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Abstract

Background: Microbial abundance profiles are applied widely to understand diseases from the aspect of microbial
communities. By investigating the abundance associations of species or genes, we can construct molecular ecological
networks (MENs). The MENs are often constructed by calculating the Pearson correlation coefficient (PCC) between
genes. In this work, we also applied multimodal mutual information (MMI) to construct MENs. The members which
drive the concerned MENs are referred to as key drivers.

Results: We proposed a novel method to detect the key drivers. First, we partitioned the MEN into subnetworks.
Then we identified the most pertinent subnetworks to the disease by measuring the correlation between the
abundance pattern and the delegated phenotype—the variable representing the disease phenotypes. Last, for each
identified subnetwork, we detected the key driver by PageRank. We developed a package named KDiamend and
applied it to the gut and oral microbial data to detect key drivers for Type 2 diabetes (T2D) and Rheumatoid Arthritis
(RA). We detected six T2D-relevant subnetworks and three key drivers of them are related to the carbohydrate
metabolic process. In addition, we detected nine subnetworks related to RA, a disease caused by compromised
immune systems. The extracted subnetworks include InterPro matches (IPRs) concerned with immunoglobulin,
Sporulation, biofilm, Flaviviruses, bacteriophage, etc., while the development of biofilms is regarded as one of the
drivers of persistent infections.

Conclusion: KDiamend is feasible to detect key drivers and offers insights to uncover the development of diseases.
The package is freely available at http://www.deepomics.org/pipelines/3DCD6955FEF2E64A/.
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Background
Assessment and characterization of microbiota are preva-
lent in human disease studies [1–3]. When the species
within the microbial community interact with each other
in equilibrium, serving as co-adapted colonists and pro-
viding beneficial goods and services, disruption of such
alliances may induce health issue [4]. For example, the
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imbalance in the community could lead to bacterial over-
growth and the development of respiratory infections
[5]. In this case, network analysis, for instance, differen-
tial network analysis, which identifies biomarker candi-
dates by detecting changes in the correlation relationships
between different experimental conditions [6], provides
a better understanding towards disease. Thereafter, in
microbiome area, molecular ecological networks (MENs)
[7] can be constructed to perform network analysis for dif-
ferent types of actors within the microbial community, for
examples, species, taxons, or phylogenetic gene markers,
and they are referred to as phylogenetic molecular ecolog-
ical networks (pMENs) where phylogenetic gene markers
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serve as the actors [8]. Similar to co-expression networks,
Deng et al. proved that the MENs are scale-free and small
world [7].
In a MEN, the removal of some species could be dis-

proportionately deleterious. These species are referred
to as keystone species. Keystone species are topologically
important molecules in the MEN. Berry et al. has stud-
ied the detection of keystone species in MENs thoroughly
[9]. They applied a brute-force leave-one-out strategy to
evaluate the keystoneness of a species in a given MEN,
and demonstrated the impact of the keystone species on
species richness. They also classified keystone species
according to their topological properties using linear dis-
criminant analysis. Deng et al. proposed a method to
detect keystone species from the MENs by integrating
phenotype information [10]. They identified keystone
species by calculating the correlation between a pheno-
type variable and the abundance pattern of species clus-
ters. Researchers also considered species connected to
many others in MENs as keystone species (also referred to
as hub nodes) [11].
Key drivers, which are major components that drive the

disease concernedMENs, provide hints to understand the
mechanisms of disease and are intensively studied with
RNA data. There are various of methods to identify the
key drivers in a co-expression network. One method is
to incorporate the annotation of genes and pathways of
diseases in order to locate the key drivers by considering
enrichment of statistic of genes neighborhood [12, 13].
Another category of method distinguishes important
MENs by calculating associations between gene modules
with meta information like phenotype and GWAS analy-
sis [14, 15], and then detects the key drivers by measuring
the genes topology effect. For example, MEGENA [16]
did multiscale hub analysis and Zhang et al. examined the
number of N-hob downstream nodes [17]. Those meth-
ods on detecting key drivers in RNA data analysis can
be adopted to detect key drivers in MENs. Even though
Portune et al. locates important microbial species and
genes with the assistance of gene annotation to study the
MENs [18], the annotation formicrobial genes and species
yet demands intensive efforts and the pathways of diseases
are incomplete.
The distinction between keystone species and key

