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ABSTRACT 

The gel which forms on warming the extracts of the cytoplasmic proteins of sea 
urchin eggs has been separated into two fractions, one containing F-actin and the 
other containing two proteins of 58,000 and 220,000 mol wt. When combined in 
0.1 M KCI, even at 0~ these components  will form gel material identical to that 
formed by warming extracts. This gel is a network of laterally aggregated F-actin 
filaments which are in register and which display a complex cross-banding pattern 
generated by the presence of the other two proteins. Low concentrations of 
calcium block the assembly of these proteins to form this complex structure, which 
may play some cytoskeletal role in the cytoplasm. 

This association of F-actin with the other proteins to form a gel is very likely the 
last step of the process occurring in warmed extracts. At low temperatures,  
gelation of extracts is limited by the relative absence of F-actin, as demonstrated 
by the inability to sediment it at 100,000 g and also by the fact that gelation occurs 
immediately if exogenous Foactin is added to cold extracts. The transformation of 
the G-actin present in the extract to the F-form is apparently repressed at low 
temperatures.  This is shown directly by the failure of added G-actin to polymerize 
at low temperatures in the presence of extract. These observations resemble 
those which have been reported on preparations from amoeboid cells and may be 
significant in the involvement of actin and these other proteins in cell division and 
later developmental processes. 

In a previous publication (10) it was demonstrated 
that warming an extract of the soluble cytoplasmic 
proteins of the sea urchin egg caused the forma- 
tion of a gel in the solution, visible in the light 
microscope as a net of birefringent threads. The 
extraction medium contained sufficient glycerol to 
render it isotonic, EGTA to chelate the cell cal- 
cium, and buffer to control the pH during homog- 
enization. Dialysis of the extract to remove all 
small molecular weight components reduced or 
eliminated this gelation on warming, but gelation 
could be restored by the addition of ATP and 

KC1. Gelation was not temperature reversible, as 
the gels were stable at 0~ once formed, but the 
material was soluble in high salt (0.5-1 M) solu- 
tion after centrifugation from the extract. Subse- 
quent reduction of the salt concentration of this 
dissolved gel solution to approx. 0.1 M by dilution 
or dialysis caused the reappearance of the gel, a 
process which does not require warming and 
which will occur at 0~ 

Sodium dodecyl sulfate (SDS) gel electrophore- 
sis showed three major components to be present 
in this dissolved gel: a protein which co-migrated 
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with actin, a second protein of 58,000 tool wt 
which could be distinguished from tubulin, and a 
high molecular weight protein of 220,000 tool wt 
which did not co-migrate with myosin. The actin 
was seen to exist as F-actin filaments in negatively- 
stained preparations of gel dissolved in high salt, 
and the addition of 1 mM ATP to such solutions 
caused the actin filaments to form aggregates visi- 
ble in the light microscope. These aggregates, pre- 
viously referred to as fibrils (10), will now be 
termed bundles in conformity with the terminol- 
ogy of Morgan (12) and Spudich and Cooke (20). 
The bundles were highly birefringent due to the 
linear aggregation of the actin, but the filaments 
were not in register, and no indication of order 
was seen. 

The formation of such actin bundles provides a 
simple method for the separation of the actin from 
the other two components of the gel; the first aim 
of this investigation was to determine whether the 
separated components would recombine to form a 
gel if mixed under appropriate conditions. If so, 
the parameters of the reaction can be determined 
by modification of the experimental conditions 
during recombination. A second aim was to deter- 
mine the fine structure of the gel, which is better 
done using the material formed from the recombi- 
nation of purified components rather than the 
more contaminated material formed in whole cell 
extracts. Finally, clarification of the nature of the 
reaction and the product in vitro should aid in 
interpreting the possible role of these components 
in the cell. 

