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Purpose: Blood vessel networks within the retina are crucial for maintaining tissue
perfusion and therefore goodvision. Their complexity anduniquepatterns often require
a steep learning curve for humans to identify trends and changes in the shape and topol-
ogy of the networks, even though there exists much information important to identify-
ing disease within them.

Methods: Through image processing, the vasculature is isolated from other features of
the fundus images, forcing the viewer to focus on the complex vascular feature. This
article explores an approach using a grammar based on shape to describe retinal vascu-
lature and to generate realistic and increasingly unrealistic artificial vascular networks
that are then reviewed by ophthalmologists via digital survey. The ophthalmologists are
asked whether these artificial vascular networks appeared realistic or unrealistic.

Results: With only three rules (initiate, branch, and curve), the grammar accomplishes
these goals. Networks are generatedby adding noise to rule parameters present in exist-
ingnetworks. Via the surveyof synthetic networksgeneratedwithdifferentnoiseparam-
eters, a correlation between noise in the branch rule and realistic association is revealed.

Conclusions: By creating a language to describe retinal vasculature, this article allows
for the potential of new insight into such an important but less understood feature of
the retina, which in the future may play a role in diagnosing or helping to predict types
of ocular disease.

Translational Relevance: Applying shape grammar to describe retinal vasculature
permits new understanding, which in turn provides the potential for new diagnostic
tools.

Introduction

Like most vascular systems in the body, the retinal
vasculature develops to metabolically sustain cells. By
providing nutrients to the inner part of the retina,
the retinal vasculature helps to maintain cell viability
that allows humans to see.1,2 As health issues arise,
the shape of the vasculature may change, which can
inhibit the delivery of nutrients to different regions
of the eye. Fortunately, a quantitative approach for
measuring shape has the opportunity to provide signif-
icant advances.3 One study with respect to vascula-
ture, has quantified the increase in retinal blood flow
within patients with diabetes mellitus and found a

significant increase in blood flow within the retina,
though flow is not measured in typical retinal fundus
images. These changes in blood flow preceded any
rupturing of blood vessels or significant biomarkers.
This indicates that there is the potential for vascula-
ture to change due to disease before rupturing.4 One
vascular related disease is diabetic retinopathy (DR).
Doctors perform regular screenings to catch the disease
before it permanently affects vision, which could lead
to blindness if it goes untreated. Standard screening
programs capture retinal fundus images, and ophthal-
mologist experts visually inspect images for leaking
blood vessels, microaneurysms, retinal swelling, hemor-
rhages, cotton wool spots, exudates, retinal ischemia,
or neovascularization before diagnosing a patient with
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Figure 1. Retinal fundus image of DR patient from STARE dataset
with unhealthy features highlighted.1

DR.5 Several of these features are shown in Figure 1.
Developing a better way to describe other subtle
changes in vasculature could help with training for
identification of important vascular cues of DR and
allow for diseases to be detected before irreversible
damage occurs to the retina.

As machine learning techniques have become more
powerful, more researchers have attempted to use
these tools to automate disease diagnosis in the
retina.6,7 With the large number of images that have
been recorded to train these algorithms, correlations
between the images and other health factors have
been explored. One study attempted to predict the
systolic blood pressure from the fundus images and
used the machine learning tool saliency maps8 that
highlight pixels of the image that contributed most to
the prediction. Although 98% of doctors agreed that
these maps highlighted the blood vessels, the qualities
of the blood vessels that conveyed the information was
not known.9 This further supports the concept that
vascular changes occur, but current methods could be
significantly improved with language to observe and
describe these differences.

Isolating vasculature from the other features within
the retinal fundus image forces viewers to focus on
the vasculature and consider the features within it.
Through generating realistic but synthetic images of
retinal vasculature, this work seeks to provide more
data to train ophthalmologists and machine learn-
ing algorithms to process retinas with a purely vascu-
lar approach. Although separating the components of
tissue where symptoms could exist may seem counter-
productive, it is precisely this separation that may
allow a fresh look at an old problem. Currently,
machine learning methods are trained on the entire
fundus, which can include vascular abnormalities and
retinal abnormalities. The causal relationship between
these abnormalities is not always clear, and with

certain diseases, removing retinal informationmay hurt
diagnosis. With other diseases, this simplification may
prove helpful. Isolating retinal vasculature could not
only lead to disease diagnosis at a subclinical level
but also be developed into a new training model for
clinicians.

