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Abstract Neuronal soma segmentation is essential for mor-
phology quantification analysis. Rapid advances in light mi-
croscope imaging techniques have generated such massive
amounts of data that time-consuming manual methods cannot
meet requirements for high throughput. However, touching
soma segmentation is still a challenge for automatic segmen-
tationmethods. In this paper, we propose a soma segmentation
method that combines the Rayburst sampling algorithm and
ellipsoid fitting. The improved Rayburst sampling algorithm
is used to detect the soma surface; the ellipsoid fitting method
then refines jagged sampled soma surface to generate smooth
ellipsoidal shapes for efficient analysis. In experiments, we
validated the proposed method by applying it to datasets from
the fluorescence micro-optical sectioning tomography
(fMOST) system. The results indicate that the proposed meth-
od is comparable to the manual segmented gold standard with
accurate soma segmentation at a relatively high speed. The
proposed method can be extended to large-scale image stacks
in the future.

Keywords Image analysis . Soma segmentation . Rayburst
sampling algorithm . Distance transform

Introduction

Neuronal morphology quantification analysis plays an impor-
tant role in neuroscience, such as neuron classification, dy-
namic analysis, electrophysiology simulation, and even un-
derstanding the relationship between functions and structures
in the brain (Chen et al. 2012; Svoboda 2011; Yan et al. 2013;
Ascoli et al. 2001; Sholl 1953). Neuronal soma morphology
characteristics such as the soma location and size are impor-
tant indices for neuron morphology quantification (Meijering
2010).

In recent decades, rapid advances in optical imaging tech-
nology have generated large amounts of data for neuron mor-
phology research (Peng et al. 2015; Peng and Long 2010;
Peng et al. 2010). This has made manual analysis methods
too time-consuming to achieve a high throughput despite be-
ing the best way to get accurate results (Saraswat and Arya
2014). Consequently, much effort has been focused on devel-
oping automatic soma reconstruction methods. Many efficient
algorithms have been proposed, such as the watershed trans-
form (Lin et al. 2003), graph cut-based method (Alkofahi et al.
2010), and clustering-based method (Liu et al. 2008).
However, many grayscale-based algorithms were designed
for two-dimensional image data, and quite a few of them can
be directly extended to three dimensions because of the inten-
sity anisotropy in light microscopy imaging data (He et al.
2014). Low-quality images and clustered somata are further
challenges (Saraswat and Arya 2014). Therefore, an efficient
segmentation method would require a combination of multi-
ple methods.
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Cell segmentation methods developed in recent years have
combined many algorithms (Meijering 2012). For example,
methods that use different detection algorithms for isolate and
touching cells have exhibited very good performance (Xu
et al. 2014). Guo et al. (2014) proposed a method that uses a
Bayesian network and the watershed algorithm to separately
treat isolated and touching cells. Alkofahi et al. (2010) pro-
posed a semiautomatic method that combines the initial seg-
mentation algorithm for seed point detection and the graph-cut
algorithm for boundary segmentation. He et al. (2014) pro-
posed a method using the concave point clustering method for
detecting touching somata and using the randomwalk method
for cell segmentation. However, efficient segmentation of
both isolated and touching somata could still be a problem
for large light microscopy imaging datasets.

The Rayburst sampling algorithm is a rapid method for
convex structure detection (Wearne et al. 2005; Rodriguez
et al. 2006). In our previous work, the Rayburst sampling
algorithm was used for neurite tracing and proved to be highly
accurate (Ming et al. 2013). However, this version of the
Rayburst algorithm is not suitable for neuron soma segmenta-
tion. Yan et al. (2013) proposed an improved Rayburst sam-
pling algorithm for soma segmentation of a Golgi stained
dataset that demonstrated high performance for hollow
somata. However, this method cannot process closely touch-
ing somata well. Themain problem is that the rays always stop
at the wrong position by the intensity threshold (Quan et al.
2014).

