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Introduction 
 
As an important parameter of health, perinatal 
mortality serves as a crucial indicator of maternal 
care, maternal health and nutrition. Besides, it is 
also a reflection of socio-economic development. 
To improve the health status of pregnant women, 
new mothers and newborns, most of the govern-
ments have set the reduction of perinatal mortality 
as their key development goal. As a key indicator, 
perinatal mortality provides information necessary 
for decision-makers to identify problems, track 
temporal, geographical trends and disparities, as-
sess changes in public health policy and practice (1, 
2). 
There is an annual perinatal death of over 6.3 mil-
lion across the world, among which the develop-

ing countries account for the largest share, with 
27% in the least developed countries alone. “In 
developing countries, only about 40% of delive-
ries occur in health facilities and little more than 
one in two takes place with the assistance of a 
doctor, midwife or qualified nurse” (3). As the 
largest developing country, China’s perinatal mor-
tality rate dropped from 1247(per 100000) in 2003 
to 589 (per 100000) in 2013. On the national level, 
China has witnessed a significant decrease in its 
perinatal mortality rate (4). However, it is reported 
that the mortality rate is unevenly distributed 
across the nation, with some provinces extremely 
higher than the national average while others ex-
tremely lower. For example, in 2013, the perinatal 
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mortality rate of Tibet is 2404 (per 100000); 5 
times higher than the national average. 
Since the statistical data show that there are re-
gional differences in perinatal mortality, further 
researches should be conducted to examine what 
factors have contributed to the regional differ-
ences. Recently, as tools for analyzing spatial data 
improved, spatial analysis has been wildly used in 
projects of public health and epidemiology, such 
as infant mortality rates, associations between 
birth defects and exposures, socio-economic sta-
tus and neural tube defects (5, 6). Compared with 
traditional methods, spatial analysis is more in-
strumental in decision-making, planning, informa-
tion management and dissemination in epidemio-
logical research. With spatial analysis, the regional 
variation in health problems, spatial distribution 
and transmission route of epidemic and regional 
difference in disease outbreak can be easily mod-
eled. 
In investigating China province-level perinatal 
mortality rates in 31 regions during the period 
2003-2013, this study offers a unique contribution 
to the relevant literature. Its objectives are: 1) us-
ing novel spatial analysis to examine whether re-
gional differences existed in perinatal mortality 
and clarify the spatial pattern of perinatal mortali-
ty. 2) using spatial econometrics models to deter-
mine how the relative socio-economic factors and 
health care resources affected perinatal mortality. 
 

Materials and Methods 
 
Data source 
This research is the study of risk-modifying fac-
tors on health based on populations defined spa-
tially, risk-modifying factors is averaged for the 
populations in each spatial unit and then com-
pared using spatial statistical method, therefore, 
we categorized this research into Ecological study. 
Data are obtained from Statistical Yearbooks of Chi-
na and Statistical Yearbooks of China Health. In order 
to avoid the aggregation bias, there are two ap-
proaches can be applied into research. The first 
uses box plot to confirm the outliers, once all out-
liers are determined, they will be deleted from raw 
data. The second is enlarging the sample size, the 

larger sample size will result more precise estima-
tion. Although the two approaches can be applied 
to eliminate the aggregation bias, the spatial analy-
sis only supports balanced panel data, if the first 

approach is adopted，the whole data structure 

would be unbalanced. Therefore, the decade from 
1996 to 2013 is selected as the observation period 
and the 31 province-level regions as the subject 
for analysis, which include 22 provinces, 4 muni-
cipalities and 5 autonomous regions. 
 
