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Correct disulfide formation within the
secretory pathway requires both dis-
ulfide bond formation and disulfide
reduction.

Protein thiol modification is reversed by
protein disulfide isomerase (PDI) family
members localized to the ER.

A pathway links thioredoxin reduction
in the cytosol to disulfide reduction in
the ER.
The reversal of thiol oxidation in proteins within the endoplasmic reticulum (ER)
is crucial for protein folding, degradation, chaperone function, and the ER
stress response. Our understanding of this process is generally poor but
progress has been made. Enzymes performing the initial reduction of client
proteins, as well as the ultimate electron donor in the pathway, have been
identified. Most recently, a role for the cytosol in ER protein reduction has been
revealed. Nevertheless, how reducing equivalents are transferred from the
cytosol to the ER lumen remains an open question. We review here why
proteins are reduced in the ER, discuss recent data on catalysis of steps in
the pathway, and consider the implications for redox homeostasis within the
early secretory pathway.
Misfolded ER proteins need to be
reduced before targeting for destruc-
tion in the cytosol.

The unfolded protein response (UPR)
transducers Ire1 and ATF6 are regu-
lated by disulfide bond formation and
reduction.

The key regulator of protein folding and
the UPR, BiP, is modulated by reduc-
tion catalyzed by the non-canonical
oxidoreductase Sil1.
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Why Is Protein Reduction Important?
Most thiols in secretory proteins are modified as they enter the ER (Figure 1). The majority form
disulfide bonds between parts of the same polypeptide or between different chains. During
protein folding, disulfides can form that are not present within the final native structure. Such
non-native disulfides are prevalent in misfolded proteins, but can also form as part of the normal
folding pathway [1]. Reduction of these disulfides is crucial for correct folding and for degra-
dation of misfolded proteins. The importance of a reductive pathway to remove non-native
disulfides is exemplified by cells that produce large amounts of disulfide-bonded proteins, such
as insulin in pancreatic b cells or antibodies in plasma cells. The accumulation of non-native
disulfide-bonded insulin following glucose stimulation can lead to loss of insulin secretion,
oxidative stress, and apoptosis, resembling pathologies seen in type II diabetes [2]. Similarly,
aggregation occurs when the accumulation of misfolded immunoglobulins exceeds the cellular
capacity to remove aberrantly disulfide-bonded proteins from the ER [3].

In addition to the reduction of non-native disulfides, there is a requirement to reduce cysteine
side chains modified by small molecules. These molecules include hydrogen peroxide, hydro-
gen sulfide, nitric oxide, and glutathione [4–6] which mediate sulfenylation, sulfhydration,
nitrosylation, and glutathionylation respectively (Figure 1). Oxidation of cysteine side chains
can be a mechanism for regulating protein function or for signaling. For some enzymes, the
recycling of oxidized active-site cysteines to the thiol form is essential to maintain activity [7,8].
Several recent studies have provided examples of proteins that are susceptible to such
modification, and have determined the consequences of cysteine modification for protein
function [9–13]. Reduction of these modified thiols in the ER is likely to be catalyzed by an
oxidoreductase such as a protein disulfide isomerase (PDI) family member. There is precedent
for such a reductive pathway in bacteria [10] and in yeast and mammalian cytosol [9,12]. In the
bacterial periplasm correct disulfide formation requires both an oxidative and a reductive
pathway. For the reductive pathway, a soluble periplasmic protein DsbC/G catalyzes the initial
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Figure 1. Pathways for Oxidation of Protein Thiols. Oxidation of a protein thiol can result in several different
outcomes depending upon the type of oxidant. We depict here the formation of intra- or inter-chain disulfides with small-
molecule oxidation by hydrogen peroxide or sulfide, nitric oxide, or glutathione disulfide. In each case the modification to
the thiol group is depicted in green.
reduction of oxidized thiols, and then passes its disulfide to the plasma-membrane protein
DsbD. The disulfide is then shuttled across the membrane by internal disulfide exchange and is
ultimately reduced by the cytosolic thioredoxin/thioredoxin reductase pathway (Figure 2A). The
fact that disulfide exchange proteins within the ER require their active-site disulfide to be
reduced to maintain reductase activity has stimulated the search for components of the
reductive pathway and the identification of the ultimate electron donor.