In this paper, we propose a method for neuronal soma seg-
mentation from light microscope images. The proposed meth-
od combines an improved Rayburst sampling algorithm and
ellipsoid fitting method. This improved Rayburst sampling
algorithm can detect the surface of touching somata from so-
ma centroids detected by the distance transform based meth-
od, and the ellipsoid fitting method is used to generate smooth
segmentation results based on sampling results from the
Rayburst sampling algorithm. This method was validated by
using datasets from the green fluorescence micro-optical sec-
tioning tomography (fMOST) system (Gong et al. 2013) and
volume-object annotation (VANO system (Peng et al. 2009).

Method

Method Overview

The flowchart of the proposed method is shown in Fig. 1. In
the image preprocessing step, the image stack is enhanced by
multi-scale Laplace of Gaussian (LoG) filters. Then, an adap-
tive thresholding method (Otsu 1979) used to extract the soma
region. The soma localization step includes the Euclidean dis-
tance transform (EDT) and regional maxima search. These
regional maxima in the distance map are identified as soma

location candidates by using the H-dome transform based on
EDT. Finally, soma segmentation is performed with the im-
proved Rayburst sampling algorithm followed by the ellipsoid
fitting method.

Image Preprocessing

The resolutionof the original image stack from the fMOSTdataset
was anisotropic (0.5 μm × 0.5 μm × 2.0 μm). We converted the
resolution to isotropic (0.5 μm × 0.5 μm × 0.5 μm) by bilinear
interpolation of slices of the fMOST dataset. The resolution of the
VANOdataset was isotropic (0.24μm×0.24μm×0.24μm) and
thus did not need to be converted.

Fig. 1 Flowchart of the proposed method
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In this study, the image foreground regions contained
somata, and the background contained unrelated structures.
In the fMOST data, the somata and several neurites generally
had a relatively high intensity. We used a multi-scale LoG
filter to enhance the soma regions.

The improved filter is defined as

Ibg ¼ I−∑k
i¼1LoGσ ið Þ*I ð1Þ

I fg ¼ I−Ibg−positive ð2Þ

where I is the original image, Ifg is the foreground, Ibg is the
background, and LoGσ(i) denotes the operator of the LoG filter
with the sigma value σ(i). Ibg − positive is the positive elements
of Ibg, and the negative elements are set to zero. k is the sub-
script of the maximum filter scale σ(k).

The sigma value σ is set based on the soma radius, and LoG
filters with different σ may enhance structures with different
sizes. Subtracting the filtered image from the original image
can weaken the image background.

This makes the image foreground clearer than before, and
an adaptive thresholding method (Otsu 1979) can be used to
extract the image foreground. Finally, holes in somata are
filled, and small regions (less than 200 voxels) are deleted to
refine the foreground.

Soma Localization

Soma locations are regarded as the starting points for segmen-
tation. Generally, soma locations can be described as soma
centroids; these points always have a long distance to the
background. Distance transform (DT) can be used to evaluate
the shortest distance value from foreground voxels to back-
ground voxels. The regional maxima in the distance map are
candidates for soma centroids. The H-dome transform
(Vincent 1993) is used to eliminate reluctant regional maxima
(regarded as jitter, as shown in Fig. 2) and provide candidate
soma locations for surface detection.

Soma Surface Detection

The improved Rayburst sampling algorithm is based on DT
instead of image intensity. The somata in the image stack from
the fMOST dataset were solid with similar intensities, so the
boundaries between touching somata were always unclear.

In a distance map, a distance value is defined as the shortest
distance from the foreground voxels to the background region.
Voxels near soma centroids can have a larger distance value
than voxels near the foreground boundary. Under the assump-
tion that a soma is shaped like an ellipsoid, the touching region
is concave and narrow, as shown in Fig. 3. Voxels in this
region are closer to the background than inside voxels, so
the real boundary between touching somata can be around
the regional minima of the distance map in the touching

region, as shown in Figs. 4(a) and (b). These regional minima
can serve as good stopping positions for rays.