Spatial autocorrelation analysis 
Compared with the traditional analysis method, 
spatial analysis method makes different assump-
tions on the sample data collected with reference 
to locations measured as points in space. Tradi-
tional method assumes that the locations meas-
ured as points are fixed, but spatial method as-
sumes that the spatial dependence existed be-
tween the observations. Spatial dependence 
means that observations at location i depend on 

other observations at location j, and ji. Formally, 
it has been stated as: 

Yi=f (Yj), i=1,…,nji 
The dependence to be allowed among several ob-
servations, the index i can take on any value from 
i=1,…,n. There are two reasons why we expect 
the sample data we observed at different points in 
space to be dependent on values each other. First, 
we usually use zip codes, counties, states, and cen-
sus tracts to collect data of observations asso-
ciated with spatial units, but measurement errors 
might occur thereof, this might reflect measure-
ment error. Secondly and more importantly, if we 
want to construct a model which fits the data ac-
curately, we must understand the spatial dimen-
sion of socio-demographic, economic or regional 
activity (7, 8). To clarify the spatial distribution of 
perinatal mortality in 31 province-level regions, 
we introduced a standard spatial weight matrix W 
to consider how geographic distance affected pe-
rinatal mortality. Spatial weight matrix W is a posi-
tive matrix where the rows and columns corres-
pond to the cross-sectional observations, and wij 
expresses the element of the weighting matrix. 
There are so many specifications for weighting 
matrix, but the most commonly used are the bi-
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nary contiguity and the distance function matrix. 
In this study, we choose the specification of bi-
nary contiguity to create the spatial weight matrix 
W. The elements of W are defined as wij=1 when 
location i is adjacent to location j, and wij=0 when 
location i is not adjacent to location j. After we 
created the spatial weight matrix W, the Moran’s 

Ⅰ index can be used to measure the spatial auto-
correlation of perinatal mortality. The formula for 

calculating Moran’s Ⅰ index is 
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Where xi and xj represent perinatal mortality rates 
of regional i and j respectively. The terms x and S2 
denote means and variance. The value of Mo-

ran’sⅠindex is defined between -1 and 1. Positive 

values of Moran’sⅠindex imply positive spatial 
autocorrelation and negative values imply negative 
spatial autocorrelation. The perfect correlations 
and perfect dispersion appear when the valve of 

Moran’sⅠindex equal to 1 and -1 respectively. A 
zero value indicates a random spatial pattern (9, 
10). 
 
Spatial econometrics model analysis 
In the literature, there are a large number of spa-
tial econometrics models, but the most commonly 
used in applied research are the spatial lag model 
(SLM), the spatial error model(SEM) and spatial 
Durbin model (SDM). The SLM model assumes 
that the values of the dependent variables at one 
location and neighboring locations affected each 
other. According to the spatial weighting matrix 
W, perinatal mortality rate in region i is partially 
determined by perinatal mortality rate in neigh-
boring region j. The SLM model is specified as 
𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝜀 
Where y denotes the dependent variable, i.e. Chi-
na province-level perinatal mortality rates, ρ is the 
spatial autoregressive parameter and a column 
vector of regression coefficients. W denotes spa-

tial weighting matrix. X is a matrix of explanatory 

variables, 𝜀 is the error term. 
Unlike the spatial lag model, spatial error model 
incorporates spatial autocorrelation in disturbance 
term. This suggests that the perinatal mortality 
rate in region i is affected by unobserved shocks 
in neighboring regions. The SEM model is speci-
fied as  𝑦 = 𝑋𝛽 + 𝜀    𝜀 = 𝜆𝑊𝜀 + 𝜖 

Where  is the spatial autocorrelation coefficient 

on the error term. 
The SDM model is specified as 
𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝜃𝑊𝑋 + 𝜀 