Actin has been identified in a variety of non- 
muscle cells (17) and in some cases constitutes a 
significant fraction of the total cell protein (1). It 
appears to have a role in cell motility, both in the 
classical case of the amoeba and in amoeboid 
motion in other cell types (see reference 3 for 
reviews). F-actin forms the thin (70 A) filaments 
seen in amoeba cytoplasm (16), and these fila- 
ments have been observed to aggregate into bun- 
dles under conditions which induce motility in 
isolated amoeba cytoplasm (15, 24). These bun- 
dles have been isolated from amoeba (12) and are 
without linear order and appear similar to those 
which are formed in urchin egg preparations under 
the conditions described above. Similar bundles 
are formed by Dictyostelium actin under different 
ionic conditions (20), although additional compo- 
nents may be involved. 

The biological significance of the gelation proc- 
ess and of the other two proteins involved is as yet 

unclear. Gelation has been induced in cytoplasmic 
extracts of Acanthamoeba, using methods similar 
to those developed in the urchin (14), but the 
constituent proteins are different and gelation 
would occur with purified actin in the presence of 
MgCI2. A high molecular weight protein, termed 
actin-binding protein, has been found associated 
with actin in jelled cytoplasmic extracts of mam- 
malian macrophages (7, 22); whether this protein 
is similar to the high molecular weight material 
seen in urchin cytoplasmic gels remains undeter- 
mined. The 58,000 mol wt protein which forms a 
major component of the urchin extract gel has not 
been seen as a significant component in these 
other cytoplasmic gel systems. A protein of this 
approximate size which interacts with actin has 
been observed in the acrosome of the sperm of 
Limulus (25), where it is involved in acrosomal 
extension via molecular rearrangement. More re- 
cently, an extract of a chick embryo fibroblast 
"skeleton" (prepared by removing most soluble 
components by Triton treatment) has been shown 
to contain a protein in this size range in addition to 
actin (2). Thus, further investigation of the copo- 
lymerization of actin and these other proteins in 
urchin extracts may yield useful information con- 
cerning the role of actin in a number of cell func- 
tions. 

MATERIALS AND METHODS 

Extracts of the soluble cytoplasmic proteins of unfertil- 
ized eggs of the Hawaiian sea urchin Tripneustes gratilla 
were prepared as described in detail previously (10). 
The eggs are homogenized in a medium containing 0.9 
M glycerol, 5 mM ethyleneglycol-bis-[/3-aminoethyl 
ether]N,N'-tetraacetic acid (EGTA) and 0.1 M pipera- 
zine-N-N'-bis[2-ethane sulfonic acid] (PIPES), pH 6.8, 
followed by centrifugation at 100,000g to remove cyto- 
plasmic particulates and insoluble material. The super- 
nate is dialyzed against a large volume of 0.01 M PIPES, 
pH 6.8 for 24 h at 0~ The only modification that has 
been made in this procedure since the previous report is 
the inclusion of 0.1 mM EGTA in the dialysis medium. 
Extracts are usually dialyzed in the approximate ratio of 
20 ml to 1 liter so that the EGTA present in the extract 
contributes 0.1 mM EGTA to the medium, but the 
inclusion of a fixed amount of EGTA eliminates the 
effect of different dialysis volumes and gives more uni- 
form results. Preparation of gels also follows the pub- 
lished procedure (10): 1 mM ATP and 0.01-0.02 M KCI 
are added to the dialyzed extract, and it is warmed to 35- 
40~ for 30-60 min. The resulting gel material is centri- 
fuged from the extract and dissolved in high salt solution; 
in these experiments, 0.5 M KC1 has been routinely 
used. The volume of salt solution used to dissolve the gel 
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is normally one-tenth the volume of extract from which 
the gel originated, and after centrifugation to remove 
any insoluble material the usual yield is approx. 1.5 ml of 
solution with a protein concentration of 1-2 mg/ml. 1 
mM ATP causes much of the actin present to aggregate 
as microscopic bundles during storage at 0~ Separation 
of the actin by this procedure is the starting point for the 
experiments to be described here. The complete proce- 
dure is given in Scheme I (details in text). 

