDIs, the ever increasing sets of predictions
make it difficult for bench scientists to access, analyze
and integrate data sets scattered under a variety of
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formats. There was a need for an accessible online
resource containing all available DDIs, known as well as
predicted, under a single roof facilitating scientists to
best use their time dissecting these data sets for clues on
structural and evolutionary aspects of protein and domain
interactions.

DOMINE (23), a comprehensive collection of known
and predicted DDIs from 10 different sources, was
launched in 2007 as an online database server to serve as
a reference to experimental biologists testing for new inter-
actions and to provide a rich set of DDIs to
bioinformaticans seeking to understand interaction inter-
faces and predict novel PPIs based on DDIs. Over the last
year, the database has been updated to include DDIs pre-
dicted by five new computational approaches published
over the past 3 years. Updates to the 3did database,
which infers the set of known DDIs from high-resolution
3D structures, has added 2285 new known interactions to
DOMINE, confirming 168 of the previously predicted
DDIs. The updated version now contains 6634 known
interactions and 21 620 predicted interactions, and
features a new classification scheme to assign confidence
levels to predicted DDIs.

DATA SOURCES

The DOMINE database contains DDIs gathered from
15 different sources listed in Table 1. The set of known
DDIs, inferred from experimentally characterized high-
resolution 3D structures, were obtained from iPfam (4)
and 3did (5). Updates to 3did since the launch of
DOMINE has added over 2000 new known interactions
to DOMINE. DDIs predicted by 13 computational
approaches (8,10–13,15–22), including over 2600 novel
predictions from five new methods—GPE (19), DIPD
(22), K-GIDDI (13), Insite (17), DomainGA (20)—were
obtained from respective publications. In cases where
significance cutoff values had to be chosen to define the
set of predicted DDIs, appropriate cutoffs were selected
based on input from the authors. The set of all DDIs from
the 15 different sources add up to 26 219 unique DDIs
among 5140 unique Pfam domains in the updated
version, a 23% increase compared to 20 513 unique
DDIs among 4346 unique Pfam domains in the previous
version.

NEW CLASSIFICATION SCHEME

In addition to the 5706 new DDIs, the updated version of
DOMINE features a new classification scheme replacing
the old one, which we had used to classify predicted
DDIs as either high-confidence, medium-confidence or
low-confidence predictions (HCP, MCP or LCP, respect-
ively). In the inaugural version of DOMINE, we had
simply classified a DDI to be HCP if it were predicted
using multiple sources of information or by at least
two sufficiently different methods, MCP if the domains
share a GO term and LCP otherwise. In search of a
classification scheme that is better than the old one, we
first sought to characterize the predicted DDIs obtained

from various sources in an effort to assign some sort
of weight to each method. This would facilitate computing
a confidence score for each predicted DDI by essen-
tially summing the weights assigned to each of
the method predicting this DDI, which could then be
used to classify DDIs into one of the three confidence
classes.
Assigning weights to methods is not an easy task

because it would require a fair and objective comparison
of the methods’ performances. The set of known
DDIs obtained from iPfam and/or 3did has long been
used as a gold standard set of positives. Nearly all of
the computational approaches in Table 1 used this set of
known DDIs to assess their performance/accuracy.
Since a majority of these methods used different
datasets and/or different types of data (proteomic,
genomic, evolutionary, gene fusion, gene ontology, etc.)
to make predictions, it is nearly impossible to perform a
direct comparison of the performances of these
approaches. Testing all the methods on a benchmark
data set is not possible because some of the methods
impose unique set of constraints on the input data set:
for example, RCDP (8) considers only those PPIs with
both proteins having orthologous counterparts in 10 or
more genomes. Typically, the percentage of predictions
known to be true has been used as a metric to make
indirect comparison of different methods. Assessing
the performance of an approach solely based on the
set of known DDIs potentially forces authors to bench-
mark their predictions or fine-tune their methods to
maximize the percentage of predictions known to be
true in an effort to demonstrate their method’s superior
performance. An incentive to predict what is already
known sadly makes predicting novel DDIs less of a
priority.
Pair-wise comparison of DDIs predicted by various

methods revealed that there is little agreement even
among methods such as DPEA, PE, DIPD, GPE and
Insite, which used the exact same or a nearly identical
data set for making predictions with the exception of
DPEA and PE (Supplementary Table S1 and
Supplementary Figure S1). The fact that 96.5% of DDIs
predicted by DPEA were also predicted by PE could only
mean one of the following three things: (a) DPEA and PE
are so accurate that they both are predicting essentially
what are true DDIs, (b) the input data set used to
predict DDIs is in some way biased resulting in predic-
tions that are similar regardless of the approach being
used and (c) DPEA and PE methodologies are
somewhat similar. Given that only about 12% of predic-
tions by DPEA and PE are known to be true (23), reason-
ing (a) might not be realistic. Since DIPD on the exact
same input data set makes predictions that differ
from those made by DPEA and PE (Supplementary
Figure S1), (b) cannot be considered a good reasoning.
This leaves (c) as the only plausible explanation. The
trivial scheme such as the one used previously to classify
DDIs as either HCP, MCP or LCP (i) can be easily fooled
into classifying DDIs predicted by nearly identical
methods as HCP and (ii) will fail to account for biases
in the input data set that is used to make predictions. In
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the inaugural version of DOMINE, the former issue was
taken care of by taking the union of predictions by DPEA
and PE (was referred to as LP) as a single set of predic-
tions. We knew at that time that this was rather arbitrary
and subjective, and recognized the need to formulate a