How Are Non-Native Disulfides Reduced to Allow Protein Folding?
The initial step in the reduction pathway is catalyzed by ER oxidoreductases, the most
abundant of which are members of the PDI family (Box 1). To catalyze reduction, the
active-site cysteine pair must be capable of efficiently donating electrons to its substrate
protein. The type of reaction, oxidation or reduction, that is catalyzed by individual members
of the PDI family is to some extent determined by the stability of the disulfide formed within its
active site [14]. This stability is determined by the electron-withdrawing effect of nearby amino
acids that differ between members of the PDI family. The more stable the disulfide, the more
likely the enzyme will act as a reductase and donate electrons. Conversely, the less stable the
disulfide, the more likely it will act as an electron acceptor and catalyze oxidation. Hence, not all
Trends in Biochemical Sciences, January 2018, Vol. 43, No. 1 33



DsbC/G

DsbC/G

TrxR1

NADPH

G6PDH

G6P

PGL

Cytosol

S*ox

S*red

S− SH

Periplasm

DsbD

TrxR

NADPH

NADP+

NADP+

Cytosol

Red

Ox

(A) Bacteria

(B) Mammals

Endoplasmic re�culum

Red

Ox

DsbD

S S

MP

MP
Reductase
(e.g., ERdj5)

SH

S S

Reductase
(e.g., ERdj5)

G6PDH

G6P

PGL

Trxred

Trxred

Trxox

Trxox

S−

S*ox

S*red

Figure 2. Reducing Equivalents from the Cytosol Sustain Protein Reduction in the Periplasm and the
Endoplasmic Reticulum (ER). (A) In bacteria, oxidized (ox) thiols (S*) in periplasmic proteins are reduced (red) by DsbC
(disulfides) or DsbG (sulfenylated thiols), which in turn are reduced by the membrane protein DsbD. DsbD is maintained in a
reduced state by the cytosolic thioredoxin system, with the ultimate electron donor being NADPH. (B) In the mammalian ER
non-native disulfides can be reduced by the cytosolic reductive pathway involving thioredoxin and thioredoxin reductase.
The ultimate electron donor in the pathway is NADPH (on the right) that can be generated by glucose 6-phosphate
dehydrogenase (G6PDH) during the conversion of glucose 6-phosphate (G6P) to phosphogluconolactone (PGL). NADPH
is required by thioredoxin reductase (TrxR1) to drive the reduction of thioredoxin (trx). The link between reduced thioredoxin
in the cytosol and the reduction of an ER oxidoreductase such as ERdj5 is unknown but is most likely a membrane protein
(MP).
PDIs are equivalent; their active-site disulfide(s) have different stabilities, and this contributes
toward the propensity for some PDIs to act primarily as reductases and others to function in
oxidation.

In addition to disulfide stability determining oxidoreductase activity, it is also important to
acknowledge that kinetic factors can influence oxidoreductase functions. For example, the
enzyme responsible for oxidation of ER oxidoreductases, ER oxidase 1 (Ero1), preferentially
oxidizes PDI over other family members, most likely because of the ability of Ero1 and PDI to
physically interact [15]. Any potential reductase may well physically interact with an individual
member(s) of the PDI family, thereby providing a kinetic as well as thermodynamic driver to
determine reactivity. Such a kinetic segregation ensures that there is a lack of crossover of the
oxidative and reductive pathways within the bacterial periplasm, and may well explain how
these two opposing pathways can coexist within the eukaryotic ER [16,17].