G-actin was prepared by dialyzing an F-actin solution 
for 2-3 days against a solution containing 5 mM PIPES, 
0.2 mM ATP, and MgCI~, pH 6.8, with daily changes of 
the dialysis medium. After dialysis, the solution was 
centrifuged at 100,000g for 3 h to sediment any F-actin 
remaining. 1 mM NAN3, was added to all protein solu- 
tions to be held in storage. 

Photomicrographs were made with a Zeiss universal 
microscope, using Zeiss phase contrast, interference con- 
trast, and polarization optics. For electron microscopy, 
protein preparations were negatively stained with 1% 
uranyl acetate and examined and photographed in a 
Philips 201 electron microscope operated at 60 kV. 

SDS-acrylamide gel electrophoresis was done on 5% 
gels, using the methods of Weber and Osborn (27). 
Protein determinations were made by the method of 
Lowry et al. (11), using a serum albumin standard. 

ATP, GTP, all buffers, and protein molecular weight 
standards were obtained from Sigma Chemical Co., St. 
Louis, Mo. Rabbit muscle actin, sea cucumber (Holo- 
thuria atra) myosin, and beef brain tubulin were the gifts 
of Dr. Richard Himes of the Department of Biochemis- 
try, University of Kansas, Lawrence, Kansas. 

RESULTS 

Separation and Recombination o f  the Gel 
Components 

Adding 1 mM ATP to the gel material dissolved 
in high salt solution causes a slow appearance of 
microscopic bundles of F-actin filaments in the 
solution. These aggregates form over a period of 
several hours, and the solution is usually held at 
0~ overnight before further processing. Centrifu- 
gation at 25,000 g for 15 min sediments these 
actin bundles; the supernate contains the other 
proteins of the original gel polymer plus some 
residual actin. After sedimenting the actin bun- 
dles, most of the actin remaining in the supernate 
is removed by dialysis against 0.1 M KCi, 0.01 M 
PIPES, pH 6.8, containing 0.1 mM ATP and 
EGTA. The actin recombines with the other pro- 
teins in the supernate to form a gel at this ionic 
strength, and after several hours of dialysis this gel 
is removed by centrifugation at 25,000 g for 15 
min and discarded. While the salt concentration of 

the supernate is being reduced to 0.1 M in this 
manner, the pellet of actin bundles is dispersed in 
the same 0.1 M KCI solution by gentle homogeni- 
zation, and any insoluble material is removed by 
the same centrifugation procedure. The F-actin is 
stable at this ionic strength, but will not aggregate 
into bundles below 0.25-0.3 M salt. The final 
products are an F-actin solution (A) and a super- 
natant solution (S), both in 0.1 M KCI, whose 
compositions by SDS-gel electrophoresis are 
shown in Fig. la-c .  Actin is the only significant 
component of the A solution, while the S solution 
contains major proteins of 58,000 and 220,000 
mol wt, along with some unreactive actin which 
will not sediment at 100,000 g and remains as G- 
actin through the procedure. This is confirmed by 
electron microscopy, as the A solution consists of 
F-actin filaments, while the S solution contains 
only globular material. 

This procedure separates the F-actin from the 
other protein components of the gel, and it is then 
possible to determine whether gel material will 
reassemble spontaneously on their recombination. 
Considerable variability occurred in early experi- 
ments, due to the fact that the assembly of the 
recombined components to form a gel is blocked 
by low concentrations of calcium, as is gelation in 
cell extracts (10). EGTA was then maintained at 
0.1 mM through the preparative procedure and 
was added to the final A and S solutions at 1 raM. 
Under these conditions, material similar in micro- 
scope appearance to that formed on warming the 
extracts appears a few minutes after combining the 
A and S solutions at room temperature (24~ or 
at 0~ (Fig. 2). The preparative procedure results 
in solutions with protein concentrations of the 
order of i mg/ml, with the concentration of the A 
solution approximately twice that of the S; a mix- 
ture of A to S in the ratio of 1:2 is most effective 
for gelation. If 1 mM sodium azide is added to 
retard bacterial growth, the solutions are stable 
indefinitely at 0~ and can be combined to form a 
gel after weeks of storage. As might be expected 
from the composition of the protein solutions 
used, the gel formed by recombination has the 
same components in the same ratio as the original 
extract gel (Fig. ld ) .  