drivers is that the keystone species are only topologically
important, while key drivers motivate disease associated
networks. MENs of diseases can be different compared to
those from healthy individuals. By analyzing the factors
driving the differences, we can uncover the development
of the disease.
Inspired by key drivers analysis with RNA data and key-

stone species studies in MENs, we proposed a method
to perform key drivers analysis without the availability
of annotation information. Given a microbial abundance

profile, we first construct the MEN, in which the nodes
represent the microbial species or phylogenetic gene
markers and the edges capture the associations between
their respective nodes. Then we divide theMEN into mul-
tiple subnetworks and extract the subnetworks that are
most relevant to the disease by calculating the associations
between subnetworks and phenotype variables. A single
phenotype variable could be insufficient to capture the
changes in disease networks from healthy networks and
it can be biased. To address this issue, we applied prin-
cipal component analysis to extract delegated phenotype,
which is more robust. Last, our method detects the key
driver based on PageRank, which utilizes node topological
properties within each extracted subnetwork. It captures
the global link structure of subnetworks thus outperforms
statistical algorithms that only use local information.
There are multiple ways to calculate inference of MENs,

of which two of the most popular ways are Pearson cor-
relation coefficient (PCC) and mutual information (MI)
[19]. A review of correlation detection strategies in MENs
[20] suggests that although some methods outperform
others, the inference calculating method still needs fur-
ther improvement. To reduce the effect of the high pro-
portion of zero counts, Paulson et al. applied a mixture
model that implemented a zero-inflated Gaussian (ZIG)
distribution ofmean group abundance for each taxonomic
feature to do differential abundance analysis. Experiments
show the improvement of mixture model compared to
other models, for instance, DESeq, edgeR and Kruskal-
Wallis test [21, 22]. Inspired by the above trials of solving
rare microbes issues with mixture models, we proposed
to construct the network by multimodal mutual informa-
tion (MMI) [23] under the assumption of the Gaussian
mixture model. In KDiamend, we implemented both PCC
and MMI to infer the associations between nodes in the
MENs. However, correlation-based methods, like PCC,
have their limitations. To be more specific, it is hard
to distinguish correlation with causation [24]. There are
many other arbitrary methods to construct networks, like
Bayesian network [24] and WGCNA [25], which apply
topology overlaps to measure the similarities between
nodes. These various methods can be implemented to
construct the network as potential options in our frame-
work. Nevertheless, it is out of the range of this work.
Our main contribution is that we refined the frame-

work of key driver detection, and proposed delegated
phenotype to capture the changes in disease networks
from healthy networks. To validate our method, we per-
formed experiment based on simulated data. Then, we
tested KDiamend with two real microbiome datasets. We
conducted key drivers analysis on Type 2 diabetes (T2D)
and Rheumatoid Arthritis (RA), whose data are from gut
microbiome and oral microbiome respectively. For each
disease, we also compared experiment using PCC and
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MMI as two different inference methods, and acquired
both consensus and divergence. Experiments of the two
inference methods identified multiple identical phyloge-
netic gene markers and identified consensus pattern of
disease-associated networks, indicating the robustness of
our framework. On the other hand, the two different infer-
ence methods also led to specific findings, providing us
with various aspects to study the mechanisms of diseases.
We detected six T2D-relevant subnetworks and identi-
fied key drivers for each of them correspondingly. The
identified key drivers include IPR006047, IPR018485 and
IPR003385 related to the carbohydrate metabolic process,
while the carbohydrate metabolic process is an important
issue during the development of T2D [26]. In addition,
we also detected key drivers for RA. Both PCC and MMI
experiments located multiple InterPro matches (IPRs)
which are related membrane and infection. Six subnet-
works were extracted by PCC, containing IPRs concerned
with immunoglobulin, Sporulation. Three subnetworks
were detected by MMI, with IPRs about biofilm, Fla-
viviruses, bacteriophage, etc. The result is inspiring since
the development of biofilms is regarded as one of the
drivers of persistent infections [27] and some biofilms-
growing bacterias contribute to RA [28].