Where the parameters are the same as before but 

the parameter 𝜃 now indicates a spatial autocorre-
lation coefficient on the explanatory variables (11-
13). 
Before we use the spatial model to analyze China 
province-level perinatal mortality rates, we 
adopted a non-spatial model and other tests to de-
termine whether spatial model is more appropri-
ate. We first employ classic LM tests and Robust 
LM tests to determine the two null hypothesis of 
no spatially lag dependent variable and no spatially 
auto correlated term (14). Secondly, the likelihood 
ratio (LR) test is used to investigate the null hy-
pothesis that the individual fixed effects and time-
period fixed effects are jointly insignificant. Both 
hypotheses must be rejected at 5% as well as 1% 
significance. 
The spatial econometrics literature is divided 
about whether to apply the specific-to-general ap-
proach or the general-to-specific approach (15, 
16). When we use classic LM tests and Robust 
LM tests to determine whether the non-spatial 
model or the spatial model is more appropriate, it 
is the specific-to-general approach. In case the 
spatial Durbin model is employed, the general-to-
specific approach test whether it can be simplified 
to spatial lag model or spatial error model. The 
likelihood Ratio (LR) test and Wald test are per-
formed to test this hypothesis. The two null hypo-
thesis tests for determining the correct spatial 

model are: H0:𝜃 = 0 and H0:  𝜃 + 𝜌 · 𝛽 = 0 . The 
first hypothesis determines if the spatial Durbin 
can be simplified to the spatial lag model and the 
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second determines if it can be simplified to the 
spatial error model (17). 
 

Data Description 
This paper adopts China province-level perinatal 
mortality rates as the dependent variable, which 
includes 22 provinces, 4 municipalities and 5 au-
tonomous regions. Due to the unavailability of 
certain data, Hong Kong, Macao and Taiwan are 
excluded. The explanatory variables include prov-
ince-level per-capita GDP and urbanization rate, 
the total provincial number of health agencies and 
health staffs. The specific definition of each varia-
ble is as follows: 
1. Province-level perinatal mortality rates: measured 
as number of stillbirths and deaths in the first of life 
per 1,000 live births of selected region.  
2. Province-level per-capita GDP (PGDP): meas-
ured by the province-level gross domestic product 
divided by the population of selected region.  
3. Province-level urbanization rate (URB): is 
measured as the urban population dived by the 
total population of selected region. 
4. The total number of health agencies (HA): rep-
resent the health agencies of selected region, such 
as hospitals, community-level medical institutions 
and public health institutions.     
5. The total number of health staffs in province-
level (HS): denotes the health staffs of selected re-
gion. 
All variables are expressed in natural logs, there-
fore, the empirical model is specified as follows 
ln(𝑦𝑖𝑡 )=𝛽0 + 𝛽1𝑙𝑛𝑃𝐺𝐷𝑃 + 𝛽2𝑙𝑛𝑈𝑅𝐵 + 𝛽3𝑙𝑛𝐻𝐴 + 𝛽4𝑙𝑛𝐻𝑆 + 𝜇𝑖 + 𝜂𝑡 + 𝑢 

i=1,…,N t=1,…,T 
 

Results 
 

Global spatial autocorrelation 
Issues associated with spatial dependence have 
been largely ignored in health economics literature. 
Firstly, spatial tools are used to analyze the spatial 
correlation of province-level maternal mortality in 
China. 
Table 1 display the Global Moran's I index of 
China province-level perinatal mortality rates and 
its P-valve in period from 1996 to 2013. All Mo-
ran's I of selected years are positive, which indi-
cates a positive spatial correlation in China prov-

ince-level perinatal mortality rates. However, the 
Moran's I of each year shows tremendous varia-
tions, which indicates the different clustering ten-
dency of perinatal mortality in selected regions. 
Since tremendous variations are found in Moran's 
I index, we will employ Moran's I scatter plot to 
examine the latest clustering distribution among 
selected regions. Fig. 1 shows the results. In this 
scatter plot, the horizontal axis denotes the devia-
tion of regional perinatal mortality rate in 2013 
while the vertical axis denotes the spatial lags of 
the deviation of the regional perinatal mortality 
rate. 
 