For convenient analysis, we utilized the idea of a basin and
simulated rainfall in a watershed transform. As shown in Fig.
3, foreground voxels can be classified into four types based on
different locations in the foreground. We assumed that simu-
lated rainfall flows along the opposite direction of the distance
gradient and that the rain can eventually reach the regional
maxima of the image.

The four types of voxels in the foreground are as fol-
lows. (1) Type 1 is regional maxima, which include soma
centroids and are regarded as the starting points for sam-
pling rays; see regions C and D in Fig. 3. (2) Type 2 is
voxels around the soma centroid that do not stretch to other
touching somata to form the distinct region of one soma;
see region B in Fig. 3. (3) Type 3 is voxels of region A
between the boundary region B and background. This re-
gion stretches from one soma to the other of a touching
soma pair. This region is closer to the background than
type 2. It contains the touching parts of two somata as well
as uncertainty; see region A in Fig. 3. (4) Type 4 is back-
ground voxels; see region E in Fig. 3.

Fig. 2 Jitter in distance map: Two somata on a distance map. The light
intensity indicates a small distance value. The region between the two
soma centroids is the jitter

Fig. 3 Four types of points on a distance map. A lighter intensity
represents a smaller distance value
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The soma centroids detected during the soma localization
step are regarded as type 1 voxels, and the sampling ray starts
from these voxels. As shown in Fig. 4, the difference between
the touching and isolated somata is type 3 voxels. Touching
somata contain uncertain regions with type 3 voxels. The best
stopping positions for rays can be set at regional minima in
type 3 voxels for touching somata and type 2 voxels for iso-
lated somata.

For this reason, we defined two kinds of boundaries for
sampling rays to detect the soma surface. The inner
boundary is between the type 2 and 3 regions for one
soma; see the inside arrows in Fig. 4(a). The outer bound-
ary is between a type 3 region and background; see the
outside arrows in Fig. 4(a). As shown in Figs. 4(a)–(c),
the outer boundary reflects the final contour for isolated
and touching somata. The outer and inner boundaries es-
pecially coincide with each other for an isolated soma. As
noted earlier, the outer boundary can be set to the regional
minimum at the touching part or background for touching
somata.

Overall, rays run along the direction of the sampling
core until the distance value increases or becomes zero.
The stopping conditions for sampling rays can be set as
follows: (1) the rays reach the background voxels while
the distance value is zero, and (2) rays reach the

regional minima in the touching region while the dis-
tance value increases.

In contrast, the inner boundary can be set at a position
where the distance value does not change, or it would coincide
with outer boundary. This boundary could be used to fix the
outer boundary. The complete flowchart for this algorithm is
shown in Fig. 5.

Finally, the actual sampled boundary consists of discrete
voxels around the soma surface. As described in the next
section, we use an ellipsoid fitting method to generate the
segmentation result and a volume threshold to filter the
results.

Soma Shape Fitting

Most somata in the fMOST data are shaped like ellip-
soids, so we propose an ellipsoid fitting method to gen-
erate soma segmentation results based on the sampling
results from the method described in the previous
section.

The B2AC method for the direct least squares fitting
of ellipses was proposed by Fitzgibbon and is widely
used for two-dimensional image data. Li and Griffiths

Fig. 5 Flowchart of the improved Rayburst sampling algorithm

Fig. 4 Soma surface sampling for (a, b) touching somata and (c) isolated
somata
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(2004) discussed the constraint conditions for ellipsoids
and extended the method to three dimensions. We ap-
plied a numerically stable method for least squares el-
lipsoid fitting based on the ellipsoid fitting method (Li
and Griffiths 2004) and enhanced direct ellipsoid fitting
method (Maini 2006) to point data sampled with the
Rayburst sampling algorithm.

The ellipsoid surface can be described by a quadric equa-
tion as follows:

ax2 þ by2 þ cz2 þ dxyþ exzþ fyzþ pxþ qyþ rzþ k

¼ 0 ð3Þ

The parameter vectors can be defined as follows:

a ¼ a b c d e f p q r k½ �T ;
x ¼ x2 y2 z2 xy xz yz x y z 1

� �
ð4Þ

The parameter a can be solved by sampling data with the
ellipsoid fitting method.