Methods
Our method is to detect the key drivers which drive the
diseases related networks in the microbial community.
The key drivers can be microbial species or phylogenetic
gene markers. For simplicity, we present our method with
nodes as genes in the subsequent descriptions.

The detection of key drivers consists of following steps
(see Fig. 1). First, we construct a MEN to represent the
relationship between genes based onmicrobial abundance
profiles and infer the weight of each edge. Second, we
cluster the genes and partition theMEN intomultiple sub-
networks. Third, we analyze the phenotype variables and
extract the delegated phenotype. By computing the asso-
ciations between subnetworks and delegated phenotype,
we obtain subnetworks that are most related to the dis-
ease. Last, based on PageRank, we identify actors with top
influence over others in each subnetwork as key drivers.

Inference method
In KDiamend, we provide two ways to compute dis-
tances between genes. The first one is PCC, which is
the most popular way to capture similarities between
genes. In addition, inspired from the inference of gene
regulatory network in RNA analysis and mixture mod-
els in the microbiome analysis, we adopted the MMI
and normalization processes in Context Likelihood of
Relatedness(CLR) [29]. MI, which uses the mutual depen-
dency and common uncertainty as for the measurement
of connection between genes, does not assume linear,
or continuous dependence like correlation [19, 30], so it
can detect interactions which might be missed by PCC.
MMI, under the assumption of the Gaussian mixture
model, is for dealing with the high proportion of zero
counts issue. The adopted CLR, which considers the con-
text of the whole network and eliminates noises from the
background, makes MMI more tolerant for noises when
measuring the interactions.

Fig. 1 Flowchart. First, we build a MEN and cluster genes into multiple subnetworks. After that, we summarize the phenotype variables and connect
it to subnetworks. Then, we locate key drivers through PageRank
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At the beginning, we have an abundancematrix E, which
contains abundance value of n genes in m samples. For
each gene i, we have a vector of Xi = (Ei1,Ei2, . . . ,Eim).
The strength of the relationship between gene i and gene j
can be measured by PCC:

PCC(i, j) = cov(Xi,Xj)

σi, σj
, (1)

where cov(Xi,Xj)is the covariance of Xi and Xj, and σi is
the standard deviation of Xi. The adjacency matrix A of
network can be generated from Aij = PCC(i, j). Then the
distance between gene i and gene j can be interpreted as
Dij = 1 − |PCC(i, j)|.
Apart from PCC, we also implemented MMI [23]. First,

we decomposedXi into ci bins asXi,1, . . .,Xi,ci . In this case,
Xi was distributed according to the following function:

fXi(x) =
ci∑

k=1
πi,kgXi,k (x), (2)

where gXi,k (x) (1 ≤ k ≤ ci) denotes the density func-
tion for Ci,k , and πi,k is the proportion for each sample
in Ci,k . As proved in former work [23], assuming that Xi,k
fits in a Gaussian distribution, we can estimate the mutual
information between Xi and Xj as:

MMI(Xi,Xj) = MMIO(Xi,Xj) + MMII(Xi,Xj). (3)

The “outer” MI, MMIO(Xi,Xj), captures discretized
dependency, while the “inner” MI,MMII(Xi,Xj), refers to
the weighted aggregation of MI for each bin.
After computing MMI between all the genes and get a

matrixM, we normalized the distance between gene i and

gene j by: CLR(Zi,Zj) =
√(

Z2
i ,Z2

j

)
where Zi and Zj are z-

scores ofMij takingMi andMj as background respectively
[29]. Then we applied hierarchical clustering and parti-
tioned the MEN into multiple subnetworks according to
the distance between genes.