The recombination of these components to 
form gel is blocked by free calcium concentrations 
in the range of 5-10 x 10 -7 M, as determined 
through the use of calcium-EGTA mixtures. Gel 
material formed by recombination will also disin- 
tegrate and disappear if the calcium concentration 
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pellet, discard 

0.9 M glycerol 
T. gratiUa eggs + 0.1 M PIPES, pH 6.8 

5 mM EGTA 

homogenize, O~ 
100,000g, 1 h, 2~ 

supernate 

dialyze, 0.01 M PIPES, 0.1 mM EGTA + 
ATP, 24 h, 2~ 

000 g, 30 min, 2~ 

dialyzed supernate pellet, discard 

+ 1 mM ATP 
+ 0.02 M KCI 
30-60 min, 35-40"C 

jelled solution 

~ u g e ,  15 min, 2~ 25,000 g, 

gel pellet supernate, discard 

ooze, 
5,000 g, 30 min, 2~ 

insoluble, discard dissolved gel 

actin bundles 

disperse, 0.1 M KCI, 0.01 M 
PIPES, 0.1 mM EGTA + ATP 

5 rain, 2"C 

supernate pellets, discard 

+ EDTA, + NaNa 1 mM ATP 

A solution 
SCHEME I 

~ + 1 mM ATP 
overnight, 0*C 
centrifuge, 25,000g, 15 rain, 2"C 

supernate 

dialyze, 0.1 M KCI, 0.01 M 
PIPES, 0.1 mM EGTA + ATP 

centrifuge, 25,000g, 15 min, 2~ 

supernate 

+ EGTA, + NaNa 1 mM ATP 

S solution 
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FmURE 1 SDS-polyacrylamide gel electrophoresis. (a) 
Standard containing rabbit muscle actin and sea cucum- 
ber myosin; (b) isolated actin of A solution; (c) superna- 
tant solution S; (d) gel formed by recombination of 
components after 30 min at 0~ (e) gel formed by 
recombination of components after 7 h at 24~ (f) 
100,000 g pellet from extract centrifuged at 0~ (g) 
100,000 g pellet from depleted extract centrifuged at 
30~ and (h) actin and myosin standard for f and g. 

of the solution is raised to this value. The gelation 
of dialyzed cell extracts was found previously to be 
blocked at 0.1 mM calcium (10); the use of cal- 
cium-buffered solutions showed that the minimum 
calcium concentration for the prevention of gela- 
tion in extracts is also 5-10 • 10 -7 M. 

Negative staining of the get material which ap- 
pears after mixing A and S solutions demonstrates 
that the gel is formed of linear aggregates of F- 
actin filaments (Fig. 3). A faint and variable cross- 
banding is visible, but these aggregates display 
little evidence of ordered structure. However, gel 
samples negatively stained after several hours at 
24~ or 1 day or more at 0~ appear very regu- 
larly crossbanded in the electron microscope (Fig. 
4), although no change in appearance occurs at 
the light microscope level. As in the case of actin 
paracrystals (8), there is an alternation of regions 
where the actin filaments appear either narrow 
and sharp or wider and more fuzzy, depending on 
whether the constituent helical strands overlap or 
are seen side by side. The pattern in the gel mate- 
rial is more complex, however, in that there ap- 

pears to be an area of increased thickness or den- 
sity near the center of the narrow region of the 
actin filaments, and the region where the filaments 
are less sharp appears to be subdivided into two 
bands (Fig. 5). The repeat period is approx. 365 
A, and the apparent center-to-center spacing be- 
tween the filaments in these arrays is also very 
regular and is approx. 80 A. The change from a 
less ordered to a more ordered structure is not 
accompanied by any change in the protein compo- 
sition of the gel (Fig. 1 d and e), indicating that a 
reorganization of existing molecules is involved 
and not the addition of new units from the sur- 
rounding medium. 