First, sampled data are scaled (Maini 2006) for numerical
stability:

x
^ ̂ ¼ x−xmin

Sx
; y
^ ̂ ¼ y−ymin

Sy
; z
^ ̂ ¼ z−zmin

Sz
ð5Þ

where xmin , ymin , zmin are the minimum values of coordinates
on the X, Y, and Z axes, respectively. Sx , Sy , Sz are scale factors
for coordinate data on these three axes.

According to the ellipsoid fitting method (Li and Griffiths
2004), the main objective is to solve a generalized eigenvalue
problem. a1 is an eigenvector corresponding to the only pos-
itive eigenvalue of the eigenvalue system:

Ma1 ¼ λa1 ð6Þ

Here, a1 is part of the parameter vector a,

a ¼ aT1 ; a
T
2

� �
; a1 ¼ a b c d e fð ÞT ; a2 ¼ g h k lð ÞT ð7Þ

M is a matrix for the sampled data and a constraint condi-
tion of the ellipsoid equation that is defined as follows:

M ¼ C−1
1 S1−S2S−1

3 ST
2

� � ð8Þ

In Eq. (8), S is a scatter matrix that can be calculated from
the sampled data pi(xi, yi, zi):

S ¼ DTD;D ¼ X 1 X2…Xnð ÞT ;
Xi ¼ x2i y

2
i z

2
i xiyi xizi yizi xi yi zi 1

� �T ð9Þ

S ¼ S1 S2

ST
2 S3

� �
;

S1 ¼ DT
1D1

S2 ¼ DT
1D2

S3 ¼ DT
2D2

8
<

:
ð10Þ

S1 , S2 , S3 are partitioned matrices of the matrix S with
dimensions of 6 × 6, 6 × 4, and 4 × 4, respectively (Li and
Griffiths 2004; Halir 1999).

The matrix C provides a constraint for ellipsoid fitting and
was set to 4J − I2 = 1 in this study, based on Li and Griffiths’
work. According to the equation given by Li and Griffiths, the
matrix C can be calculated as.

C ¼ C1 06�4

04�6 04�4

� �
, where

C1 ¼

−1 1 1
1 −1 1
1 1 −1

−1
−1

−1

0

BBBBB@

1

CCCCCA
ð11Þ

a1 is the eigenvector associated with the only positive ei-
genvalue of the eigenvalue system in Equation (6). a2 is cal-
culated by

a2 ¼ −S−1
3 S2a1 ð12Þ

The parameters of the ellipsoid equation are calculated
through this procedure. Then, the soma segmentation results
are generated with the ellipsoid equation. Finally, a volume
threshold is set according to the actual soma size to filter the
correct soma regions.

Results

The proposed method was validated on a workstation (Intel
Corel i7-4810MQ 2.8 GHz, 16 GB RAM, NVIDIA Quadro
K3100 M, Microsoft Windows 7). The test data contained
four image stacks: three were from the fMOSTsystem labeled
with green fluorescence (Gong et al. 2013) and the last was
from VANO (Peng et al. 2009). The performance of the pro-
posed method was evaluated in terms of soma localization or
segmentation for the datasets. Table 1 presents the main pa-
rameters of our proposed method.

Evaluation of Soma Localization

The recall and precision were used to evaluate the soma local-
ization results. The ground truth for the evaluation was deter-
mined manually. We did not consider all broken somata for
both the ground truth and results. A soma was accepted if the
Euclidean distance between the automatically located soma
centroid and manually labeled soma centroid was less than
Rc, which is the mean soma size described by the radius of
somata in images. About 30 somata were extracted randomly
from the image stacks. The maximum length of their axes
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were used to calculate Rc, which was set to 7 μm for the
fMOST datasets and 1.5 μm for the VANO dataset.

