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Abstract

Motivation: Human proteins that are secreted into different body fluids from various cells and tissues can be promis-
ing disease indicators. Modern proteomics research empowered by both qualitative and quantitative profiling tech-
niques has made great progress in protein discovery in various human fluids. However, due to the large number of
proteins and diverse modifications present in the fluids, as well as the existing technical limits of major proteomics
platforms (e.g. mass spectrometry), large discrepancies are often generated from different experimental studies. As
a result, a comprehensive proteomics landscape across major human fluids are not well determined.

Results: To bridge this gap, we have developed a deep learning framework, named DeepSec, to identify secreted
proteins in 12 types of human body fluids. DeepSec adopts an end-to-end sequence-based approach, where a
Convolutional Neural Network is built to learn the abstract sequence features followed by a Bidirectional Gated
Recurrent Unit with fully connected layer for protein classification. DeepSec has demonstrated promising perform-
ances with average area under the ROC curves of 0.85–0.94 on testing datasets in each type of fluids, which outper-
forms existing state-of-the-art methods available mostly on blood proteins. As an illustration of how to apply
DeepSec in biomarker discovery research, we conducted a case study on kidney cancer by using genomics data
from the cancer genome atlas and have identified 104 possible marker proteins.

Availability: DeepSec is available at https://bmbl.bmi.osumc.edu/deepsec/.

Contact: wy6868@jlu.edu.cn or jcui@unl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Human body fluids, such as blood, saliva and urine, are primary
clinical specimens, which hold considerable promises in presenting
molecular biomarkers for disease diagnosis and therapeutic monitor-
ing (Anderson, 2010; Lathrop et al., 2003). Since the first study of
serum globulin was reported in 1937 (Tiselius, 1937), several large-
scale research efforts have been made to profile proteomes in various
types of human body fluids, mostly in blood, using different prote-
omic technologies, such as two-dimensional gel electrophoresis
(Margolis and Kenrick, 1969), mass spectrometry (Thomson, 1914)
and liquid chromatography (Zhao and Lin, 2014). As a result, a
large number of protein species were identified in different body

fluids, which have been documented in a large volume of research
papers and archived in several community-based proteomic data-
bases such as Human Plasma Proteome Project (Legrain et al.,
2011), Plasma Proteome Database (Nanjappa et al., 2014) and
Human Plasma PeptideAtlas (Schwenk et al., 2017).

Due to the large complexity of protein content and post-
modifications involved in different body fluids, protein identification
using conventional proteomics techniques remains a challenging re-
search topic in the past decade. To facilitate this research, several
computational attempts have been made to predict secreted proteins
in human body fluids, mostly based on machine learning methods,
such as Support Vector Machine (SVM) (Cui et al., 2008; Hong
et al., 2011; Sun et al., 2015; Wang et al., 2013, 2016b). These mod-
els often used common protein features such as amino acid flexibility
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index, surface tension and solubility as input and predict secreted
proteins associated with a specific body fluid. Although the perform-
ances of those methods were promising, featured-based models gen-
erally suffered from common limitations such as the blind manual
collection of features that might be incomplete and biased and fea-
ture selection procedures that need manual intervention. To this
end, automatic feature extraction using end-to-end model can dis-
pense with the initial feature selection step and possibly improve the
prediction performance.

Deep learning (DL) has been successfully applied in protein re-
search to study new protein functions, structures and interactions
(Jain et al., 2021). Among different DL models, Convolutional
Neural Network (CNN) has been one of the most frequently used
methods and has attained remarkable performances in several classi-
fication applications, especially when combined with Gated
Recurrent Unit (GRU) (Wilaiprasitporn et al., 2020). GRU, as a new
class of Recurrent Neural Networks (RNNs), can effectviely solve
the vanishing gradient problem by introducing memory cells and a
gating mechanism for holding information from the prior inputs in a
well-behaved way. Compared to Long Short-Term Memory, GRU
has a relatively simple structure, which ensures reduced complexity
and faster convergence. Recent successes with GRU on the basis of
protein sequences include DeepSig (a model to detect signal peptides
of proteins) (Savojardo et al., 2018) and DeepLoc (a model for pre-
dicting protein subcellular localization) (Armenteros et al., 2017).
The high performances from both studies indicate that protein
sequences must carry important characteristics related to protein
sorting.