Actin Polymerization as the Basis o f  Extract 
Gelation 

The demonstration that separated protein frac- 
tions rapidly assemble to form a visible gel on 
recombination at 0~ indicates that the gelation of 
dialyzed extracts on warming must proceed by a 
different and possibly more complex mechanism. 
No gel forms in extracts after extended storage at 
0~ in the presence of ATP and KCI, and such 
extracts take several hours to form a gel at room 
temperature; only at 35~176 does visible gel 
material appear in a short time. If components of 
either the A or S fraction of the gel are limiting in 
the extract, this can be determined by adding each 
of these two fractions separately to the extract at 
0~ Since the salt concentration of the dialyzed 
extract is very low and that of the protein fractions 
is 0.1 M, a 1:1 mixture will have a salt concentra- 
tion of 0.05 M, which should allow gelation. No 
effect is seen on mixing the S fraction with extract 
at 0~ but mixing the A fraction with the extract 
causes the immediate formation of large quantities 
of gel. Thus the unavailability of F-actin appar- 
ently prevents the gelation in the dialyzed extracts 
at 0~ 

F-actin could be rendered unavailable for gela- 
tion in the extract by a variety of mechanisms, the 
simplest being that the actin in the extract is in the 
form of G-actin and is transformed to F-actin on 
warming, followed by its combination with the 
other components to form gel material visible in 
the light microscope. This possibility can be inves- 
tigated by centrifugation of the extract at sufficient 
force to sediment any F-actin present. The pellet 
resulting from centrifugation of dialyzed extract 
for 3 h at 100,000g at 0~ contains relatively little 
actin (Fig. l f), and the extract gels normally after 
such centrifugation. Thus, the presence of actin in 
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FIGURE 2 Photomicrographs of gels formed by recombination of components in 0.1 M KCI at 24~ (a) 
Phase contrast; and (b) interference contrast. Both • 600. Reference mark = 10 p,m. 

the G form with a G-F  transformation during 
warming appears to be a possible mechanism for 
gelation in extracts. 

Such a G-F  transformation is difficult to dem- 
onstrate independently of gelation in extracts, for 
any F-actin formed during warming combines im- 
mediately with the other components to form a 
gel. However, the amount of actin present in the 
extract is in excess of that which can combine with 
the 58,000 and 220,000 mol wt components, as 
can be shown by the following experimental se- 
quence. A dialyzed extract prepared by the usual 
methods is warmed in the presence of ATP and 
KC1, and the resulting gel is removed. The super- 
natant solution after gel removal, termed a de- 
pleted extract, is returned to 0~ and 1 mM ATP 
is added. This depleted extract forms no gel on 
mixing with F-actin solution, demonstrating that 
one or more of the S-fraction components has 
been removed by gelation. This extract will also 
not respond to the addition of S fraction at 0~ 
indicating that no F-actin is available for combina- 
tion. However, if such extract is mixed with S 
fraction and raised to 35~176 for 30-60 min, a 
small amount of typical gel material appears in the 
solution. This suggests that some G-actin remains 

in the depleted extract after gelation and that this 
G-actin is polymerized to F-actin on warming and 
can then combine with the added S-fraction com- 
ponents. This can be shown more directly by add- 
ing S fraction to aliquots of the depleted extract 
over a warming and cooling cycle. Addition of S 
fraction to depleted extract does not result in gel 
material until after 30-60 min on warming, dem- 
onstrating that the G-F  transformation requires 
the same time period as in the original extract; 
and, in addition, gelation on adding S fraction 
declines after cooling and disappears after several 
hours at 0~ The G-F  transformation is thus not 
only stimulated by warming, but reverses on cool- 
ing, so that the actin of extracts stored at 0~ is 
always in the form of G-actin. 