The recall and precision were defined as follows:

recall ¼ N correctlyð Þ
N allð Þ ð13Þ

precision ¼ N correctlyð Þ
N groundtruthð Þ ð14Þ

where N(correctly) denotes the number of somata correctly
located by the automatic algorithm and N(groundtruth) is the
soma number of the ground truth. N(all) represents the num-
ber of somata located by the automatic algorithm.

The image stack from VANO contained 80 cells and had
dimensions of 236 × 249 × 105 voxels. Cells were clustered in
this image stack, as shown in Fig. 6(a). As shown in Fig. 6(b),
most of the cells in the image stack were segmented with the
proposed method. The proposed method also showed good
results for touching somata. The soma segmentation had a
runtime of 4.8 s with a recall of 96.2% and precision of 95.0%.

The datasets from the fMOST system included neuronal
somata and neurite. All of these image stacks contained touch-
ing somata. Table 2 presents the results and soma segmenta-
tion runtime,(code was implemented in MATLAB). The pre-
cision and recall were more than 90%, excluding the broken
somata around the image border. The proposed method was
able to segment most of the somata in the image stack. The
proposed method was compared with the original Rayburst
sampling algorithm (Rodriguez et al. 2006), whose results
are also presented in Table 2. The original Rayburst sampling
was added to our pipeline for soma segmentation to generate
results.

Image stacks 1 and 2 contained more touching somata than
image stack 3 (7 complete touching somata in image 1, 12

complete touching somata in image 2, 2 complete touching
somata in image 3). The proposed method clearly performed
better than original Rayburst Sampling Algorithm. The origi-
nal Rayburst sampling algorithm could not process touching
somata well and missed touching soma pairs. The original
Rayburst sampling tended to generate bigger soma segmenta-
tion results than the proposed method.

For the proposed method, the main error was from flat or
elongated somata. Elongated somata can result in more than
one position and be segmented as more than one soma. The
centroid of flat somawith a small distance value can bemissed
in the jitter elimination step, these types of somata can cause
the regional maximum region (see C in Fig. 3) to be missed
when they are touching other large somata.

Evaluation of Soma Segmentation

The segmentation results were also evaluated by using the
overlap ratio. This describes the ratio of the overlap parts for
two regions and is defined as follows:

overlap ratio ¼ Op

Segþ GTð Þ=2 ð15Þ

Op ¼ Seg∩GT ð16Þ
where, op is the size of the overlapping region of the segmen-
tation result and ground truth for one soma, Seg is the seg-
mentation region of one soma, and GT is the region size of the
manually determined ground truth.

A small image stack (145 μm × 145 μm × 62.5 μm) con-
taining 30 somata was extracted from image stack 1 for eval-
uation, and 23 somata with clear and complete boundaries in
this image stack were reconstructed manually.

Table 1 Parameter selection in
experiments Parameter Value Notes

Sigma of
LoG filters

1–4 A multi-scale LoG filter can enhance the soma blob at different sizes. A
larger sigma consumes more time, so proper sigma selection is
important.

Volume
threshold

fMOST data:
4200 (voxel)

VANO data: 115
(voxel)

Eliminates the small regions of the binary image. The value is set based on
the soma size.

Jitter height 0–2 Eliminates the distance map jitter of height h. The value selection depends
on the real soma radius.

Rays 258 rays Controls the sampling and speed precision of the Rayburst sampling
algorithm.

Rc fMOST data: 14
(voxel)

VANO data: 6
(voxel)

Rc is the mean soma radius used to estimate the soma localization.
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The original Rayburst sampling algorithm (Rodriguez et al.
2006) and improved Rayburst sampling algorithm for soma
segmentation were also compared. To generate the segmenta-
tion results, the original Rayburst sampling algorithm was
combined with the ellipsoid fitting method. The soma cen-
troids for the original Rayburst sampling algorithm were la-
beled manually. The intensity threshold was set to 146 based
on the manual trials.

Fig. 7 shows the overlap ratio of somata in this image stack.
The performances of these two methods for isolated somata
were similar: the mean overlap ratio was 83.44% for the pro-
posed method and 84.35% for the original Rayburst sampling
algorithm. The main difference came from touching somata
with IDs of 17–23; see Figs. 8(b)–(e).