In this study, we present a new DL-framework, named DeepSec,
to facilitate body-fluid secreted protein prediction. DeepSec adopts
an end-to-end sequence-based approach and employs CNN as a fea-
ture extractor and Bidirectional Gated Recurrent Unit (BGRU) with
fully connected dense layer as a classifier to predict secreted proteins.
We have employed DeepSec on 12 different types of common human
body fluids (one model for each body fluid), which include blood,
saliva, urine, cerebrospinal fluid, seminal fluid, amniotic fluid, tear
fluid, bronchoalveolar lavage fluid, milk, nipple aspirate fluid, pleu-
ral effusion and sputum. At last, we demonstrate possible applica-
tions of DeepSec in biomarker discovery by a kidney cancer case
study.

2 Materials and methods

2.1 Datasets
The positive datasets of DeepSec were collected from our previous
work (Huang et al., 2021). For negative dataset generation, we
employed a similar method that is proposed by Cui et al. (2008),
where the Pfam family annotation was used to select proteins that
are potential non-body-fluid-secretory proteins. We chose negative
samples from Pfam families (Pfam release 33.1) (Sara et al., 2018)
which do not contain any proteins in the positive dataset. According
to the size of the positive dataset varies in different fluid type, the se-
lection of negative samples is carried out as follows. For a specific
body fluid, if the count of positive-related Pfam families is greater
than 30% of the total number of human-related Pfam families, all
proteins in the remaining Pfam families were collected as the nega-
tive set. In contrast, if the count is <30%, we randomly chose one
member from each remaining Pfam families to construct the negative
data.

Using the above procedure, we have collected both positive and
negative datasets for each of the 12 body fluids (Fig. 1), including
8203 and 2739 proteins in blood, 4072 and 3291 proteins in saliva,
8048 and 5136 proteins in urine, 6260 and 5787 proteins in cerebro-
spinal fluid, 5576 and 2624 proteins in seminal fluid, 3212 and
3722 proteins in amniotic fluid, 1490 and 4184 proteins in tear
fluid, 1117 and 4436 proteins in bronchoalveolar lavage fluid, 2171
and 3887 proteins in milk, 2234 and 4009 proteins in nipple aspirate
fluid, 1373 and 4328 proteins in pleural effusion, and 2341 and
3967 proteins in sputum.

Training DL models generally benefits from datasets with a bal-
anced size. To address the imbalance problem, a random under-

sampling process is adopted in this study, which is advantageous
over the procedure of eliminating proteins from the over-sized larger
dataset to match the size of smaller dataset that may lead to informa-
tion loss. We randomly partitioned the larger dataset into smaller
subsets with similar size of the smaller dataset. For a size ratio t be-
tween the positive and negative datasets, roundðtÞ subsets are cre-
ated randomly. Each generated new subset and the original smaller
dataset are resampled together to generate independent datasets for
model evaluation. At last, bagging algorithm is employed to calcu-
late the overall performance of the model, i.e. the average perform-
ance across all sample model denoted as P ¼ 1

�
t

Pt
i ¼ 1 Pi where

Pið1 � i � tÞ refers to the performance based on one sample set.
Furthermore, the sample space of each body fluid is divided into

training, validation and testing datasets according to the proportion
of 60%, 20% and 20%, respectively.

2.2 Neural network model
DeepSec takes protein sequences as input and performs a binary clas-
sification in terms of secretion into a specific body fluid or not.
Figure 2 summarizes the architecture of DeepSec, which comprises
three basic components: input sequences, feature extraction and
classification.

2.2.1 Input sequence generation

We first create a Position-Specific Score Matrix (PSSM) for each pro-
tein sequence to enable subsequent convolution operations. The pro-
tein sequence is embodied into a PSSM by position-specific iterative
basic local alignment search (PSI-BLAST) (Altschul et al., 1997)
against UniRef 90 (released in 2020_01) database with inclusion
0.001 and 3 iterations. For each protein with sequence length L, a
PSSM of dimensionality L � 20 is obtained. The columns of PSSM
represent the presence of 20 amino acids in each position. We then
transform the PSSM described in Wang et al. (2016a) by the
Sigmoid function 1=ð1þ exp �xð ÞÞ where x represents a single entry
of the PSSM.