The stabilities of some of the active-site disulfides of individual PDIs have been measured
experimentally [18–21]. The ERdj5 active sites stand out as being relatively stable, suggesting
that this enzyme most likely acts as an ER reductase. Indeed, its role in the reduction of
disulfides in proteins during folding and degradation is now well documented [22,23]. For
example, depletion of ERdj5 results in a defect in the resolution of non-native disulfides within
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Box 1. Key Features of the Protein Disulfide Isomerase Family

Disulfide bond formation in the ER is catalyzed by the PDI family of dithiol-disulfide oxidoreductases [80]. About 20
proteins have been assigned to this family to date, with a minimum of 15 members having at least one domain
containing the typical thioredoxin-like fold with a characteristic CXXC motif at the active site. These proteins catalyze
thiol–disulfide exchange reactions by acting as electron acceptors during disulfide bond formation (oxidation) or as
electron donors during breaking of disulfides (reduction). The PDI proteins also catalyze isomerization reactions by
rearranging non-native to native disulfides. The functions of some of the PDI proteins have been thought to be redundant
because of the similarities in their active sites. However, there is now accumulating evidence for separate substrate
specificities and defined functions either as oxidases or reductases [81].

PDI was the first ER oxidoreductase to be extensively characterized. It is an essential enzyme in yeast, and has been
shown not only to introduce disulfide bonds into substrates but also to function as a chaperone [82,83]. PDI contains
four thioredoxin-like domains namely a, b, b0, and a0. The a and a0 domains contain canonical CXXC active-site motifs,
with redox potentials of between �160 and � 170 mV [20]. The low pKa of the first cysteine of the CXXC motif allows this
residue to participate in disulfide bond formation [84]. The crystal structure of the yeast and mammalian PDI has been
solved. It shows an arrangement of the four PDI domains in a twisted ‘U’ conformation, with the catalytic domains a and
a0 being situated at the top, facing each other, while the domains b and b0, are sandwiched between the catalytic
domains, on the inside of the ‘U’ [85]. The interior of the U is very hydrophobic, and has been shown to be the principal
binding site for peptides and misfolded regions of substrates [86,87].

When PDI and other oxidoreductases introduce disulfides into newly synthesized proteins, their active-site CXXC
sequences must be reoxidized to allow further rounds of disulfide formation. This function is fulfilled by specific ER-
resident oxidoreductases which do not directly introduce disulfides into newly synthesized proteins. These enzymes
catalyze the first step in disulfide formation by transferring oxidizing equivalents to the PDI proteins, which then introduce
these disulfides into nascent polypeptides [26].
the low-density lipoprotein receptor (LDLr), leading to a block in its folding and secretion [22]. In
addition, another PDI, ERp57, has been shown to be required for the rearrangement of
disulfides within glycoproteins, suggesting reductase or isomerase activity [24]. By contrast,
PDI itself has a less-stable disulfide and is the primary substrate for oxidation by Ero1,
suggesting that its main role is oxidation [15,25]. Thus, a subgroup of PDI enzymes appear
to carry out the initial reduction of modified thiols.

How Are the PDI Family Members Themselves Reduced?
How the active site of PDIs is reduced to allow reductase activity has been the subject of much
debate [26,27]. One source of reductant comes from the flux of cysteine thiols that are present
in nascent chains translocated across the ER membrane. It is not possible to quantify the
number of reducing equivalents introduced by this route, but it is likely to be significant and may
well contribute to the redox status of PDI family members. A second abundant potential
reductant is reduced glutathione (GSH). Evidence of a role for GSH in reduction has been
provided for ERp57, which can be reduced following oxidative stress via a GSH-dependent
process [28,29]. However, ERdj5 is mostly oxidized within the ER [30], which is known to have a
high ratio of GSH:GSSG [31], suggesting that its active site is resistant to reduction by GSH.
Moreover, GSH depletion has no consequences for the formation of correct disulfides in
proteins such as LDLr, which is known to require the reduction of non-native disulfides [32],
suggesting that the reductase activity of PDIs is not severely impacted by GSH depletion. These
apparently conflicting reports concerning the impact of GSH on PDIs may reflect a distinction
between the roles of GSH in restoring redox homeostasis and in the resolution of non-native
disulfides [33]. In the former, GSH may buffer redox changes indirectly via one of the PDIs or by
reacting directly with oxidants. In the latter situation, the non-native disulfide may be too stable
for reduction by GSH, and thus requires catalysis by an enzyme such as ERdj5. These
observations not only support a role for glutathione as a reductant but also imply a need
for a GSH-independent pathway that allows proper folding and the reduction of ERdj5.
Trends in Biochemical Sciences, January 2018, Vol. 43, No. 1 35