Delegated phenotype
To best capture phenotype change in disease networks
from healthy networks, we generated delegated pheno-
type by rotating Coordinates in the PC space of phenotype
variable matrix S. Each row in S represents a sample
while each column refers to a phenotype variable, such as
gender, age, disease state, etc. If the properties are non-
numerical, we converted data into numbers before further
analysis. Suppose one column v in S indicates whether
each sample is collected from a person with or with-
out this disease. That is v = (v1, v2, . . . , vk , . . . , vm), vk ∈
(Y ,N), 1 < k < m where m is the number of samples, Y
indicates that this sample is collected from a person with
the disease, and N means not.
We applied principal component analysis (PCA) to con-

clude S. We consider the first two principal components

(PCs) to be enough for explaining disease variability, since
the number of phenotype variables is relatively small in
our test data. When phenotype data are more compli-
cated, we may need extra analysis to decide the number of
PCs we use to conclude delegated phenotype. We investi-
gated the first two PCs and plotted samples in the coordi-
nate of PC1 and PC2, regarding every sample as a point.
Consequently, we got m points and each point refers to
one sample. The coordinates for point k, is expressed as
(xk , yk). We rotated PC to PC′ and make sure it has the
largest correlation with v upon rotation. PC′ can best
explain variability related to the disease. The angle of
rotation is the θ that maximize f (θ).

f (θ)=
∑

k,vk∈N
(xkcosθk + yisinθk)−

∑

k,vk∈Y
(xkcosθk + yksinθk)

(4)

That is to say, the angle between PC1 and PC1′ is:

θ = arctan
∑

k,vk∈N xk − ∑
k,vk∈Y xk∑

k,vk∈N yk − ∑
k,vk∈Y yk

(5)

For example (see delegated phenotype in Fig. 1), blue
points represent vk = Y and red points represent vk =
N . By calculating θ , we got the line which implies the
direction most correlated to the disease state.
We acquired delegated phenotype PC′, which has the

largest correlation with the disease state and outperforms
other single variables on explaining the variability of phe-
notype information at the meantime. For every subnet-
work, we concluded the abundance pattern of genes as
eigengenes [31]. Then we bridged the subnetworks to phe-
notype information by calculating the correlation between
eigengenes and PC′. Subnetworks which have strong rela-
tionships to PC′ are extracted as disease-relevant subnet-
works.

Identifying Key driver
Last, in every extracted disease relevant subnetwork, we
applied network topology analysis and assigned every
gene a PageRank score. PageRank (PR) ranks the nodes in
a graph according to the structures of links with others
and is used by Google’s search engine to compute rank-
ings of websites. In this algorithm, the score for one node
can be affected by its neighbors [32] and if one’s neighbors
have high scores, its score increases iteratively [33].
As stated in [34], letting Fu be the nodes linking to the

node, Bu be the nodes linked from it, and Nu = |Fu| be
the magnitude of Fu. Besides, considering there might be
other factors towards the ranking, let E(u) be the vector
concerned with some of the rank. Then, the PageRank of
the node is defined as.