The touching somata are labeled by arrows in Fig. 8(a). The
results for touching somata are shown in Figs. 8(b)–(e). The
proposed method performed better for touching somata. The
results indicated that a touching soma pair with little overlap
could be accurately determined.

In Fig. 7, the soma with an ID of 17 and 23 was
segmented with a low overlap ratio. This is the left
soma in Fig. 8(c) and the complete soma in Fig. 8(d).
These two somata had a large touching region. In gen-
eral, each soma matched a larger segmentation result
than itself. The main conclusion could be that the
touching region caused sampling rays to go through
the best stopping position, which influenced the model-
ing results. This problem was obvious in the results
with 66 sampling rays.

In terms of the neuron quantitative analysis, soma size
characteristics such as the volume and surface area are impor-
tant indices. Therefore, we compared these basic soma prop-
erties for evaluation. The ratios of the ground truth to the
automatic segmentation result were used for the evaluation:

volume ratio ¼ Seg volumeð Þ
GT volumeð Þ ð17Þ

area ratio ¼ Seg areað Þ
GT areað Þ ð18Þ

where Seg(volume) is the volume of the segmentation result,
GT(volume) is the volume of the ground truth, Seg(area) is the
area of the segmentation result, and GT(area) is the area of the
ground truth.

The proposed method provided preferable results in terms
of the soma size. The ratios of most segmentation results were
in the range of 100% ± 20%, which included touching somata
(Fig. 9). The generated ellipsoid models described the soma
size relatively accurately.

Above all, the worst segmentation results were when two
somata had a large touching region. For example, for the two
somata in Fig. 8(c), one soma had low overlap ratio (ID 23 in
Fig. 7). This may be because the touching region caused more
sampling rays to go through the best stopping position and
generated a larger result than itself. Moreover, one soma can
bemissed if touching somata are so close that there is only one
regional maximum region in these somata; these touching
somata could look like a single soma.

Fig. 6 Segmentation results for
the VANO dataset: (a) original
image stack and (b) result of
proposed method. The
segmentation results are in blue,
and the soma centroid is in white.
The scale bar is 10 μm

Table 2 Results of soma
localization Image

Stack
Size (μm3) Total

somata
Rodriguez’s method Proposed method Soma

segmentation
runtimeRecall Precision Recall Precision

1 175 × 175 × 62.5 27 100.0% 85.2% 96.3% 96.3% 39.0 s

2 225 × 225 × 75 53 91.5% 81.1% 96.2% 96.2% 31.7 s

3 225 × 225 × 75 33 96.8% 93.9% 100.0% 97.0% 27.7 s
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Fig. 10 visualizes the sampling and segmentation results
for our method. For the touching somata, most of the sampling
points from one soma centroid were clustered around the
matching soma surface, and several false sampling rays termi-
nated in the other soma, as shown in Fig. 10(b). For isolated
sampling points, some were slightly far from the best position.
Modeling the surface by using the ellipsoid fitting results re-
duced the influence of false sampling points, as shown in Fig.
10(c). The model contours excluded the bad sampling points
approximated by the manually and roughly labeled soma con-
tours, as shown in Fig. 10(b).

Discussion

Our algorithm mainly comprises the Rayburst sampling algo-
rithm and ellipsoid fitting. These two parts contain simple
algorithms that were performed with high efficiency, as indi-
cated in Table 2. However, the preprocessing step occupied

more than 50% of the total runtime because the multi-LoG
filters for the 3D image dataset are too slow. Parallelizing the
technique could be a solution to improving the speed of the
preprocessing and Rayburst sampling algorithm (Yan et al.
2013).

The DT-based locating method foundmost of the somata in
images in practice, but it generated many false locations in
thick neurites or noise blob structures. Thus, we refined the
initial result by using H-dome transform and soma size infor-
mation. H-dome transform can delete redundant local maxi-
mum value points in one soma. The results showed that most
somata in an image stack could be located. H-dome transform
can delete many false locations in a short time, and the soma
volume threshold can be set according to the minimum soma
size to filter the correct somata. During the segmentation flow,
candidate soma centroids that overlap in the generated seg-
mentation would be deleted for efficiency.