reasonable scheme for classification of predicted DDIs in
the updated version of DOMINE.

We decided to assign weights to methods based on how
well their predictions are confirmed by others. For every
pair of methods x and y, Jaccard index (or Jaccard

Table 1. Sources of DOMINE database contents

Method/source Number
of DDIs

Description

iPfam 4030 iPfam contains a collection of DDIs that are observed in PDB entries. Data, dated 17 February
2007, were used.

3dida 6066 3did is a collection of DDIs in proteins for which high-resolution 3D structures are known. Data,
downloaded in September 2010, were used.

ME 2391 ME refers to a Bayesian approach that integrates DDIs predicted using a maximum likelihood esti-
mation approach on yeast, worm, fruit fly and human PPI networks with gene ontology and
domain fusion data.

RCDP 960 The RCDP approach uses sequence coevolution to predict the domain pair that is most likely to
mediate a given PPI. Given a PPI, RCDP predicts the domain pair with the highest degree of
co-evolution to be the mediating domain pair. Set of DDIs predicted from 1180 yeast PPIs
(Raghavachari data set) was used.

P-value 596 P-value refers to the statistical approach that assigns P-values to pairs of SCOP domain superfamilies
based on the strength of evidence within a set of PPIs. These P-values for domain pairs were used
to predict 705 DDIs between SCOP domains from protein complexes in the Protein Quaternary
Structure (PQS) database, which were converted to 596 DDIs between Pfam domains.

Fusion 2768 DDIs inferred using domain fusion hypothesis as reported in the Interdom database (v1.1) were
used.

DPEA 1812 DPEA is a statistical approach to infer DDIs from PPI networks from many organisms. It uses an
expectation–maximization algorithm to obtain probability of interaction for each potentially inter-
acting domain pair, and computes the change in likelihood, expressed as a log odds score, by
excluding this domain pair from being considered as a potentially interacting domain pair. DPEA
was applied on PPI networks from 69 organisms (Riley data set), and the set of DDIs only
between Pfam-A domains with log odds score �3.0 was used.

PE 2588 PE is an optimization approach based on the assumption that the set of true DDIs are well
approximated by the minimum set of DDIs that can justify every PPI in a PPI network. Given a
PPI network, the PE approach uses linear programming to compute the LP score for every
domain pair that could possibly justify interaction between two proteins, and a P-score to account
for false positives in the PPI network. PE was applied on the Riley data set, and the set of DDIs
only between Pfam-A domains with LP score �0.5 and P-score �0.1 was used.

GPEb 1563 GPE builds upon the PE approach by unifying domains that always occur together in a protein as a
singular ‘supra-domain’, and uses the linear programming framework as used by PE. GPE was
applied on the redefined Riley data set (Guimaraes data set), and the set of DDIs only between
Pfam-A domains with LP score �0.60 and pw-score �0.01 was used. Supra-domains were
expanded back to individual Pfam-A domains.

DIPDb 2157 DIPD constructs feature vectors for each protein pair within the sets of PPIs (Riley data set) and
non-PPIs, and uses a discriminative classifier to identify the minimum set of domain pairs/triplets
that can discriminate PPIs and non-PPIs. Each selected feature (domain pair) is a putative DDI.
The sets of predictions on Raghavachari, Riley and Guimaraes data sets were used.

RDFF 2475 Chen and Liu’s Random Decision Forest Framework (RDFF) approach explores all possible DDIs
and predicts PPIs based on protein domains. The decision tree-based model is used to infer DDIs
for each correctly predicted PPI. The set of DDIs only between Pfam-A domains was used.

K-GIDDIb 386 K-GIDDI uses gene ontology information to construct an initial DDI network using the top s% of
DDIs inferred from cross-species PPI networks, and then expands the DDI network by predicting
additional DDIs using a graph theoretical approach based on a parameter b. The latter allows for
prediction of DDIs that are otherwise not predictable by methods that rely solely on PPI data.
The set of DDIs predicted using s=10 and b=50 was used.

Insiteb 2408 Insite uses a naı̈ve Bayes model to build upon features in DPEA. Its novel formulation of evidence
models for PPIs and DDIs helps address noise (false positives) generated by high-throughput
assays.