R(u) = c
∑

υ∈Bu

R(υ)

Nυ

+ cE(u) (6)
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Results
Gut microbiome
We tested our method with real microbiome datasets
and compared PCC with MMI in this framework. First,
In order to detect key drivers for T2D, we downloaded
processed InterPro matches (IPR) abundance data from
EBI (SRP008047), which is gut metagenome (microbiome)
data from Chinese samples. InterPro [35] provides a func-
tional analysis of protein sequences by classifying them
into families and predicting the presence of domains and
important sites. The phenotype information of the dataset
is provided in related paper [1]. We used the 145 samples
from stage one.
We first trimmed IPRs with low abundance in relative

abundance matrix and then applied quantile normaliza-
tion [36, 37]. By computing PCC and MMI between pairs
of genes, we reconstructed a MEN and conducted clus-
tering to partition the MEN into multiple subnetworks.
For all subnetworks, eigengenes were calculated by select-
ing the first PC of abundance. The eigengene was used for
summarizing the abundance pattern in each subnetwork
and to bridge it with phenotype information. On the other
hand, we digitalized the phenotype matrix and applied
PCA to it. We generated delegated phenotype by rotating
coordinates in the PC space to best capture the pheno-
type change in disease networks from healthy networks.
We extracted three subnetworks for PCC experiment and
three subnetworks for MMI according to the correla-
tion between eigengenes and delegated phenotype and the
corresponding p-value (see Fig. 2). The p-value for cor-
relation of each subnetwork was calculated by permuting

the same number of genes from the dataset and calculat-
ing the correlation between the permuted eigengene and
the delegated phenotype. After repeating 1000 times, the
rank of the real correlation for the subnetwork is regarded
as p-value.
PCC experiment and MMI experiment detected 11

consensus IPRs which scattered in three subnetworks
for MMI and two subnetworks for PCC. Consequently,
the interaction generated from two types of inference
connects these five extracted subnetworks together and
merges them into one large community (see Fig. 3). Most
of the consensus IPRs in the merged community are
associated with the metabolic process and the catalytic
activity which implies that the process is relevant to the
disease. More specifically, two experiments both identi-
fied IPR018485 which participates in the carbohydrate
metabolic process with the phosphotransferase activity
and is active in carrying out ATP-dependent phosphory-
lation [38]. The extracted disease-relevant subnetworks in
T2D are about the carbohydrate metabolic process and
phosphorelay.
In addition, for PCC experiment, key drivers in sub-

network 89 and subnetwork 208 are related to the
carbohydrate metabolic process, including IPR006047,
IPR018485, and IPR003385. The key driver in subnet-
work 166 is IPR001789, which plays a role in phos-
phorelay signal transduction system. MMI also detected
IPR018211, IPR005538, IPR003501, and IPR001790 which
are related to phosphorelay. PCC and MMI both identi-
fied IPRs related to the carbohydrate metabolic process
and phosphorelay.

Fig. 2 Experiment results for type 2 diabetic. a The delegated phenotype. b, c Distribution for correlation between subnetworks and delegated
phenotype. Every point refers to a subnetwork. The x-axis of the point refers to the correlation between this subnetwork and the delegated
phenotype. The y-axis of the point refers to the 1−p-value for the correlation. The y-axis on the right is for the histogram of these correlation. b is for
PCC experiment and c is for MMI experiment. d, e Plots for eigengene and delegated phenotype. Blue line refers to the z-score of eigengene for that
subnetwork. X-axis refers to samples. d is for PCC experiment and E is for MMI experiment
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Fig. 3 Extracted networks for T2D. Detected T2D-relevant subnetworks for PCC and MMI experiment. Blue and yellow nodes refer to IPRs identified
by PCC and MMI, while green ones refer to IPRs identified by both methods. The weight calculated by PCC and MMI was normalized to the same
scale. The corresponding subnetworks are labeled. Nodes with top PageRank in each subnetwork are enlarged