Generating medical images can also be useful for
training doctors, validating image analysis techniques,
and producing massive amounts of data needed for
machine learning methods. Simulating the generation
of blood vessels has been used for surgical training
with simulation incorporated so doctors can more
accurately experience what would happen when taking
certain actions.10 Additionally, with the increasing
demand for large amounts of data frommachine learn-
ing methods that are not always available, synthetically
produced data can be created to help train networks
to diagnose patients for various diseases.11 Although
Costa et al.11 used adversarial neural networks to
produce realistic and new retinal fundus images from
noise, their approach does not explicitly track how
features vary across each of the images, which is impor-
tant in determining disease diagnosis and training.
These features are all implicitly learned by the neural
networks.

Generating retinal images using shape grammars,
which are described in the next paragraph, offers the
potential to create new images that can be used for
medical training, where important nuances in image
visualization can alter the diagnosis via control over
what types of images that are generated. One way
this can be accomplished is through adding noise
to rules from a shape grammar of existing images
through parametric variation. This could produce
unique images of a similar style as the original.

Shape grammars are a field originally introduced
in architecture by Stiny and Gips,12 where shapes are
identified and then modified on the basis of the appli-
cation of rules, through successive iteration, to change
and build up an overall shape design.13,14 A shape
grammar consists of a set of shapes S and a set of rules
R, where the rules can act on the shapes S to generate
new shapes S′, where S′ is also known as a language:

r : s → s′,

where

r ∈ R, s ∈ S, s′ ∈ S′.

The set of rules can continue to be applied to the
shapes, until there are no more valid rules or a termi-
nation rule is applied. Shapes can also be parametric,
resulting in a succinct grammar representing a poten-
tially infinite shape space, such as the one presented in
this article.
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Such shape grammars have been shown to be able
to capture particular styles, such as villas in the style
of Palladio15 and the prairie houses of Frank Lloyd
Wright.16 In these examples, the shape grammars were
used to recreate existing and generate new designs that
are of the same style as captured in the grammar
language. Cagan and colleagues introduced shape
grammars to the engineering design community, and
they demonstrated the ability of shape grammars
to capture and generate products representative of
different brands, including coffee makers,17 motorcycle
designs like Harley-Davidson brands,18 or cars in the
style of Buick,19 among others.

The goals of applying shape grammars to biologic
design are similar to the goals of grammars in architec-
ture and mechanical design. Biologic systems contain
patterns and features with some commonalities and
some discrepancies. All blood vessel networks deliver
nutrients to tissues within the body, but the specific
paths of blood vessels in each human are unique.
Retinal vasculature also contains common features as
well, such as blood vessels coming from the optic nerve
and distributing nutrients, but the patterns and shapes
are unique for each person and change with time.

As with shape grammars for coffee makers and
many other products, which leverage parameters to
model functional, as well as varied form, designs, a
retinal vascular grammar must also capture common
functional qualities, like branching and curvature, but
also enable varied generation of the shape of the vascu-
lar system. Furthermore, most design capture with
shape grammar begins with an initial shape fromwhich
the overall design is built, such as the fireplace for the
Frank LloydWright prairie houses or the wheelbase of
motorcycles. So, too, must a retinal vascular grammar
begin with the optic nerve from which all vessels flow.

This article explores how a shape grammar is
applied to retinal vasculature by considering only a
three-rule grammar. Describing the vasculature and
generating new vasculature show the beginning of the
possibilities of applying shape grammars for medical
imagery. Retinal diseases like diabetic retinopathy and
retinopathy of prematurity cause symptoms in the
retina due to retinal vascular changes.2 Identifying
changes in the retinal vasculature before retinal disease
is clinically apparent affords an avenue of diagnostic
capability that could disrupt clinical ophthalmology.
They offer an alternative approach more explainable
than existing machine learning diagnostic techniques,
which implicitly learn only patterns from their training
data.20

The goals of this article are to create a frame-
work based on shape grammars to better understand
blood vessel networks and explain patterns that are

present. This is done through deriving a simple three-
rule grammar and using it to break down existing
vascular networks and generate new networks through
reapplying these rules with noise. Shape grammars
offer the potential to accurately describe features of
the vasculature and allow comparison of these features
between patients. With image processing techniques,
the shape grammar approach could be used to identify
issues within the vasculature. These findings may be
useful for the detection of ocular disease caused by
vasculature and the effects of primary retinal disease
on vasculature.

Methods

Image Processing

The images used in the project are from the STruc-
tured Analysis of the REtina (STARE) dataset.1 The
STARE dataset was created to help with automated
diagnosis of diseases in the human eye. The dataset
consists of 402 raw images along with diagnoses for
each image. Of the 402 raw images, 20 have blood
vessel segmentation processing done by hand. Of the
20 images, only the images labeled as healthy (n = 9)
or diagnosed with DR (n = 2) are further processed.
This dataset is chosen because of the availability of
expertly segmented images, the disease labeled data,
and because it is publicly available.