Since variable sequence length [from tens to thousands of amino
acids (aa) in this case] represents another challenge for building the
prediction model, we decide to use a fixed size (1000aa) window to
process protein sequences. It has been shown that N-terminus or C-
terminus of the sequence carry the most useful signaling informa-
tion. For instance, N-terminal modifications have a pivotal role in
protein regulation and cellular signaling (Varland et al., 2015), and
the identity of the C-terminal amino acids has a strong influence on
protein expression levels (Weber et al., 2020). Therefore, if a pro-
tein’s length exceeds 1000, we will keep 500 aa from N-terminus
and C-terminus, respectively, and remove the middle sequence. This
method of fixed size window has achieved remarkable performances
in protein localization prediction (Armenteros et al., 2017). In the
training dataset, 11.7% of the proteins are truncated using this rule.

Fig. 1. The distribution of 12 types of body fluids that are analyzed in this study
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If a protein sequence is <1000aa, the missing part is filled with 0. As
a result, the input representation of each protein is a matrix with size
[sequence length (L ¼ 1000) � size of amino acid vocabulary
(c ¼ 20)].

2.2.2 Feature extraction

To reveal hidden knowledge from the observed PSSM, a CNN model
is trained to extract a complex feature representation of the input se-
quence. Specifically, the input PSSM matrix is fed into CNN to learn
the weight parameters of the convolution filters. The filters are set to
calculate the feature map C. The convolution layer outputs the ma-
trix inner product between the input matrix and the filters. The recti-
fied linear unit (ReLU) was applied as the activation function to
sparsify the output of the convolution layer:

Ci;j ¼ max 0;
Xðw�1Þ=2

d¼�ðw�1Þ=2

X20

c¼1
Xiþd;c �Wj

dþðw�1Þ=2;c þ bj

� �
(1)

where X is the PSSM matrix, Wj is jth the weight matrix of the con-
volution kernels, bj is the offset vector, Ci;j is the results of feature
extraction. Then, Ci;j is used as input to feed into the next layer.

2.2.3 Classification

For memorizing the residue presence in the C-terminus and N-ter-
minus, respectively, we use the forwards and backwards GRU to
capture possible long-range dependencies between the sequence and
the prediction. Bidirectional GRU sweeps from both C-terminus to
N-terminus and N-terminus to C-terminus, and concatenates the
outputs of individual directions before feeding them into the fully
connected layer. The hidden states are updated recursively from the
convolutional features and the previous value of the hidden states
(Fig. 3).

The recurrent calculation at each sequence position t is
denoted as:

ht ¼ ð~ht; h
 

tÞ (2)

~ht ¼ ð1�~ztÞ � ~ht�1 þ~zt �~~h t (3)

~zt ¼ rðW~z Ct þU~z
~ht�1 þ b~z Þ (4)

~~h t ¼ tanhðW~h
Ct þ~rt � U~h

~ht�1

� �
þ b~h Þ (5)

~rt ¼ rðW~r Ct þU~r
~ht�1 þ b~r Þ (6)

where fcgL
t ¼ 1 is the input features of c at position t, fhgL

t ¼ 1 is the
hidden states of BGRU, where ht is a vector of 2-time size of the
number of hidden units in the individual direction GRU, W~z ,W~h

,
W~r , U~z , U~h

and U~r are the weight metrics and b~z , b~h and b~r are the

bias. The calculation of h
 

t is similar to ~ht. The tanh function is a
non-linear activation function taking the form of
tanh xð Þ ¼ 2

1þe�2x � 1.
Then, the subsequence classification is performed by a fully con-

nected layer comprised hidden-layers and an output layer. The hid-
den layer computes a non-linear transformation, defined as follows:

f ¼ max 0; ht � lþ �ð Þ (7)

where l and � are the weight vector and bias respectively, fhgL
t ¼ 1 is

the learned hidden states of BGRU, ReLU activation is used.
Finally, the output layer computes the probability distribution ŷ,

defined as follow:

ŷ ¼ r f � cþ sð Þ (8)

where c and s are the weight vector and the bias respectively, and
the function r is the softmax function, denoted as r zð Þj ¼ e

zjPK

k ¼ 1
ezk

,
for j ¼ 1; . . . ;K.