Table 1: Moran’s I index of China province-level per-

inatal mortality rates 
 

Year Moran’s I P-value 

1996 0.512 0.001 
1997 0.544 0.001 
1998 0.489 0.001 
1999 0.522 0.001 

2000 0.601 0.001 
2001 0.566 0.001 
2002 0.489 0.001 
2003 0.434 0.001 
2004 0.459 0.001 
2005 0.567 0.001 
2006 0.612 0.001 
2007 0.603 0.001 
2008 0.552 0.001 

2009 0.465 0.001 
2010 0.382 0.004 
2011 0.401 0.006 
2012 0.471 0.003 
2013 0.344 0.009 

 

The scatter plot has four quadrants and the speci-
fication of each is as follows: 

1. Quadrant Ⅰ: HH clustering, it denotes regions 

with high perinatal mortality rates are associated 
with neighboring regions with high perinatal mor-
tality rates. 

2. Quadrant Ⅱ: LH clustering, it denotes regions 

with low perinatal mortality rates are associated 
with neighboring regions with high perinatal mor-
tality rates. 
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3. Quadrant Ⅲ: LL clustering, it denotes regions 

with low perinatal mortality rates are associated 
with neighboring regions with low perinatal mor-
tality rates. 

4. Quadrant Ⅳ: HL clustering, it denotes regions 

with high perinatal mortality rates are associated 
with neighboring regions with low perinatal mor-
tality rate. 
According to Fig. 1, there are 8 regions in quad-

rantⅠand 17 regions in quadrant Ⅲ, accounting 

for 25.8% and 54.84% respectively and these re-
gions show similar characteristics of spatial auto-
correlation. On the other side, there are 2 regions 

in quadrant Ⅱ and 4 regions in quadrant Ⅳ, ac-

counting for 6.4% and 12.9% respectively and 
these regions demonstrate different characteristics 
of spatial autocorrelation. 
 

 
 
Fig. 1: Moran scatter plot of perinatal mortality rate of 

2013 

 
According to the result of scatter plot, Fig. 2 dis-
plays the spatial distribution of perinatal mortality 
rate in 2013, the number zero in the legend de-
notes the regions where are not included in the 
analysis, the number one to four denote the re-

gions where distribute in quadrantⅠto quadrant 

Ⅳ respectively. The details of Fig. 2 consist of the 

following: 

1. Eight regions in quadrant Ⅰ: Jinin, Heilong-

jiang, Yunnan, Tibet, Gansu, Qinghai, Ningxia, 
Xinjiang. 
 

 
 
Fig. 2: Spatial distribution of perinatal mortality rate in 

2013 

 
2. Two regions in quadrant: Inner Mongolia, Si-
chuan. 

3. Seventeen regions in quadrant Ⅲ:Beijing, He-

bei, Shanghai, Jiangsu, Zhejiang, Anhui,Fu-
jian,Jiangxi,Shandong,Henan,Hu-
bei,Hunan,Guangdong,Hainan,Chongqing,Shanxi. 

4. Four regions in quadrant Ⅳ: Tianjin, Shanxi, 

Liaoning, Guangxi, Guizhou. 
The positive spatial autocorrelation of China 
province-level perinatal mortality rates is found 
through globe Moran’s I test, and the spatial auto-
correlation and dispersion among selected regions 
through Moran scatter plot, which these suggest 
the different clustering effects exist in China peri-
natal mortality. The statistically significant, posi-
tive spatial autocorrelation implies that standard 
OLS regressions of the drivers of mortality may 
lead to estimation bias in the regression results. 
Therefore, to further analyze the drivers of peri-
natal mortality, we need to apply the spatial panel 
model to describe the data. 
 