A role for the cytosolic thioredoxin system in disulfide formation in the ER has recently been
suggested [34]. In the absence of robust recycling of cytoplasmic NADP to NADPH, proteins
entering the secretory pathway were shown to form incorrect disulfides when translated in a
translation/translocation system. The transition from non-native to native disulfides in the ER
was restored upon addition of glucose 6-phosphate (G6-P) to the translation system, which
enables efficient recycling of NADP to NADPH via the pentose phosphate pathway. This
demonstrated that the generation of cytosolic NADPH allows correct disulfide formation in
the ER, and identified NADPH as the ultimate electron donor in the pathway.

G6-P-mediated recovery was prevented when cytosolic thioredoxin reductase (but not gluta-
thione reductase) was inhibited, suggesting that correct disulfide formation in the ER requires
the cytosolic thioredoxin reductase system. In addition, inhibition of thioredoxin reductase
prevented correct disulfide formation during the synthesis of LDLr in mammalian cells.
Together, these data suggest that the correction of non-native disulfides formed in the ER
(and PDI family reductase activity) relies on the cytoplasmic NADPH–thioredoxin system.

Because the recycling of NADPH is dependent on the presence of G6-P, disulfide formation in
the ER will be affected by changes in glucose metabolism. It has been known for several years
that glucose depletion can lead to protein unfolding and induction of the unfolded protein
response (UPR) in mammalian cells [35]. This effect was considered to be due to a blockage of
protein glycosylation as a result of depletion of precursor sugars for the oligosaccharide chain.
The link between glucose metabolism and correct disulfide formation in secreted proteins
provides an intriguing alternative explanation.

Linking cytosolic thioredoxin reduction to the reduction of PDIs in the ER would require a so far
unidentified membrane protein to transfer reducing equivalents across the ER membrane
(Figure 2B). Moreover, it remains an open question how many steps are necessary to deliver the
reducing equivalents from the cytosol to the non-native disulfide within the ER. The relative roles
of the cytosolic thioredoxin reductase pathway and ER-localized NADPH reductases (see later)
are also unknown.

Is Disulfide Bond Reduction Required for ER-Associated Degradation?
Non-native disulfides are associated with protein misfolding in the ER, and can form within
single proteins and between different polypeptide chains to generate large amorphous disul-
fide-linked aggregates. A longstanding question in the field has been whether disulfide bond
reduction is a prerequisite for the degradation of these species.

Proteins that misfold in the ER are degraded by the ubiquitin-proteasome system in the cytosol.
Degradation of soluble ER proteins, therefore, requires retrotranslocation across the mem-
brane, whereas ER transmembrane proteins must be extracted from the lipid bilayer. Upon
emergence in the cytosol, substrates are ubiquitinated, extracted from the ER by the AAA-
ATPase p97, and degraded by the proteasome [36]. This process is termed ER-associated
degradation (ERAD).