This transformation of G- to F-actin in depleted 
extracts on warming can also be demonstrated by 
warming such an extract to 35~176 for 30 min to 
polymerize the actin and then centrifuging at 
100,000 g for 3 h at 25~176 The actin remains 
polymerized at this temperature, and a significant 
actin band is seen in the pellet (Fig. l g  and h). 
The polymerization of actin in a regular extract 
can be shown by utilizing the calcium blockage of 
gelation. 0.1 mM calcium is added to an extract, 
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FIGURE 3 Gel material formed by recombination of components, negatively stained after 1 h at 24~ 
x 102,500. Reference mark = 0.1 ttm. 

FIGURE 4 Gel material formed by recombination of components, negatively stained after 24 h at 0~ 
x 102,500. Reference mark = 0.1 t.tm. 

FIGURE 5 Same material as Fig. 4 • 205,000. Reference mark = 0.1 ttm. 

and the extract is warmed and centrifuged at 
100,000g for 3 h at 25~176 No gel forms in the 
presence of calcium, but actin polymerizes to the F 
form and is present in the pellet. 

It has been reported that cytoplasmic actin, un- 
like muscle actin, displays a marked temperature 
dependence of polymerization in KC1, which is 
abolished in the presence of 2 mM MgC12 (5). The 
addition of 2 mM MgC12 to egg extracts causes the 
rapid appearance of a structureless precipitate, 
which contains actin but does not resemble the gel 
formed on warming. 

Experiments with G-actin 

To investigate the behavior of G-actin in this 
system, samples of F-actin prepared as described 

previously were depolymerized by dialysis. Sam- 
ples of approx. 1 ml were dialyzed against 200 ml 
of 5 mM PIPES, pH 6.8, 0.2 mM ATP and MgC12 
at 0~ for 3 days, with daily changes of the dialysis 
medium. After completion of dialysis, the solution 
was centrifuged at 100,000 g for 3 h; no F-actin 
was visible by negative staining of the resulting 
solution (Fig. 6). The G-actin polymerizes rapidly 
at 24~ to F-actin in the presence of 1 mM ATP 
and 0.05-0.1 M KCl (Fig. 7); this F-actin behaves 
indistinguishably from the original F-actin with 
regard to gelation on mixing with S fraction or 
extract. Polymerization of the G-actin also occurs 
in the presence of ATP and millimolar magnesium 
or calcium. 

More directly related to conditions in the ex- 
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FICtIRE 6 Depolymerized actin prepared by dialysis. • 102,500. Reference mark = 0.1 t~m. 

FIGURE 7 Same material as Fig. 6, polymerized by the addition of 0.1 M KCI. 1 h, 24~ x 102,500. 
Reference mark = 0.1 t~m. 

tract is the interaction of G-actin with the compo- 
nents of the S fraction. If G-actin in low salt 
solution is mixed with S fraction containing suffi- 
cient KCI to provide a final concentration of 0.05- 
0.1 M and if ATP is maintained at 1 raM, a gel 
appears in approx. 30 min at 24~ The time for 
gelation is approximately halved in the presence of 
1 mM MgC12, which presumably acts to accelerate 
the (3- to F-actin transformation which must be 
the first step of this reaction. Polymerization oc- 
curs more slowly at 0~ visible gel material ap- 
pearing approx. 2 h after combining the compo- 
nents. The reaction time at 0~ is also shortened 
in the presence of magnesium, in agreement with 
the reported effect (5) of magnesium on the tem- 
perature dependence of the polymerization of cy- 
toplasmic actin. In all cases, the fine structure of 
the gel is identical to that of the gel formed directly 
from F-actin and undergoes similar changes with 
time. 