A cross-entropy loss function is used to quantify how ‘far away’
our prediction is from the ground truth. Network parameters are
optimized by minimizing the training errors. The backward pass
uses the chain rule to back-propagate error signals and computes
gradients with respect to all weights throughout the neural network.
Given a training set h ¼ f v1; y1ð Þ; . . . ; vn; ynð Þg, n is the number of
samples and y is the true output targets, the cross-entropy loss func-
tion is defined as:

Fig. 2. The architecture of DeepSec which supports input as PSI-profiles based on protein sequences, feature extraction through CNN, classification based on BGRU with fully

connected dense layer, and the outputs as the probability of being secreted protein

Fig. 3. The forwards and backwards GRU capturing possible long-range dependen-

cies between the input sequence and the predicted class
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L hð Þ ¼ 1

n

Xn

i¼1

X2

j¼1
�½yðjÞi log ŷ

ðjÞ
i

� �
� (9)

2.3 Performance assessment
The prediction performance is measured based on both training and
validation sets. Specifically, accuracy, Matthew’s correlation coeffi-
cient (MCC) and the Area under the ROC Curve (AUC) are applied.
Considering the unbalanced cases in this study, we also include add-
itional measures including precision, recall and F-measure. Note that
higher values indicate better classification performance for all those
measures.

Accuracy represents how many predictions of the classifier are in
fact correct, defined as:

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
(10)

where TP and TN are the true predictions in positives and negatives,
respectively, and FP and FN are the false predictions in positives and
negatives, respectively.

Recall (or sensitivity) shows how many positive examples are
correctly identified by the classifier. In this case, this is the percent-
age of secreted proteins identified as such, defined as:

Recall ¼ TP

TPþ FN
(11)

Precision represents the proportion of the correctly predicted
positive cases relative to all the predicted positive ones. In this case,
this is the percentage of proteins identified as secreted proteins that
actually secreted proteins, defined as:

Precision ¼ TP

TPþ FP
(12)

F-measure is the harmonic mean of precision and recall, and bet-
ter reflects the performance of a classifier of unbalanced classes,
defined as:

F �measure ¼ 2� precision� recall

precisionþ recall

� �
(13)

MCC is a correlation coefficient between the observed and pre-
dicted binary classifications, defined as:

MCC ¼ ðTP� TN � FP� FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞðTPþ FPÞðTN þ FPÞðTN þ FNÞ

p (14)

2.4 Comparison with other models based on protein

features
Since SVM has been previously applied for secreted protein predic-
tion, we first compare DeepSec with SVM models based on reported
protein features. In addition, two other state-of-the-art models,
including Decision Tree (DT) and Deep Neural Network (DNN),
are benchmarked together with DeepSec. To do this, we use the
same datasets to evaluate the performance to ensure a fairy compari-
son. We examine features used in the previous studies and also add a
few newly reported features, which can be grouped into four catego-
ries: (i) sequence properties; (ii) physicochemical properties; (iii)
domains/motifs properties; and (iv) structural properties. In total, a
total of 1610 protein features are collected (as detailed in
Supplementary Table S1). Then, feature selection is performed in a
similar workflow as documented in our previous publication
(Huang et al., 2021), where t-test (P value � 0:005) and false dis-
covery rate (FDR, q value � 0:05) are employed to rank the fea-
tures. The top 50 features are selected into the final model for 12
body fluids, respectively (Supplementary Table S2). Feature normal-
ization is performed using Z-score method. Finally, these models are
evaluated in terms of accuracy, recall, precision, F-measure, MCC
and AUC.