Empirical results of spatial econometric models 
To determine which type of model is more appro-
priate, firstly we adopted several non-spatial panel 
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models for investigation. Table 2 shows the esti-
mation results of non-spatial panel models. Col-
umns 1-4 represent the different specifications we 
used: pooled OLS, fixed effects only, time-period 
effects only and both fixed effects and time-
period effects, respectively. 
To determine which type of model is more appro-
priate, firstly we adopted several non-spatial panel 
models for investigation. Table 2 shows the esti-
mation results of non-spatial panel models. Col-
umns 1-4 represent the different specifications we 
used: pooled OLS, fixed effects only, time-period 
effects only and both fixed effects and time-
period effects, respectively. 
To investigate the null hypothesis that the individ-
ual fixed effects and time-period fixed effects are 
jointly insignificant, the likelihood ratio (LR) test 
was performed. According to the test results, we 
reject the hypothesis that the individual fixed ef-
fects are insignificant at LR-test=356.784, with 31 

degrees of freedom, P＜0.001, and we also reject 

the hypothesis that the time-period fixed effects 
are insignificant at LR-test=33.530, with 18 de-

grees of freedom, P＜0.01. When we use non-

spatial panel models to determine which type of 
model is more appropriate, the classic LM and ro-

bust LM test were conducted to investigate the 
null hypothesizes of no spatially lagged dependent 
variable and no spatially auto correlated error 
term. Recalled the results of LR test, we focus on 
the estimation in Column 4 of Table 2. The re-
sults show that when using classic LM tests, both 
hypothesizes of no spatially lagged dependent va-
riable and no spatially auto correlated error term 
are accepted. However when using robust LM 
tests, both hypothesizes of no spatially lagged de-
pendent variable and no spatially auto correlated 
error term are strongly rejected at 1% significance 
level. These results point to spatial panel model 
best fits the data; however, the results also imply 
that the non-spatial models are rejected in favor 
of the spatial lag model or the spatial error model. 
Since the results of (robust) LM test imply that 
the spatial model is more appropriate, we use spa-
tial Durbin model for further estimation. The re-
sults for spatial Durbin model are reported in Ta-
ble 3, the results of LR test and Wald test are 
listed in the bottom. The column 1 is the estima-
tion result of the spatial Durbin model without 
bias correction, while the column 2 is with bias 
correction (18, 19). 

 

Table 2: Estimation results of non-spatial panel data models 
 

 
Determinants 

 
Pooled OLS 

Individual 
fixed effects 

Time-period 
fixed effects 

Individual and time-period 
fixed effects 

Intercept 7.235 ** 
(27.125) 

NA NA NA 

LNPGDP -0.201*** 
(-15.522) 

-0.301*** 
(-9.102) 

-0.455*** 
(-9.325) 

-0.566*** 
(-7.358) 

LNURB 0.203* 
(1.550) 

-0.221 
(-2.033) 

0.201 
(2.366) 

-0.066 
(-0.669) 

LNHA 0.188*** 
(5.366) 

0.077* 
(3.014) 

0.425** 
(8.366) 

0.102 
(3.022) 

LNHS -0.396*** 
(-9.866) 

-0.682** 
(-6.322) 

-0.560*** 
(-12.022) 

-0.966*** 
(-8.011) 

σ2 0.079 0.022 0.069 0.022 
R2 0.711 0.766 0.577 0.356 

LM spatial lag 63.258*** 0.152 55.322*** 0.122 
Robust LM 
spatial lag 

88.336*** 3.255* 75.223** 16.322*** 

LM spatial error 9.322*** 0.455 4.326* 3.236 
Robust LM 
spatial error 

 
18.232*** 

 
3.124* 

 
22.033*** 

 
15.665*** 

Note: All variables are measured as natural logs. Numbers in the parentheses represent t-stat values. * Denotes P<0.1. ** De-
notes P<0.5. *** Denotes P< 0.01. 
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Table 3: Estimation results with spatial Durbin model and a comparison of cumulative impacts from spatial Durbin 
model 

 
Determinants Individual and time-

period fixed effects 
Individual and time-period 
fixed effects(bias-corrected) 

Direct effects Indirect effects Total effects 

LNPGDP -0.632*** 
(-6.322) 

-0.622*** 
(-8.321) 

-0.601*** 
(-9.322) 

0.401** 
(3.014) 

-0.301* 
(-2.366) 

LNURB 0.033 
(0.633) 

0.032 
(0.699) 

0.040 
(0.455) 