Analogous to translocation, retrotranslocation has long been assumed to occur via a protein-
conducting channel (the ‘retrotranslocon’ or ‘dislocon’). A prime candidate has been Hrd1, a
central ERAD E3 ligase. The recent cryo-electron microscopy structure demonstrates that
Hrd1 forms a hydrophilic membrane-spanning funnel with a hydrophobic seal forming a
membrane barrier near the ER lumen [37]. These overall structural features seem to be
conserved in several other E3 ligases involved in ERAD. The Hrd1 structure with its narrow
36 Trends in Biochemical Sciences, January 2018, Vol. 43, No. 1



funnel indicates that unfolding is a prerequisite for passage through this (and similar) channels.
Concomitantly, disulfide bond reduction is likely a requirement for the degradation of many
ERAD substrates. Indeed, various ERAD substrates, as well as viruses and toxins, have been
shown to undergo reduction before retrotranslocation [38–41] (Figure 3). Moreover, oxidizing
conditions in the ER can prevent retrotranslocation, whereas reducing conditions tend to
promote the process [39,42,43]. However, it is worth noting that these latter results may not
reflect obligate reduction of ERAD substrates, and instead could indicate a role for redox
modification of the retrotranslocation machinery. It has been suggested that some ERAD
substrates may be able to cross the membrane in a folded state [44,45], indicating that
alternative (non-Hrd1) mechanisms of retrotranslocation may also exist.

Reductase Function of PDIs during ERAD
Among PDIs, ERdj5 is the most prominent ERAD reductase. It was first identified as an ERAD
reductase for the null Hong Kong variant of a1-antitrypsin and the J chain of IgM [23].
Specifically, ERdj5 was shown to be required for reduction of interchain disulfide bonds in
both substrates to ensure their efficient degradation. Mutational inactivation of the two most
reducing thioredoxin domains in ERdj5 was subsequently shown to strongly influence the
ERAD-enhancing activity of ERdj5 [18]. The efficiency of ERdj5 in catalyzing reduction-medi-
ated ERAD has recently been shown to rely not only on the redox activity of the protein but also
on its conformational plasticity [46].

ERdj5 has also been shown to promote reduction of the disulfide bonds connecting the VP1
subunits of the simian virus 40 (SV40) capsid in virus-infected CV-1 cells as a means to prepare
the virus for translocation across the ER membrane, an obligate step for infection [47]. Previous
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work had demonstrated that ERp57 functions as an isomerase of VP1 interchain disulfides in
HeLa cells [48]. ERdj5 and ERp57 were both found to collaborate with PDI [47,48]. Overall,
reduction and/or disulfide-rearrangement of the SV40 capsid paves the way for structural
rearrangements in the capsid, a process likely promoted by the chaperone function of PDI,
which in turn generates a hydrophobic virus that can translocate to the cytosol assisted by
various ERAD factors (Figure 3) [49].

PDI itself has also been shown to function as an ERAD/retrotranslocation reductase despite
relatively unstable active-site disulfides. By analogy with the SV40 work described above, PDI
reduces disulfides in murine polyomavirus in preparation for translocation of the virus to the
cytosol [50]. PDI also reduces misfolded proinsulin [51] and the hedgehog precursor to allow
retrotranslocation [52]. In addition, PDI has been implicated in reduction of the interchain
disulfide between the A and B chains of the plant toxin ricin [53] (Figure 3). The PDI-released
active A subunit is then retrotranslocated to the cytosol, where it exerts its deleterious function
[54]. Another PDI family member, TMX1, has been shown to influence the retrotranslocation of
ricin. TMX1 overexpression sensitized cells to the toxin, whereas downregulation protected
cells from ricin intoxication [55]. It remains unknown whether TMX1 directly reduces ricin to
allow retrotranslocation of the A subunit.

Finally, the recently discovered PDI family-member TXNDC11 is a potential ERAD reductase.
This protein functions in glycoprotein ERAD and interacts with several well-characterized ERAD
components [56]. The TXNDC11 active-site disulfide is very stable [56], even more so than
active-site disulfides in ERdj5 [18]. However, the finding that TXNDC11 depletion stabilizes
wild-type as well as the Cys-to-Ser mutant of the null Hong Kong variant of a1-antitrypsin to the
same extent [56] indicates that the reductase activity of TXNDC11 may not target ERAD
substrates, but instead another constituent of the ERAD machinery.

