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Background
In high throughput sequencing (HTS) experiments, it is diffi-
cult to determine the species of origin for sequenced reads 
because RNA or DNA isolated from biological samples rarely 
belongs to a single species. This can be due to various microor-
ganisms living together. Often species are tightly linked 
through symbiosis and share tissue space. A popular method to 
determine species composition of a sample is to sequence spe-
cific regions containing internally transcribed spacers where 
single nucleotide polymorphism (SNP) differences in this 
region elucidate which species are present.1 While this method 
is effective for describing community composition, it is unable 
to evaluate the species of origin from sequences generated 
when exploring other regions in the transcriptome or genome.

BLAST is a tried and true method for aligning mixed 
sequences to different genes and to various organisms.2 
Unfortunately, this method is very slow due to its computational 
requirements and is a hindrance when exploring millions of 
reads associated in HTS experiments. To overcome this volume 
of data, modern approaches using “mappers,” such as Bowtie2,3 
can quickly align reads to a reference genome or transcriptome. 
These methods, however, are limited by the quality and availa-
bility of reference files and excludes sequences from different 
species.4 Since there are limited numbers of quality reference 
genomes and transcriptomes available, classifying species pre-
sents a challenge in HTS experiments of non-model organisms 
and the communities within a single biological sample.

A prime example of wanting to classify a diverse range of 
sequenced reads to species of origin is with experiments study-
ing symbiosis. For these experiments, it is relevant to character-
ize community compositions within a sample and to 
differentiate between reads that belong to host vs symbiont/
parasite. This type of work has been addressed by Lehnert 
et al,5 who developed a system called TopSort to predict anem-
one (host) versus Symbiodinium (symbiont) nucleotide 
sequences based on differing GC content and codon usage. 
Their system used Support Vector Machines (SVM) which 
classified sequences into their respective host vs symbiont 
groups. As TopSort is not publicly available, our goal was to 
generate a simple, fast, and accessible implementation of a clas-
sifier that operates similarly to TopSort that would be freely 
available to all.

SVMs are supervised classifiers, which work by establishing 
a linear hyperplane to separate data into classes based on a pre-
determined training set. SVMs are widely used for text classi-
fication as they are flexible and are very accurate.6 While there 
are numerous machine learning methods for classifying data, a 
comparative study using microarray gene expression data found 
that SVM classifiers were consistently more accurate than 
radial basic function neural nets, multi-layer perception neural 
nets, Bayesian and decision trees classification methods.7

Since we are using a single criterion, theoretically other clas-
sifiers may also provide good results. To test this theory, we added 
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support for another classifier, C4.58 which is an entropy-based 
decision tree and decision rule generator, to GCSpeciesSorter. 
C4.5 is a multi-objective classifier. It examines the data and cre-
ates a decision tree, where each decision node in the tree reduces 
the entropy (randomness) of the data. This decision tree is then 
pruned and converted to a set of decision rules, which can be 
applied to new and unseen data. In terms of configurability and 
supported command line options, GCSpeciesSorter’s support 
for C4.5 is less extensive than that of SVM classification.

The general principles and application of the GCSpeciesSorter 
presented here are similar to that of TopSort in that both use 
differences in species GC content in order to train a classifier 
and sort sequences into species’ origins. GCSpeciesSorter’s use 
of C4.5 emphasizes the inherent differences between two spe-
cies’ GC contents, since C4.5 and SVM operate using very dif-
ferent methods, but as seen below, the results are similar.

Implementation
GCSpeciesSorter is a binary classification package for distin-
guishing between two or more species based on the GC con-
tents of their DNA or RNA sequences. It includes source code 
in Python and is released under the GNU General Public 
License (GPL). Beyond unpacking, there is no special installa-
tion step necessary. Python, LIBSVM9 and/or C4.5, and 
optionally, BLAST are needed to run the scripts. A README 
file in the package provides more details about running the 
scripts. The package includes all the input files mentioned in 
this paper to use as a tutorial, including test sequence files and 
BLAST database files.

For both SVM and C4.5, there are two phases to using the 
software, implemented as two Python tools. The first phase 
accepts a ‘Target’ species and an ‘Other’ species as two nucleo-
tide sequence files. They are used to train an SVM classifier or 
a C4.5 decision tree to distinguish between the Target and 
Other species. The second phase accepts a file containing 
unknown sequences, which are fed to the classifier generated in 
the first phase to determine the species. For SVM, the output 
of phase 2 consists of Target and Other sequence files. With 
C4.5, the output is a set of decision rules that can be used to 
distinguish between samples.

We computed the GC content as a normalized value rela-
tive to the size of the sequence. To do so, the number of G and 
C bases were added together and then divided by the total 
length of the sequence. Shorter sequences may not have a GC 
content representative of the hole genome, so GCSpeciesSorter 
allows the user to specify a minimum sequence length. Any 
sequence shorter than this minimum is ignored in GC compu-
tations. Unknown bases, often represented by the letter N, are 
also left out of the computations to make sure the values are 
not biased toward lower GC content.

GCSpeciesSorter supports FASTA or FASTQ inputs, and 
optionally uses BLAST as an additional step to remove 
sequences that have variant GC content, such as those found in 
organelles like mitochondria and chloroplasts. In our 

experiments, we found FASTA files with longer sequences to 
be a more reliable source of GC statistics that short-read 
sequences in a FASTQ file. In this article, we apply 
GCSpeciesSorter to transcript sequences containing mixed 
Acropora millepora coral and Symbiodinium samples.