3 Results

3.1 Model performance of DeepSec in 12 types of body

fluid
All classification models on 12 body fluids were built and evaluated
using Pytorch 1.7.1, running python 3.8 and using Scikit-learn library
version 0.23.2. In DeepSec, the input representation of each protein is a
1000 � 20 matrix. Referring to Deeploc (Armenteros et al., 2017),
our model has 50 filters at the convolution layer with three different
sizes w¼ 1; 5; 7f g, which has led to a total of 150 filters and 1000 �
150 feature maps. Next, GRU scanned the sequence using 32 hidden
units in each individual direction, leading to a total of 1000 � 64 out-
puts. The fully connected layer comprised a single hidden-layer with 16
units and an output layer with two units. The parameters were opti-
mized by Adam optimizer with learning rate as 0.0001 and a dropout
probability as 0.1 prior to fully connected layer. We chose 0.5 as the
prediction threshold, which means that a probability 	 0:5 indicates a
positive class associated with secretion into a specific body fluid.
Finally, the performances on 12 body fluids were evaluated based on
testing dataset (Table 1) and all datasets (Table 2), respectively.

We have applied DeepSec to screen against all human proteins
(20 394 unique proteins) in the UniProtKB/Swiss-Prot database
(UniProt release 2020_06) in each of body fluids. As shown in
Figure 4, DeepSec predicted 12 364 proteins (60.6% of the 20 394)
as blood-secreted proteins, and 9491 (46.5%), 6877 (33.7%) and
6713 (32.9%) proteins to be secreted into urine, cerebrospinal fluid
and saliva, respectively.

3.2 DeepSec outperforms feature-based classifiers
We compared the performances between the DeepSec model and
aforementioned feature-based models based on average AUC on test-
ing datasets. Here the feature-based DT model, SVM model and
DNN model are termed DTf, SVMf and DNNf, respectively. As
shown in Figure 5, for all 12 fluid types, DeepSec reported the best
performances with average AUC ranged in 0.85–0.94. Especially,
DeepSec was 4–17% higher than other models.

3.3 A close-look at the blood secreted protein prediction
In the blood protein case, the positive dataset consists of 8203 pro-
teins while 2739 human proteins were generated in negative dataset.
Considering the count ratio (t) between positive and negative dataset
is round8203=2739 ¼ 3, we repeated 3 times the random sampling
processing and obtained 3 positive subsets. In the end, three datasets,
each containing 2734 positive samples and 2739 negative samples,
were used to train and evaluate DeepSec classifier.

To select the most appropriate model, we compared different
model architectures including CNN, BGRU and DeepSec. Each
model architecture was evaluated based on testing dataset and all
datasets in terms of accuracy, recall, precision, F-measure, MCC and
AUC (Table 3). The average ROCs are plotted in Figure 6. Note that
DeepSec classifier achieved the highest overall performance on both
testing dataset (average AUC: 0.94) and all datasets (average AUC:
0.94), respectively. In the meantime, it also attained the highest aver-
age values of accuracy (0.87/0.87), F-measure (0.91/0.87) and MCC
(0.69/0.74) on testing dataset and all datasets.

The results showed that the DeepSec model is more effective in
capturing sequence information for predicting secreted proteins and
reveals relationships between amino acid sequences and secretion
status. This is not surprising as BGRU is capable of learning long-
term dependencies between sequence and secreted proteins, which
may contribute to an improved performance by updating the weight
of each hidden state.

4 An application case study on kidney cancer
biomarker discovery

To illustrate possible applications of DeepSec, we explored potential
kidney cancer biomarkers in blood by using public genomics data
and DeepSec prediction. To do that, we first collected gene
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expression profiles of 72 paired kidney cancer tissues and adjacent
control tissues samples from kidney renal clear cell carcinoma
(KIRC) via the cancer genome atlas (TCGA) Data Portal. Each gene-
expression dataset covered 19 804 human genes measured using

RNA-seq. Note the paired samples helps reduce the impact of indi-
vidual variability in differential expression analysis.