The Role of NADPH-Dependent Reductases in ERAD
As discussed above, the molecule(s) that directly catalyze the reduction of active-site cysteines
in PDIs such as ERdj5 are unknown. A role for cytoplasmic NADPH has been proposed, but it is
tempting to speculate that there may also be an ER-localized source of reducing equivalents.
Perhaps PDIs are maintained in a reduced state by an ER-localized reductase that is directly
coupled to NADPH (i.e., a glutathione or thioredoxin reductase-like enzyme). However, no such
activity has been identified in the ER [57]. Nonetheless, NADPH is recycled in this organelle – in
a reaction catalyzed by hexose 6-phosphate dehydrogenase – and is used by 11b-hydrox-
ysteroid dehydrogenase 1 to convert cortisone to cortisol [58].

One other potential NADPH-dependent ER-localized reductase is ERFAD (FOXRED2). This
homolog of glutathione reductase has been implicated in ERAD [59,60] and was shown to
interact with a non-catalytic PDI-like protein, ERp90 [60,61]. ERFAD is a flavoprotein that
contains a consensus motif for NADPH binding, but does not contain cysteine residues at the
positions of the active-site cysteines in glutathione reductase. ERFAD can be immuno-isolated
with ERdj5, but no reductase activity towards protein disulfides has been demonstrated for
ERFAD. Nevertheless, ERFAD does show reducing activity and is capable of reducing (and thus
activating) the small-molecule prodrug SN29428 which targets tumor hypoxia [62]. How the
small-molecule reducing activity of ERFAD, and the activity of other potential ER-localized
NADPH-dependent enzymes, influence ER protein reduction and ERAD remains to be
elucidated.
38 Trends in Biochemical Sciences, January 2018, Vol. 43, No. 1



Does Reduction of Oxidized Cysteines Play a Role in the Regulation of ER
Protein Function?
Disulfide formation/reduction is important not only for protein folding and degradation but also
for modulating protein activity. Efficient regulation of protein function through cysteine oxidation
relies on the availability of oxidants and reductants to enable the effective transition between the
oxidized and reduced cysteine forms. We outline here examples of how reductases affect redox
regulation of ER-protein function.

Reductase Control of Calcium Signaling
A prototypical example of an ER redox-regulated protein is the sarco/endoplasmic reticulum
calcium transport ATPase (SERCA), a calcium pump that imports calcium from the cytosol into
the ER lumen. The activity of the SERCA2b subtype is negatively regulated by oxidation of a
lumenal cysteine pair and is activated by reduction [63,64]. Formation/reduction of the regula-
tory SERCA2b disulfide occurs in a calcium-dependent manner, and redox regulation of
SERCA2b activity regulates calcium import into the ER in response to changes in ER calcium
levels (Figure 4A).
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The PDI family members ERp57 and TMX1 have been implicated in the oxidation and
inactivation of SERCA2b [65,88]. The reductases ERdj5 and SEPN1 are associated with
the reduction, and thus activation, of SERCA2b [66,67] (Figure 4). Disulfide-linked complexes
between SERCA2b and ERdj5, or between SERCA2b and SEPN1, can be isolated from cells,
suggesting redox-dependent interactions between these proteins and SERCA2b [66,67].
Stimulated calcium release from the ER is compromised in both ERdj5�/� and SEPN1�/�

mouse embryonic fibroblasts, implying that both enzymes normally facilitate SERCA2b activa-
tion [66,67]. Knockdown of cellular ERdj5 resulted in increased levels of disulfide-bonded
SERCA2b, further supporting a function for ERdj5 as a SERCA2b reductase [67]. Similarly,
elevated levels of oxidized (sulfenylated) SERCA2b cysteines were observed in SEPN1 knock-
down cells [66], suggesting that SEPN1 ordinarily serves to reduce sulfenylated SERCA2b
(Figure 4B).