Oral microbiome
We applied our method to oral microbiome to detect the
key drivers in microbial community related to dysbiosis
in Rheumatoid Arthritis (RA). The abundance data was
downloaded from EBI (ERP006678). Information of phe-
notype variables for different individuals was acquired
from published paper [2]. We mapped the samples down-
loaded from EBI with the individual ID and got 49 oral
microbial samples in total. Among them, 27 samples were
collected from patients with RA in different disease states,
22 samples, used as the control, were collected from peo-
ple without RA. 21 of them are saliva samples and 28 are
dental samples.
We first conducted filtering and then applied normal-

ization to avoid noises. After that, we constructed the
MEN by computing similarities between all pairs of IPRs.
Then we partition the MEN into multiple subnetworks by
clustering.
Similar to the analysis for T2D, we processed the pheno-

typematrix and detected subnetworksmost related to RA.
First, we removed phenotype variables with more than 1/3
missing values. Then, for remaining phenotype variables,

we conducted imputation using R package MICE [39]. By
computing correlation between delegated phenotype and
eigengenes of subnetworks, we extracted six subnetworks
most related to RA using PCC and three subnetworks
using MMI. Finally, we identified key drivers for detected
disease associated subnetworks correspondingly.
We applied key drivers analysis for RA using PCC

and MMI as two different inference methods respec-
tively. Both experiments show IPRs, in extracted asso-
ciated subnetworks, have higher abundance in disease
state than in normal state (see Fig. 4). For PCC exper-
iment, annotation shows that most IPRs in subnetwork
335 and 63 are about cell membrane while most IPRs
in subnetwork 676, 128, 679 and 680 are about replica-
tion and cell growth. Functions for IPRs were inferred
according to keywords and Gene Ontology (GO) men-
tioned in InterPro [35]. Moreover, subnetwork 335 also
contains IPR014879( Sporulation initiation factor Spo0A,
C-terminal) and IPR013783 (Immunoglobulin-like fold).
IPR013783 is about immunoglobulin molecules and T-cell
receptor antigen [40, 41], while RA is a disease caused by
compromised immune systems [42].
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Fig. 4 Experiment results for Oral experiment. a The delegated phenotype. b, c Distribution for correlation between subnetworks and delegated
phenotype. Every point refers to a subnetwork. The x-axis of the point refers to the correlation between this subnetwork and the delegated
phenotype. The y-axis of the point refers to the 1−p-value for the correlation. The y-axis on the right is for the histogram of these correlation. b is for
PCC experiment and c is for MMI experiment. d, e Bar plot for the average abundance of extracted subnetworks. The relative abundance is different
in different disease states

For MMI experiment, subnetwork 1642, which has the
largest correlation with delegated phenotype, contains
multiple IPRs about biofilm: IPR024487, IPR019669, and
IPR010344. There are totally 24 IPRs in this subnetwork
and top 5 of them are IPR003496, IPR024205, IPR008542,
IPR010344, and IPR019669. Specifically, IPR010344 plays
a role in biofilm formation and IPR019669 participates
in single-species biofilm formation on the inanimate
substrate. The development of biofilms is one of the
drivers of persistent infections [27]. Some bacteria, when
growing in the biofilm, e.g., Porphyromonas gingivalis
in dental plaque, can become destructive and may con-
tribute to RA [28]. Besides, subnetwork 1642 also contains
IPR013756, associated with Flaviviruses, and IPR009774,
related to hypothetical Streptococcus thermophilus bac-
teriophage, which hints the infection process in this sub-
network.

Discussion
Noise tolerance of delegated phenotype
To test whether our delegated phenotype is robust when
phenotypes are deficient, we tried every combination of
phenotypes with removing 1,2,3,6,10 of them from the
phenotype variables matrix of RA, and generated dele-
gated phenotype for each of them. Then we calculated the
correlations between those generated delegated pheno-
types and extracted subnetworks. The result is promising
and these extracted subnetworks have high correlation
values in most cases (see Fig. 5).