To analyze the vasculature, the raw image must be
processed. Figure 2 outlines the four steps described
in this section: (1) segment blood vessels, (2) create
edge list, (3) separate networks, and (4) analyze the
networks using shape grammars. The image processing
and grammar implementation throughout this project
used Python with the NumPy, SciPy, and Matplotlib
packages.21,22

The first step of preparing the images for branching
analysis involves identifying which pixels in the image
contain blood vessels. In the STARE dataset, this step
has already been performed by an expert, although
there is the potential to automate this step by using
combinations of filters and deep neural networks in the
future.23–25 The segmented image is a binary image that
contains pixels with a value of 1 if it contains any part
of a blood vessel, and 0 otherwise.

After the segmentation, the binary image is broken
down into edges. The segmented image is skeletonized
to a 1-pixel-wide representation of each blood vessel
by iteratively sweeping over an image and removing
edge pixels while preserving connectivity. This process
repeats until a stable skeleton is found.26 From the
skeletonized image, a 3-pixel-by-3-pixel mask is passed
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Figure 2. Image processing steps to prepare blood vessel networks for analysis. (1) First, blood vessels are segmented and separated from
the rest of the image. (2) Then the segmented image is processed into a graph representation. (3) The vein and artery networks are separated.
(4) Further processing is performed to apply the shape grammar.

Figure 3. Example of skeletonized network and sliding mask used to determine point types. This mask computes the sum of pixels within
it to classify the points.

over the skeletonized image to identify end points and
bifurcation points (Fig. 3).27 From each bifurcation
point, every connecting point is linked to a subsequent
point using a recursive algorithm. Each list of points
between two noninterior points becomes an edge.

With the edge list representation, the two primary
networks (veins and arteries) often cross, creating loops
in the graph representation. These connections do not
exist in the vasculature but appear because the retina’s
multiple layers are projected to a 2-D image. Due to
the processing of the image, it is difficult to distinguish
between the veins and arteries by looking at the skele-
tonized image. Even with the original retinal fundus
image, it is challenging to identify whether smaller
vessels are part of the vein or artery network, as illus-
trated in Figure 4. In this work, a human manually
separates the networks from each other when they
overlap, but this could be automated in the future as
well.28

With the edges of each network now identified,
cubic b-splines with a smoothing condition are used
to create fits for each edge, including all correspond-
ing pixels as control points.29 The curvature function
describing the spline of an edge is stored independently

Figure 4. Veins and arteries can be difficult to identify before
processing and after processing. Left: Raw image of artery crossing
vein. Right: Same crossing after image processing.

from the start and end points of the edge. This allows
a curvature function to be applied to any edge where it
will be translated, rotated, and stretched to connect the
points.

The processing results in data for each of the
edges: parent, children, start point, end point, and path
function. The parent is the edge that is hierarchically
closer to the root, children are the edges that are hierar-
chically further away from root than the current edge,
the start point and end point are coordinates for where
the edge starts and ends, respectively, and the path
function stores the parametric function for the spline
describing the edge. With this information, the shape
grammar is implemented.
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Table 1. Description of the Three Rules Used in the
Vascular Shape Grammar

The Retinal Vascular Shape Grammar

There are many possible shape grammars that can
describe a retinal network. A better grammar is one
that can be used to describe many networks within the
same class, but not those outside of the class, with a
succinct set of rules. Each of the venous and arterial
networks within the retina is processed separately. The
grammar used in this work consists of three simple
rules described in Table 1: initiate, branch, and curve.
Each rule is applied on a feature and then returns a
new feature to replace the previous. The initiate rule
creates the first edge of the network from a given point,
representing where the blood vessel exits the optic
nerve. Branch replaces a single edge with a shorter edge
and adds two new child edges. Limiting the branch-
ing to only bifurcations more accurately mimics the
physiology of retinal networks. Curve uses a curva-
ture function, which contains the spline information
independent of the endpoints. The edge is modified
by applying the curvature function between the two
points. Additionally, the branch rule and curve rule can
only be applied to edges with no curvature. This implies
no subsequent rules can be applied to a curved edge and
removes the need for a separate terminate rule in the
grammar.When applying these rules to generate retinal
networks, typically a sequence is followed. First initi-
ate is applied on a seed point. Then the branch rule is
applied on successive edges. Once sufficient branching
is complete, the curve rule is applied to each edge, thus
ending potential rule application. Of note the curve
rule could be applied at any time during generation;
however, if applied to a leaf branch, no additional
branching could take place. Figure 5 demonstrates
these rules can be used to create a retinal network.