Two-tailed t-test (Liang et al., 2019) was performed to identify
genes that have significant differential expression between kidney

Table 1. The performance evaluation on 12 body fluids based on testing dataset, grouped by several evaluation measures

Body fluids Accuracy Recall Precision F-measure MCC AUC

Blood 0.871139 0.872120 0.868200 0.910294 0.691481 0.940572

Saliva 0.824650 0.810522 0.835108 0.797251 0.643117 0.898319

Urine 0.845857 0.805017 0.883817 0.834207 0.692125 0.918341

Cerebrospinal fluid 0.835470 0.667881 0.931376 0.747156 0.637556 0.900955

Seminal fluid 0.821891 0.834073 0.810378 0.819841 0.644204 0.894597

Amniotic fluid 0.828476 0.747795 0.889995 0.790455 0.649091 0.905148

Tear fluid 0.830080 0.572529 0.926077 0.646611 0.545096 0.856645

Bronchoalveolar lavage fluid 0.859257 0.432043 0.966373 0.551724 0.502859 0.857458

Milk 0.811124 0.677016 0.885655 0.719173 0.580265 0.871808

Nipple aspirate fluid 0.816795 0.565002 0.956554 0.687654 0.594120 0.887423

Pleural effusion 0.837814 0.571637 0.922045 0.62887 0.530781 0.848811

Sputum 0.823529 0.822089 0.824375 0.775122 0.633483 0.891406

Note: The highest scores are in bold, and the lowest scores are underlined.

Table 2. The performance evaluation on 12 kinds of body fluids based on all datasets, grouped by different evaluation measures

Body fluids Accuracy Recall Precision F-measure MCC AUC

Blood 0.871345 0.887427 0.855263 0.873381 0.743075 0.941104

Saliva 0.769029 0.666667 0.844749 0.710526 0.522890 0.855485

Urine 0.825711 0.810127 0.840196 0.817456 0.650832 0.899171

Cerebrospinal fluid 0.819790 0.700608 0.887924 0.738782 0.603938 0.869243

Seminal fluid 0.782139 0.802020 0.763359 0.781496 0.565294 0.853547

Amniotic fluid 0.806870 0.839506 0.781965 0.790041 0.616044 0.893354

Tear fluid 0.800349 0.443730 0.933014 0.546535 0.446769 0.793570

Bronchoalveolar lavage fluid 0.832130 0.364865 0.949210 0.465517 0.395991 0.792717

Milk 0.766363 0.661253 0.824742 0.669014 0.488595 0.810696

Nipple aspirate fluid 0.787149 0.592342 0.895131 0.664981 0.520782 0.837818

Pleural effusion 0.824978 0.439560 0.946759 0.546697 0.467328 0.823116

Sputum 0.781225 0.759140 0.794192 0.719674 0.543051 0.849145

Note: The highest scores are in bold, and the lowest scores are underlined.

Fig. 4. Results of predicted human proteins secreted in 12 body fluids by screening against all human proteins reported in Swiss-Prot. The orange bar depicts number of pre-

dicted proteins against all human proteins in Swiss-Prot and blue bar depicts the experimental identified proteins
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cancer and control samples. The test statistic tk for the kth feature
between case and control is given by

tk ¼ dk=sk (15)

where dk and sk is the mean difference and the standard error of the
kth feature across n paired samples, denoted as

dk ¼ 1=nð Þ
Xn

i¼1
di;k (16)

sk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
di;k ��dk


 �2
=ðn� 1Þ

q
(17)

where di;k is the differential between the paired case and control for
the kth feature of the ith sample, given as

di;k ¼ Xi;1;k �Xi;2;k (18)

logFC > 2 and adjusted P < 0:05 were used to identified differen-
tially expressed genes between cancer group and normal control.
Overall, 138 and 261 genes (Supplementary Tables S3 and S4) were
found to be up- and down-regulated in kidney cancer versus control
tissues, respectively, hence making them as potential maker candi-
dates in kidney cancer.