Calcium-dependent regulation of ERdj5 reductase activity has been proposed, centered upon
the observation that ERdj5 undergoes oligomerization under conditions of high ER calcium
concentrations (Figure 4C) [67]. This is reasoned to limit the interaction of ERdj5 with SERCA2b,
maintaining SERCA2b in an inactive state. Conversely, ERdj5 dissociates into monomers at low
calcium concentrations, enabling reduction of the SERCA2b regulatory disulfide and refilling of
ER calcium stores [67]. Whether reduction of sulfenylated SERCA2b by SEPN1 is calcium-
dependent is unexplored. One could envisage that SEPN1 reductase activity is constitutive,
contrasting with the regulated activity of ERdj5. SEPN1 could serve to limit the overoxidation of
the regulatory thiols to sulfinic or sulfonic acid, leading to irreversible inactivation of SERCA2b.
For both ERdj5 and SEPN1 the initial reduction step would leave the enzymes oxidized and in
need of reduction for recycling, necessitating a further reductase, so far unidentified.

Reductases That Modulate the UPR
Changes in the ER-folding load are associated with redox events that modulate signaling
through the UPR. Here the formation or reduction of disulfides within two UPR sensors (ATF6
and IRE1) modulates signaling. Two PDI family members, PDIR and P5, have emerged as
disulfide exchange proteins that modulate redox changes in these UPR sensors.

During ER stress, the accumulation of unfolded proteins triggers IRE1 oligomerization and
trans-autophosphorylation which ultimately drives UPR target gene induction [68]. Attenuation
of IRE1 signaling, when stress subsides, is associated with the dissociation of IRE1 oligomers. It
has been proposed that P5 reduces disulfide-bonded IRE1 oligomers to attenuate the UPR
signal post-stress [69]. A mutant of P5 that stabilizes P5–substrate interactions can be trapped
in a mixed disulfide with IRE1, implying electron exchange between the two proteins [69].
Moreover, overexpression of the P5 trapping mutant, but not a cysteine-less P5, accelerates
dephosphorylation and inactivation of IRE1 [69]. Interestingly, preventing IRE1 disulfide forma-
tion by cysteine mutation also slowed attenuation of activated IRE1 [69]. Thus, although P5-
mediated reduction of IRE1 may mediate attenuation, the breaking of the IRE1 disulfide
appears to be insufficient to incite UPR decay. How P5 activity is controlled to facilitate the
decline of the UPR signal post-stress is an open question.

In contrast to IRE1, ATF6 undergoes disulfide reduction during ER stress. Under non-stress
conditions, ATF6 exists as a mixture of inter- and intramolecular disulfide-bonded species
[70,71]. Disulfide reduction and disassembly during ER stress appear to be required, but are
not sufficient, to mediate export of AFT6 to the Golgi [70]. Golgi localization allows proteolysis
by the site-1 and site-2 proteases (S1P and S2P), which releases the cytosolic domain of ATF6
that then moves to the nucleus and acts as a transcriptional activator of UPR genes [68]. The
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Outstanding Questions
What are the relative roles of thiol
reduction by (i) enzymatic catalysis,
or (ii) directly by glutathione?

What are the identities of all the com-
ponents of the reductive pathway(s)
linking NADPH to thiol reduction in
the ER?

What directly reduces the PDIs within
the ER? Do ER-localized NADPH-
dependent enzymes have a function
in ER protein reduction?

How is specificity achieved between
the oxidoreductases. Are some reduc-
tases selective for specific substrates,
and/or are there general reductases
that act on a broader range of
substrates?

How is reductase activity regulated –

spatially and/or temporally – in the
case of regulatory reduction events?