Because only certain combinations of parameters
used with these rules can generate retinal networks,
existing retinal networks are first deconstructed by
applying the rules in reverse (Fig. 6). Through the
reverse application of the rules, parameters of each
rule’s application are recorded. After all the rules have
been applied in reverse to a blood vessel network, no
edges remain.

To use the shape grammar to generate new retinal
blood vessel networks, the rules are run in the
forward direction with noise added to each of the
parameters to generate similar, but varied, networks
(Fig. 6). See Supplementary Movie S1 for an animated
example of how the rules can be applied in reverse
and reapplied. Noise can be added to the propor-
tion of the edge that is used in the branching, the
branching angles of both children, and the curva-
ture function. In our application the topology of the
original network is maintained, while allowing for a
diverse set of new networks that can be generated.
Adding noise to branching results in changing the
angle of the children edges from a branch and the
subsequent children that follow. Adding length noise
can change the length of a branch, making it shorter
or longer between each junction. When adding noise,
the mean of the distribution is centered at zero, so the
average distance between junctions is approximately
unchanged. Similarly, when adding noise to angles,
the noise is not biased to wider angles or narrower
angles.

Using this technique, many networks can be gener-
ated from a single realistic network. These networks
can be combined with other networks from the same
image to produce the vasculature for an entire eye.

Survey of Ophthalmologists

To analyze the relationship between the retinal
shape grammar with respect to changing the vascu-
lar pattern and its pattern relative to ocular disease,
an online survey was distributed to ophthalmologists
within theWorld Society of Paediatric Ophthalmology
and Strabismus who have experience analyzing retinal
fundus images. The survey began with an explana-
tion and example of how the vasculature is extracted
from the retinal fundus image. The survey consisted
of a yes/no question, “Does this image appear realis-
tic?” repeated 15 times each with different images.
The questions were ordered randomly. The 15 images
consisted of three unaltered original images and four
perturbations of these images. The perturbations had
varying amounts of angle and length noise as shown
in Table 2.
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Figure 5. Example of forward rule application to generate a retinal network.

Figure 6. Example of how rules can be reversed and then applied to generate networks. First the curve rule is applied in reverse, then the
branch rule, followed by initiate. The opposite sequence is followed in the forward direction.
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Table 2. Image Names and Corresponding Noise Levels That Were Used in the Survey

Root Image Name Noise Levels (Length Noise Proportion, Angle Noise Degrees)

8c (0, 0) (0.05, 5) (0.02, 8) (0.08, 2) (0.15, 15)
8d (0, 0) (0.05, 5) (0.02, 8) (0.08, 2) (0.15, 15)
8e (0, 0) (0.05, 5) (0.02, 8) (0.08, 2) (0.15, 15)

Each noise combination listed here corresponds to an image shown in the survey, a total of 15 images.

Figure 7. Length and angle noise are applied to the original vascu-
lature of the retina through the reapplication of rules to create a
variety of new retinal vasculature.

Results

Sample Images Generated

Figure 7 demonstrates the results of applying the
reconstruction and deconstruction technique to gener-
ate new networks. As noise increases, the similarity to
the original decreases. In Figure 7, the horizontal axis
from left to right is increased in the length parameter
for branching. The vertical axis from top to bottom
shows the noise is increased for the angle parameter in
branching.

A total of 95 people from the pediatric ophthalmol-
ogy community completed the survey. The results are
shown in Figure 8. See Supplementary Document S2
for the images used in the survey.

Discussion

Figure 8 shows how adding noise overall decreased
the number of respondents who saw an image as
being realistic. Realism dropped off as noise increased
in both angle and length dimensions as observed

across all three original images. Despite this overall
trend, there are differences in how this trend is
established. Figure 8c has a strong realistic associa-
tion with the original image with zero noise. There is
a clear curve of the primary vessels around the area
where the fovea is expected to be. The fovea contains
many photoreceptor cells and much of the vascula-
ture feeds it, though it is clearly not visible on the
extracted vasculature patterns. In Figure 8c, many of
the smaller vessels reach toward this foveal point. The
others had less of a realistic association with the origi-
nal, but with all base images there is a clear drop off
in realistic association as noise increases. Figure 8d
in the original form was ranked less realistic than
Figure 8e in the highest noise case. This could be
because Figure 8d contains fewer common patterns.
The main blood vessels do not appear to curve around
the putative fovea, and the large number of smaller
vessels accompanied by frequent branching make it
appear less typical. It is also important to note that the
noise applied in each image has an element of random-
ness associated with it.