DomainGAb 459 DomainGA is a genetic algorithm-type machine learning approach based on multi-parameter opti-
mization. It uses the available PPI data to compute a score for domain pairs, which are then used
to predict PPIs. Yeast PPI data set was used to identify 867 putative DDIs between domains
defined based on information derived from the Interpro database. The set of 459 DDIs only
between Pfam domains was used.

DIMA 8012 DIMA predicts DDIs based on phylogenetic profiling of presence/absence of domains in many
organisms.

aUpdated dataset.
bNew dataset.
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similarity coefficient), measuring how well the set of pre-
dictions (Px) by x overlap with those (Py) of y, was
computed as

Jx,y ¼
jPx \ Pyj

jPx [ Pyj
:

Pair-wise Jaccard index scores are depicted as heat-map in
Figure 1. For every method x, the ‘prediction overlap
index’ is defined as

POIx ¼
1

1+
P

y 6¼x

Jx,y
,

ranging from >0 to 1. For instance, a method whose
predictions do not overlap with those of any of the other
methods will receive a POI of one, whereas a method whose
predictions overlap completely with those of at least one
other method will receive a POI notmore than 0.5. The POI
is not indicative of a method’s performance as it merely
captures the degree to which the predictions made by a
method overlaps with those made by the other methods.
The confidence score S for each predicted DDI is defined as
the sum of the POIs of methods predicting this DDI. The
scoring scheme based on POIs is rather counterintuitive
since predictions by a method with higher (or lower)
POI are less (more) likely to have been predicted by many
other methods resulting in them getting lower (higher,
respectively) confidence scores.
Based on the above described strategy for computing

confidence scores for predicted DDIs, we have now
redefined the confidence levels of predicted DDIs using
the new scheme shown in Figure 2A. A DDI is classified
as an HCP if its confidence score S is at least two, or at
least one with the domains involved sharing a gene

A B

C

Figure 2. DOMINE construction and data characteristics. (A) Schematic overview of the DOMINE database construction. (B) Histograms showing the
number of predicted DDIs with a confidence score S or above (black histogram; primary y-axis), and a fraction of them that are known to be true (green
histogram; secondary y-axis). (C) Stacked histogram showing the fraction of predicted DDIs by each method classified as HCP, MCP or LCP.

Figure 1. Unsupervised hierarchical clustering of Jaccard index values
for every pair of methods, based on the overlap of their predictions, is
shown as a heat-map. Data used for generating this heatmap are
available as Supplementary Table S2.
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ontology (GO) term, or if it is predicted by the integrated
ME approach (Table 1). A DDI that is not an HCP is a
MCP if its score is at least one, or domains involved share
a GO term. DDIs not classified as HCP or MCP are
grouped as LCPs. Figure 2B shows the number of DDIs
with a confidence score S or above (black histogram;
primary y-axis), and a fraction of them that are known
to be true (green histogram; secondary y-axis). The latter
shows that the higher the confidence score of a DDI, the
more likely it is known to be true (R2=0.98), providing
credibility to the strategy used to compute the confidence
scores. The stacked histogram in Figure 2C shows, for
each method, the fraction of its predictions classified as
HCP, MCP and LCP. DOMINE’s contents are
summarized in Figure 3.

DATABASE AVAILABILITY

The DOMINE database is freely available at http://
domine.utdallas.edu. A user-friendly web interface was de-
veloped and tested on Linux and Windows environments
using Internet Explorer, Firefox and Safari web browsers.
The database is stored using MySQL. ‘Browse’ option can
be used to view DDIs by Pfam domain name. Users may

Figure 4. Screen shot of query result for HSP90 domain.

Figure 3. DOMINE database contents (top panel), and percentage of
HCP, MCP and LCP that are known to be true (bottom panel).
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also browse domains based on GO classification. The
powerful ‘search’ option can be used to search for one
or more domains using keywords (e.g. kinase), Pfam ID
(e.g. HSP90) or accession (e.g. PF00061), Interpro ID (e.g.
IPR004825) or GO term (e.g. transcription or
GO:0006468). Clicking on a domain name (Pfam ID)
takes the user to the results page displaying DDIs
involving this domain (Figure 4). Each DDI is annotated
with Interpro and GO IDs as well as source of origin and
whether or not it is known to be true, etc. The entire
database can be downloaded as a zip-compressed file,
which includes a README file. Data within the files
are tab- or ‘|’-separated.

CONCLUSION AND OUTLOOK

The DOMINE database is a comprehensive collection of
known and predicted DDIs from 15 different sources. It
also serves as a one-stop resource for domain-specific in-
formation with links provided to popular databases
including Pfam, Interpro and GO. Currently, DOMINE
only supports DDIs based on Pfam domain definitions. In
the future, we plan on making it support other popular
domain definitions including the CDD and the SCOP.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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