The observation that dialyzed extracts, which 
the evidence indicates contain G-actin plus the 
58,000 and 220,000 mol wt components, never 
form gel during extended storage at 0~ indicates 
that the transformation of G- to F-actin is in- 

hibited in such preparations, and it is this inhibi- 
tion which is apparently overcome by warming. 
This effect of extract on actin polymerization can 
be demonstrated directly by combining G-actin 
and extract. A 1:1 mixture of dialyzed extract 
containing KCI and ATP with G-actin solution 
increases the actin concentration of the extract 
approximately five times over its usual value, yet 
such preparations often form no gel at 0~ or form 
only a small amount after periods of 24 h or more. 
Since extract will react immediately with F-actin, 
the rate of actin polymerization in such mixtures 
must be greatly reduced. A measure of the effect 
of extract on actin polymerization is provided by 
the observation that a mixture of G-actin and S 
components forms a gel in 2 h or less under similar 
conditions. 

DISCUSSION 

In the first experiment of this sequence, gel mate- 
rial appeared in an urchin egg extract of unknown 
composition, by an unknown mechanism which 
required warming to 35~176 a temperature 
considerably above physiological for the sea ur- 
chin. Rather than attempting to determine the 
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nature of the reaction occurring under such com- 
plex circumstances, it seemed more reasonable to 
separate the gel from the rest of the extract, deter- 
mine its composition, and then investigate 
whether the reaction which occurs in the extract 
can be duplicated in a system containing only 
these components. The information obtained in 
this manner can then be utilized to analyze the 
reaction in the extract and ultimately that in the 
cell. 

The fortuitous discovery that the addition of 
ATP to gel material dissolved in high salt solution 
causes the F-actin present to aggregate into micro- 
scopical bundles provides a simple method for the 
separation of the actin from the other two proteins 
which make up the gel. This bundle-forming proc- 
ess is of intrinsic interest because of its apparent 
similarity to the formation of actin bundles or 
fibrils in the cytoplasm of amoeboid cells (15, 16), 
but in the present experiments it is of value pri- 
marily as a method of preparing actin. The two 
fractions which result, one containing F-actin and 
the other the 58,000 and 220,000 mol wt compo- 
nents, are stable indefinitely in 0.1 M KC1, but on 
combination, even at 0~ form gel material iden- 
tical to that formed in warmed extracts. This reac- 
tion is spontaneous on the recombination of F- 
actin with the other gel components and does not 
require warming or the participation of any other 
component of the extract. 

In the light microscope the first material to 
appear after the recombination of the components 
consists of fine threads or fibrils at the limit of 
resolution; these rapidly associate to form a gel 
network. Electron microscopy demonstrates that 
these threads are formed by the side-by-side ag- 
gregation of F-actin filaments, but this process 
differs from actin bundle formation in two signifi- 
cant ways. These multicomponent fibrils formed 
on mixing the two fractions adhere randomly to 
each other, giving rise to the gel network, and they 
also gradually develop a highly ordered structure 
evident from the banding pattern; neither of these 
processes occurs during bundle formation. The 
banding pattern is at first irregular and varies in 
different areas of the gel, but in time it becomes 
uniform and regular throughout all the material. 
The evidence indicates that this takes place by the 
reorganization of existing material as the protein 
composition of the gel does not change during this 
process. 

The axial periodicity of this material indicates 
that the F-actin filaments are ordered as they are 

in actin paracrystals, but the more complex band- 
ing pattern must be due to the other proteins 
present. In related observations (9), the cross 
striations of actin paracrystals have been attrib- 
uted to the presence of tropomyosin and troponin. 
EM observation allows only descriptions of the 
patterns; the molecular basis of the pattern can be 
elucidated by image analysis, including optical dif- 
fraction which has proven successful in studies of 
paracrystals of F-actin-tropomyosin-troponin (4, 
13, 21, 26). Such a study is presently under way 
by D. DeRosier, E. Mandelkow, A. Silliman, 
L. G. Tilney, and R. E. Kane. This study is being 
done parallel with those on the material of the 
Limulus sperm acrosome described by T, ilney 
(25). This latter material contains actin and a 
protein of 55,000 tool wt in approximately equi- 
molar ratio and has a pattern different from that 
observed in the sea urchin gel material. 