Creating a new image, using the same noise param-
eters used in the survey, can produce a significantly
different image. Figures 8d and 8e had no change
in realistic association from the no-noise original to
the images with (0.05, 5) noise. This could indicate
that noise levels below a certain threshold produce
images that still appear realistic. With the noise levels
of (0.02, 8) and (0.08, 2), the angle noise and the length
noise, respectively, cross over this threshold, and the
proportions of doctors that see the image as realistic
decreases.

The image with weakest realistic association is
Figure 8d with (0.02, 8) noise (Fig. 9). In this image
there is no clear curvature around the putative fovea,
the green network reaches through where the putative
fovea should be and contains excessive branching. In
Figure 8e with (0.15, 15) noise (Fig. 10), 30 of 95
doctors responded stating the image appears realis-
tic. This image contains some curvature around the
putative fovea with some smaller branches extended
toward the putative fovea, but the red network also
extends away from the center. Together these features
may lead to the overall weak realistic association.
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Figure 8. Survey results shownwith noise as a 3D bar plot of stacked responses (a) and a 2D bar plot (b). The original images before adding
noise are shown below (c), (d), (e).

Figure 9. Figure 8d with (0.02, 8) noise is the image with the
weakest realistic association. There is no clear curvature around the
putative fovea with a network crossing over where the fovea should
be.

Figure 10. Figure 8e with (0.15, 15) noise. This image had 32% of
respondents describe it as realistic. There appears to be some curva-
ture around the putative fovea, but also a network extending away
from the center.
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When processing the images, there currently are
limitations that lead to inaccuracies. Due to the
methods of obtaining retinal fundus images some
blood vessels extended beyond the image frame. In the
grammar representation, these appeared like terminat-
ing blood vessels, while realistically they may continue
to spread and branch many more levels. Additionally,
because of the manual steps involved in processing the
images, there is a lack of uniformity in how the images
are processed. To automate this process in a consis-
tent way, more work needs to be done on automatically
identifying blood vessels and discriminating between
arteries and veins.

Although there are issues that prevent the vascu-
lature from being captured accurately in its entirety,
our shape grammar approach accomplishes many
unique functions. The grammar can accurately break
down each of the networks from the retinal images
and reassemble them by applying the rules in the
forward direction to produce the same original image.
This demonstrates the grammar is flexible enough to
describe retinal vascular networks. Without limitations
on the parameters, this grammar is not constrained
to creating only retinal vasculatures and could serve
as a grammar for any vascular system given an initial
point. The current method to control the grammar
to produce only retinal vasculature is to start with
a real network and constrain the amount of noise
applied to it. To create a more general grammar, exist-
ing relationships between parameters applied at each
step would need to be determined. This could be done
through using more complex rules or understanding
constraints to which the vasculature is subjected. An
example complex rule could be to turn an edge into
a long edge with several terminated branches extend-
ing from it. An example of a constraint could be not
allowing branching where blood vessels from the same
network would overlap. Whiting et al.30 have inves-
tigated automating rule induction to identify higher
level rules in their work, and a similar approach
could be applied here. With these relationships of
more precisely determined parameters, the options
within the grammar could be reduced to contain only
networks that appear as viable retinal vasculature and
not be limited to being based off networks in the
dataset.

Through this shape grammar approach, realis-
tic images of only vasculature have been produced
through applying noise. These vascular images could
then be used to train machine learning algorithms
to use vasculature to identify diseases and train
ophthalmologists to recognize retinal vascular
anomalies better. By using only the vasculature
for disease identification, there is also the poten-

tial to find subclinical or preclinical retinal disease
because of the changes that occur in the blood vessel
structure.

Conclusion

This article introduces a new method for synthetic
generation of varied yet realistic vascular networks.
Parametric shape grammars succinctly model vascular
systems resulting in a generative method to create new
and varied networks. The three-rule shape grammar
described in this work can accurately describe retinal
blood vessel networks. The flexibility and usefulness
of shape grammars are demonstrated by generating
similar but unique blood vessel networks through
the application of noise through parameter variation,
making new networks of the same style as the original
network. Feedback from ophthalmologists through a
survey illustrates that there is a limit where, when too
much noise is added, the networks no longer have a
realistic form. Through applying shape grammars to
retinal vasculature, this work could provide a basis to
uncover a fundamental theory to understand vascular
systems in the context of ocular disease.
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