Results
All the reported results in this article were obtained without 
BLAST filtering. Known coral and Symbiodinium nucleotide 
sequence sets were assembled based on our target coral spe-
cies, Acropora millepora,10 and predicted Symbiodinium clades 
(clade A from Bayer et  al,11 clades B and C from Ladner 
et al12). The coral training set contained 100 entries, and the 
Symbiodinium set contained 299 entries. We used 90 known 
coral and 270 known Symbiodinium samples to train the SVM 
and the decision tree, with the remaining sequences were used 
to evaluate the accuracy of the trained SVM and tree. These 
numbers are chosen such that the classifiers are trained with 
roughly the same proportion of Target and Other species as 
are found in biological samples. Both the resulting SVM and 
the decision tree had 100% accuracy on the 39 samples left 
out of training.

Figure 1 shows the GC contents for all 360 training samples 
used above. Symbiodinium GC contents are plotted as class −1 
on the left, while coral GC values are plotted as class + 1 on the 
right. There is some overlap between the values, but the major-
ity of the samples are clearly skewed in opposing directions.

To test the program on unverified data, we obtained 26,275 
presumed A. millepora coral nucleotide sequences,13 and 47,014 
presumed Symbiodinium sequences.14 Both the coral and the 
Symbiodinium files were fed to the SVM trained with verified 
sequences as described above. With coral samples, 95.40% were 
classified as coral. With Symbiodinium samples, 97.35% were 
classified as Symbiodinium. To test the symmetry of the classi-
fier, we used the Symbiodinium data as the Target, trained a new 
SVM using the verified samples, and reran the test. The same 
results were observed. On a virtual machine running on an 
Intel Xeon E5-2650 CPU at 2 GHz and 16 GB RAM, train-
ing the SVM and testing the above unverified samples took 
less than 15 seconds per dataset.

With the C4.5 tree created from verified data, the same 
tests resulted in 95.5% correct classification of corals, and 
93.0% correct classification of Symbiodinium samples. We did a 
similar test of switching Target and Other categories, and the 
decision tree’s results were also symmetric. Training and testing 
on the same virtual machine took less than 10 seconds.

The results above show that both the SVM and C4.5 can 
learn the GC differences using a relatively small number of 
verified samples. In the rest of the article, we show how the 
application performs with bigger and unverified data sets.

In the above experiments, we had access to positively identi-
fied coral and Symbiodinium samples to train the classifiers. It 
is, however, possible to use unverified samples to train a classi-
fier. To illustrate this case, we used 10,000 presumed coral and 
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18,000 presumed Symbiodinium samples to train an SVM, and 
tested it on the remaining presumed coral and Symbiodinium 
sequences. The accuracy for the total 45,289 samples left out of 
training was 97.19%, showing that this method can be quite 
effective even without verified samples.

On the same virtual machine, training the SVM using the 
unverified samples took about 3 minutes. Reading and process-
ing the input files took about 2 minutes and 20 seconds, around 
35 seconds were spent training the SVM model, and the rest 
was used in testing the model.

We then tried the complete unverified data sets against the 
SVM trained using the verified sequences and the SVM trained 
using the unverified data. The results appear in Table 1. As can 
be seen, sorting coral samples is more error-prone, likely due to 
more variability in transcript GC content.

We created a C4.5 decision tree using unverified sam-
ples in a manner similar to the SVM training above. We 
then tried the unverified samples on the decision rules 
derived from the tree, and also on the rules generated using 
verified samples. The results appear in Table 2.

C4.5’s execution times were in general lower than LIBSVM, 
although the accuracy results are comparable.

In another round of experiments, we used the application to 
create classifiers for separating two related frog species, the 
Xenopus laevis and Xenopus tropicalis, using data available from 
Xenbase.15 As expected, the GC contents in these frogs are 
very similar, and the classifiers could not distinguish the two 
species reliably.

Conclusion
We showed that the method presented here is useful in analy-
ses of symbiosis. Our results indicate that species with differ-
entiated GC contents can be accurately and quickly classified 
using GCSpeciesSorter with an SVM or a decision tree. This 
method also may be of value to multi-species sorting in 
metagenomic studies. While the working example presented 
here is binary in nature, it can be applied to sorting more than 
two species. In such cases, the user simply needs to set the 
Target to a different species each time and repeat the classifica-
tion process. Both LIBSVM and C4.5 support multiple classes, 
so direct classification of multiple species is in principal possi-
ble, and an interesting topic for future work. GCSpeciesSorter 
is available for download from ftp://xenbaseturbofrog.org/
GCSpeciesSorter for free.

Figure 1.  GC contents for Symbiodinium (left) and coral (right) samples.

Table 1.  SVM accuracy test results.

Input SVM from verified samples SVM from unverified samples

Unverified Coral 95.40% 93.78%

Unverified Symbiodinium 97.35% 98.53%

Table 2.  C4.5 accuracy test results.

Input Rules from verified samples Rules from unverified samples

Unverified Coral 97.3% 94.0%

Unverified Symbiodinium 93.0% 98.4%

ftp://xenbaseturbofrog.org/GCSpeciesSorter
ftp://xenbaseturbofrog.org/GCSpeciesSorter
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