Performance of PageRank in searching the key driver
We tested the performance of PageRank on a simulated
dataset. At the beginning, we named the driven relation-
ship as sub-gene relationship. We simplified the network
by assuming that one gene could only be driven by one
gene. Linear function is used to represent the driven rela-
tionship. i.e. y = Ax+n, where x and y denotes expression
levels for gene and its sub-gene and n is the noise follow-
ing the normal distribution with 0 mean. There are three
parameters for the simulation algorithm: the number of
sub-genes for each gene, the depth of the network and
the noise level. Here, we used the variance to define the
noise level and the variance of noise is βx. The structure
of the simulated network and three parameters are shown
in Fig. 6.
We generated the simulated data with various param-

eters. For each parameter group, 100 samples were pro-
duced. We compared the performance of PageRank with
the degree algorithm that locates the key driver with the
highest degree. As shown in Fig. 7, the noise level has lit-
tle effect on prediction precision. The result of the degree
algorithm also follows this pattern. To compare these
two algorithms, we collected the cases where only one
algorithm correctly found the key driver and the result
is shown in C. Since when the number of sub-genes is
large, both algorithms have high prediction precision, we
focus more on cases where the sub-gene number is rel-
atively small. In this situation, the PageRank has better
performance.
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Fig. 5 Noise tolerance of delegated phenotype. a The first box plot refers to combination with removal of one, two, or three phenotype variables.
b The second refers to the removal of six phenotype variables. c The third refers to the removal of ten phenotype variables. d The last one refers to
the overall performance with all these combinations

Application to Alzheimer’s disease
To further validate our method is capable of detecting key
drivers of disease, we applied KDiamend to Alzheimer’s
Disease (AD) with analyzing RNA expression profiles,
which were downloaded from GEO(GSE44770) [17]. Both

of PCC and MMI experiments identified FBXL16 and
OLFM1. FBXL16 related pathways are Innate Immune
System and Class I MHC mediated antigen processing
and presentation, while researches have shown that the
activation of the Innate Immune System plays a crucial

Fig. 6 The structure of simulated network. The simplified network can be transferred into a tree
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Fig. 7 Testing results for PageRank algorithm to find the key driver. The first two figures show the prediction precision of PageRank under different
simulation parameters. a is related to the network depth and the number of sub-genes. b is for the noise level and the number of sub-genes. The
third figure compares the performances of PageRank and degree algorithm. We counted cases where only one algorithm found the key driver
correctly

role in promoting AD [43]. OLFM1 is related to nervous
system development and Neuroblastoma [44]. Besides,
PCC experiment also identified RPS4Y1 and PITPNB as
key drivers for extracted disease associated subnetworks.
MMI experiment also identified KAZALD1, OR4A47,
RNASE11, TXNDC2, 7-Mar, RTN4, TSPAN9, PCNP and
PPP2R2C. More specifically, RTN4 is related to Demyeli-
nating Disease [45] and KAZALD1 is related to Lobar
Holoprosencephaly [46]. These experiments show a pos-
sible application of our method. It is capable of detecting
key drivers in the network inferred from not only the
microbial abundance profile but also other kinds of abun-
dance data, like RNA expression or proteomics.

Conclusion
We proposed a novel method to detect key actors who
drive the disease concerned MENs, which helps to under-
stand microbial factors relevant to the certain disease. We
divided the MENs into multiple subnetworks and then,
instead of detecting important genes based on pathways
or gene annotations, we extracted subnetworks which
are most relevant to disease by utilizing the correlation
between the patterns of abundance profiles and the del-
egated phenotype. Lastly, we identified key drivers based
on PageRank.
We tested our method with two real microbial datasets.

We detected that the disease-relevant subnetworks in

T2D are related to the carbohydrate metabolic process
and phosphorelay, while RA-relevant subnetworks are
related to membrane, cell growth, and infection. The
extracted subnetworks for RA include IPRs concerned
with immunoglobulin, Sporulation, biofilm, Flaviviruses,
bacteriophage, etc. Then we located corresponding
key drivers for extracted disease-relevant subnetworks.
Besides microbial data, we also tested our method with
gene expression profiles to identify key drivers for AD
and the outcome was inspiring. Experiments show our
method is capable of detecting key drivers and providing
hints to understand the mechanisms of diseases.
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