Based on all the differentially expressed genes (138 up-regulated
and 261 down-regulated) (Fig. 7) in kidney cancer versus control,
we applied DeepSec and further inferred that 261 of these bio-
markers may be secreted into blood. Since 157 proteins have been
included in our positive dataset, the remaining 104 proteins are con-
sidered novel marker proteins identified by this prediction model.
Despite of the discordance between gene expression and protein

Fig. 5. The ROC curves for body-fluid protein prediction differentiation of DeepSec versus other models in 12 kinds of body fluids on testing datasets

Table 3. Prediction performance of various model architectures evaluated based on testing dataset and all datasets

Measures Testing dataset All datasets

CNN BGRU DeepSec CNN BGRU DeepSec

Accuracy 0.806068 0.855145 0.871139 0.825292 0.811404 0.871345

Recall 0.782884 0.911252 0.872120 0.777778 0.931287 0.887427

Precision 0.875502 0.687112 0.868200 0.872807 0.691520 0.855263

F-measure 0.858212 0.904143 0.910294 0.816577 0.831593 0.873381

MCC 0.587026 0.608209 0.691481 0.653542 0.64152 0.743075

AUC 0.912392 0.897955 0.940572 0.906867 0.903960 0.941104

Note: The highest scores are in bold.
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abundance, proteins that show significantly elevated gene expression
in kidney cancer tissues versus control can be more promising mark-
er candidates compared to those repressed ones. The detailed predic-
tion results about up- and down-regulated protein markers of kidney
cancer in blood are listed in Supplementary Table S5.

5 Discussion

DeepSec represents the first generalized computational model that can
predict secreted proteins in multiple human body fluids. Specifically,
this end-to-end model is built based on sequence features extracted via
CNN followed by bidirectional GRU. Compared to other models based
on proteins features, DeepSec has demonstrated improved prediction
accuracy and better generalizability (Fig. 5), which indicates the advan-
tage of sequence-based method as compared to feature-based algo-
rithms. In the blood protein case, the model shows reasonably high
AUC (0.94/0.94) and high F-measure (0.91/0.87) on testing dataset and
all datasets, as compared to other model architectures (Table 3), which
also suggests that DeepSec has good representation of the relevant pro-
teins across the whole protein space.

However, there might be some concerns about the limitations of
DeepSec. First, due to the lack of clear knowledge about non-body-
fluid secretory proteins, this study generates negative dataset based
on Pfam family information. It means that the negative datasets may
not adequately include the whole space of the non-body-fluid

secretory proteins. Indeed, with larger number of positive instances
being identified by wet lab experiments, this model can be better

tuned, as demonstrated in Cui et al. (2008). Second, since the protein

sequences are compressed into a fixed size vector, there is a risk of
information loss. Note that 11.7% (1990 proteins) of human pro-

teins have been influenced by the truncation rule. However, when

analyzing the physical properties of those proteins, we understand

that the probability of the secreted proteins having long anomic acid
sequences is very low, which implies a minimal negative impact on

the DeepSec’s performance if there is any. Last, since we addressed

the imbalance problem by sampling multiple smaller subsets and

recalculates the probabilities based on the same small dataset during
the training process, there is a certain likelihood that it introduces

risks of overfitting while yielding significantly improved perform-

ance. However, when evaluating the performance of DeepSec on all

datasets (Table 2), it appears confidently that DeepSec doesn’t overly
fit the data.

6 Conclusion

In summary, we propose a DL method, DeepSec, to predict secreted

proteins in 12 kinds of human body fluids based on protein sequences.
To the best of our knowledge, DeepSec is the first system that fully cap-

ture the sequence features related to protein secretion automatically

using CNN with BGRU architecture. The BGRU network is able to

capture possible long-range dependencies between sequence and
secreted status of proteins, which contributes to the improved perform-

ance. DeepSec is able to predict the secreted protein with higher accur-

acy than existing state-of-the-art methods. Moreover, DeepSec is useful

for discovering novel candidates of blood biomarkers in kidney cancer
that have been experimentally verified. Our future effort will focus on

including more types of human body fluids into the system and improve

the performance toward biomarker discovery in complex human dis-
eases and physiological phenotypes.
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Fig. 6. The ROC curves of various model architectures. (a) Evaluation on testing dataset. (b) Evaluation on all datasets

Fig. 7. The significant differential expression between kidney cancer and control

samples, including up- and down-regulated results
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