What are the presumed reductase
functions of the ER-localized enzymes
SEPN1 and TXNDC11?

What is the influence of protein reduc-
tion on other post-translational modi-
fications such as N-linked
glycosylation?

There are several poorly characterized
selenoproteins in addition to SEPN1
that reside within the ER. Do these
proteins also act as reductases?
PDI family member PDIR has been implicated in reduction of the ATF6 disulfides: silencing of
PDIR limits oligomer dissociation and ER export of ATF6 under stress conditions [72]. Although
direct electron exchange between ATF6 and PDIR has not been demonstrated, it seems likely
that PDIR knockdown abolishes direct reduction of ATF6 disulfides by PDIR. Reduced ATF6 is
a better substrate for S1P; it has been suggested that the less-efficient cleavage of oxidized
ATF6 may benefit cells by allowing the retrieval of uncleaved ATF6 that has escaped from the
ER (under non-stress conditions), thus limiting unsolicited UPR activation [70]. How ER folding
stress is linked to an increase in PDIR-mediated reduction of ATF6 is unclear.

Reductases That Influence Chaperone Function
Several ER molecular chaperones are prone to small-molecule oxidation, including the essen-
tial and abundant chaperones PDI and BiP. Nitrosylation and glutathionylation of the PDI active-
site cysteines have been observed in cells, and oxidation can inhibit oxidoreductase activity
[13,73]. A reductase that can reverse these adducts and restore PDI function has not been
identified. BiP, an Hsp70 family member, contains a conserved cysteine within its ATPase
domain, and this cysteine is both sulfenylated [77] and glutathionylated [6,75,76] in cells.
Cysteine oxidation changes BiP activity, inhibiting normal ATPase activity but augmenting the
interaction between BiP and polypeptide substrates [6,77,78]. BiP modification is associated
with conditions of ER oxidative stress, and an increase in BiP holdase activity is proposed to
help to limit polypeptide aggregation during suboptimal folding conditions [77,78]. Recently an
unexpected reductase has been identified for BiP, the protein Sil1, which can reverse a BiP
cysteine–glutathione adduct and restore ATPase function to BiP [74].

Sil1 is one of two nucleotide exchange factors (NEFs) for BiP. NEF activity is associated with the
C-terminal portion of Sil1, which binds to BiP and correspondingly weakens the contacts
between BiP and its nucleotide [79]. The capacity for Sil1 as a reductant traces to a pair of
cysteines within the N-terminus. When these cysteines are in the reduced form, recombinant
Sil1 facilitates glutathione release from the BiP cysteine [74]. Cells lacking Sil1 (sil1D) show an
accumulation of oxidized BiP and a slow reduction of oxidized BiP post-stress [74]. In contrast
to the reductases discussed above, which are associated specifically with higher eukaryotic
species, Sil1 is widely conserved. The activity of Sil1 as a reductase has been demonstrated to
date only for yeast Sil1. What maintains Sil1 in a reduced state to allow BiP reduction is
unknown.

Concluding Remarks
We have outlined here many examples of proteins that require reduction of their thiol groups for
correct folding, degradation, or regulation. Various types of cysteine-oxidation adducts can be
generated in cells. The variability in cysteine species suggests that distinct reductases may be
necessary to mediate the removal of specific modifications, and this could account (at least in
part) for the description of multiple reductants that act on a given protein substrate (e.g.,
SERCA2b) and/or within a specific pathway (e.g., ERAD). The nature and components of
reducing ER pathways are only now being identified, and several questions remain (see
Outstanding Questions). Elucidating the specific mechanisms for reduction will be a particularly
challenging question to address given the large number of substrates involved and the likely
redundancy between individual pathways. We anticipate that future research will focus on the
identification of the (missing) reducing pathway components, how reducing pathways are
regulated, and how the redox balance within the ER is maintained to allow both oxidizing and
reducing activities.
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