On the other hand, the stopping condition for ray casting
provided a better performance with the proposed method than

Fig. 7 Overlap ratio of
segmentation results: overlap
ratio of 23 somata in the image
stack from image 1. Touching
somata have IDs of 17–23; the
others are isolated somata

Fig. 8 Segmentation results for
the touching somata. (a) Original
image stack. Touching somata are
labeled with arrows. The
segmentation results of the
touching somata are shown in
(b)–(e), where the results of the
proposed method and original
Rayburst sampling algorithm are
in blue and purple, respectively.
The complete soma are labeled by
white balls, the broken soma are
labeled by red balls. The scale bar
is 15 μm
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with the original Rayburst sampling algorithm. The stopping
condition for the original Rayburst sampling is based on voxel
intensity, which could not give the best stopping position for
the casting ray. For the variant of the original Rayburst sam-
pling algorithm using the image gradient to rectify the sam-
pling results, the results showed that somata close to each
other could not be processed well (Yan et al. 2013).

Consequently, the proposed method could make most of
the rays stop around the correct location. However, there were
still some incorrect rays in the touching somata. One reason
for this is that the EDT for the irregular structure may have
generated soma regional minima inside. Somata with a large
touching region could be another reason in that they make
many rays go through the best location. One solution could
be using DTwith intensity information (Xiao and Peng 2013).

To avoid a rough surface, the ellipsoid model was chosen to
fit the soma shape (Jung and Kim 2010) instead of a triangle
mesh. The results showed a relatively high overlap ratio

between the model and gold standard. Therefore, this ellipsoid
model can describe the soma morphology relatively
accurately.

As discussed in the previous section, most of the errors
arose from irregularly shaped somata. Another main reason
is the limitations of the ellipsoid because it is unable to de-
scribe some kinds of irregular shapes, even though the surface
sampling was sufficiently accurate. Increasing the sampling
rays could make the generated ellipsoid model approximate
the soma shape.

In the fMOST data, many somata were shaped like ellip-
soids or spheres, so the ellipsoid fitting method could be effi-
cient. For different datasets, our method could produce better
results after the preprocessing step is changed. In terms of
soma morphology, our model can approximate most somata
with a relatively high overlap ratio, as shown in Fig. 7. Under
less packed conditions, this model could be used to obtain
rough segment results.

Fig. 9 Ratios of segmentation
results

Fig. 10 Sampling points on the soma surface: (a) Maximum intensity
projection (MIP) of the original image stack. (b) Actual sampling points
on soma surface overlaid in an image stack. The two touching somata are
in green and yellow, the isolated one is in white, and the dashed line

represents the rough shape of the region surrounded by the sampling
points. (c) Segmentation results are visualized by transparent green
overlaying the sampling points. The scale bar is 10 μm
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Conclusion

This paper proposes an automatic soma segmentation method
suitable for datasets with touching soma distributions. The
proposed method contains three main parts: (1) soma detec-
tion based on DT and local maximum searching and refining;
(2) an improved Rayburst sampling algorithm for isolated and
touching soma surface detection; and (3) ellipsoid fitting to
generate the segmentation results.

The results of experiments on fMOST and VANO datasets
showed that the proposed method can perform with relatively
high accuracy on datasets contain touching somata. In terms
of soma quantification, the soma size is an important factor
(Uylings and Van 2009). An evaluation of the soma sizes
showed that the volume and surface area of the segmentation
results had relatively high accuracy, which indicates that our
method can be used for efficient soma quantification analysis.

The parameterized model generated with our method ex-
hibited a relative high overlap ratio in the experiments. The
results from this model can be used as a rough geometric
model for qualitatively analysis of soma morphology or pro-
vide a basis for neuronal electrophysiology reconstruction and
simulation with large-scale neural datasets.
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