It may be significant that the calcium concentra- 
tion which controls the assembly of these compo- 
nents into a complex structure is in the same range 
as that which induces contraction in amoeba cyto- 
plasm preparations (23). The report (2) that the 
skeleton remaining after extraction of vertebrate 
cells with Triton has a protein composition similar 
to that of the urchin gel material suggests that 
these proteins may be involved in such a cyto- 
skeleton. If this is the case, the induction of con- 
traction might require a modification of these 
structural units, and it appears that both can be 
effected by calcium concentrations in the physio- 
logical range. 

The formation of gel material through the com- 
bination of F-actin with the other protein compo- 
nents is very likely the last step of the reaction 
which takes place on warming the extracts, as 
shown by the immediate gelation which occurs on 
adding F-actin to such extracts. It is the lack of F- 
actin in extracts, demonstrated by the absence of 
actin from the 100,000 g pellets, which prevents 
their gelation at 0~ When these extracts are 
warmed, G-actin is transformed to F, slowly at 
24~ and more rapidly at 35~176 resulting in 
the formation of gel. Thus, is appears that the G - F  
transformation is inhibited at low temperatures 
and that warming causes gelation by overcoming 
this inhibition. Although a temperature depend- 
ence of polymerization of cytoplasmic actin has 
been reported (5), the inhibition of polymeriza- 
tion in extracts appears to be due to more than 
this, as seen by comparing the results of mixing (at 
0~ G-actin with S solution and with extract. In 
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the former case, gel forms in a few hours due to 
the transformation of G- to F-actin, while in the 
latter case gel may appear in a day or more, if at 
all. The experiments with depleted extracts dem- 
onstrate additionally that if the F-actin formed on 
warming is not "trapped" into a temperature-in- 
sensitive gel, it reverts to G-actin on cooling to 
0~ indicating that the process is not merely the 
heat denaturation of an inhibitor of polymeriza- 
tion. 

Related observations on the effects of tempera- 
ture have been made in a number of other biologi- 
cal systems. In the pioneering work of Thompson 
and Wolpert (24) on isolated amoeba cytoplasm, 
motility was induced only when preparations 
cooled to 4~ were warmed to room temperature 
in the presence of ATP, and this motility was 
correlated with the appearance of fibrillar mate- 
rial. Pollard and Ito (15) observed that the induc- 
tion of motility on warming such preparations was 
associated with the appearance of 70 A filaments 
which then aggregated to form microscopical bun- 
dles. These 70 A filaments were identified as F- 
actin by the addition of muscle heavy meromyosin 
(16) and must arise via a G-F  transformation in 
the cytoplasm. A similar dependence of actin po- 
lymerization on temperature has been observed in 
mammalian macrophages (7, 22). These results 
indicate that G-actin is present at low tempera- 
tures and is transformed reversibly to F-actin on 
warming in a variety of cell types. This tempera- 
ture effect is useful in the study of actin polymeri- 
zation in vitro, but the nature of the intracellular 
process involved in controlling the state of actin 
remains unknown. 

The participation of actin in cellular structure 
and motility may be controlled at another level by 
calcium, which these experiments have shown to 
influence the assembly of F-actin with other pro- 
teins to form possible cytoskeletal units and which 
will also induce cytoplasmic contraction (23). The 
cell divisions and later developmental stages of the 
urchin embryo must involve control mechanisms 
of this kind. Studies of the cleavage furrow of the 
sea urchin egg (19) have shown that changes in the 
form and distribution of fibrous material may oc- 
cur over relatively short periods of the cell cycle. 
Amoeboid motion plays a major role in the cell 
movements at gastrulation of the sea urchin em- 
bryo (6), and experimental procedures which in- 
duce amoeboid movement in uncleaved marine 
eggs have been reported (18). The balance be- 
tween pools of unpolymerized and polymerized 

actin and its combination with other proteins will 
presumably vary with division cycles and stage of 
development; these differences may be detectable 
using the extraction methods described here. This 
may provide a useful approach to the study of the 
role of these proteins in cell division and develop- 
ment. 
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