-0.886** 
(-4.332) 

-0.833*** 
(-4.355) 

LNHA 0.022* 
(1.366) 

0.020 
(1.699) 

0.033 
(0.655) 

-0.166 
(-2.355) 

-0.165 
(-2.066) 

LNHS -0.603*** 
(-6.337) 

-0.599*** 
(-6.102) 

-0.430** 
(-4.366) 

-0.896*** 
(-6.322) 

-1.405** 
(-8.236) 

W*LNPGDP 0.311** 
(2.033) 

0.303** 
(2.669) 

- - - 

W*LNURB -1.033** 
(-6.325) 

-0.902** 
(-6.988) 

- - - 

W*LNHA -0.093 
(-3.022) 

-0.089 
(-3.669) 

- - - 

W*LNHS -0.865*** 
(-9.322) 

-0.833*** 
(-9.655) 

   

W*dep.var -0.203** 
(-4.322) 

-0.183* 
(-5.336) 

- - - 

σ2 0.018 0.017 - - - 
R2 0.912 0.912 - - - 
Wald test spa-
tial lag 

69.325*** 50.355*** - - - 

LR test spatial 
lag 

57.122*** 57.232*** - - - 

Wald test spa-
tial lag 

69.321*** 46.322*** - - - 

LR test spatial 
lag 

50.221*** 50.321*** - - - 

Note: All variables are measured as natural logs. Numbers in the parentheses represent t-stat values. * Denotes P<0.1. ** De-
notes P<0.5. *** Denotes P< 0.01. 

  

According to the test, both hypothesizes of 

H0:θ = 0  and H0:θ + ρ · β = 0  are rejected at 
one percent level. These LR and Wald test results 
indicate that the spatial Durbin model best de-
scribes the data. 
 

Discussion  
 

We focus on the spatial Durbin model coeffi-
cients estimation with bias corrected. An inter-
pretation of the coefficient on per-capita GDP is 
that a 10% increase of per-capita GDP is asso-
ciated with 6.22% decrease of perinatal mortality. 
An interpretation of the coefficient on total 
number of health staffs is that 10% increase will 
lead to a 5.99% decrease of perinatal mortality. 
These results imply that the level of per-capita 
GDP and the total number of health staffs are 
critical factor contributing to the decrease of pe-

rinatal mortality. However, we do not find a sig-
nificant relationship between urbanization rates, 
the total number of health agencies and perinatal 
mortality.  
In the two-way fixed effects non-spatial model, a 
10% increase of per-capita GDP is associated 
with 5.66% decrease of perinatal mortality and a 
10% increase in the total number of health staffs 
will lead to 9.66% decrease of perinatal mortality. 
However, as the spatial Durbin model was found 
to best fit the data, we identify these coefficient 
estimates as biased. To investigate the difference 
estimation results, we compared the coefficient 
estimates and their counterparts between the two 
different models, but this comparison is invalid 
because the parameter estimates in the non-
spatial model denote the marginal effect but in 
the spatial Durbin model do not. Therefore, we 
used the direct and indirect effects to investigate 
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the spatial spillover (20). Table 3 also shows all 
these effects. 
According to Table 3, we found per-capita GDP 
and the total number of health staffs are signifi-
cant at 1% and 5% level among the direct effects. 
The indirect effects of per-capita GDP, urbaniza-
tion rate and the total number of health staffs are 
significant at 5%, 1% and 1% level respectively. 
Since the spatial autocorrelation coefficient is 
positive and statistically significant in estimation 
results of spatial Durbin model, in order to test 
the existence of spatial spillovers, several studies 
use these results to explain it, but the best way to 
interpret spatial spillovers is cumulative impacts 
estimation. The difference between the results 
with spatial Durbin model and the results of cu-
mulative impacts are partially due to the esti-
mated coefficient of the spatially lagged depen-
dent variable and partially due to the estimated 
coefficients on the independent variables. These 
coefficients imply that the changes of per-capita 
GDP, urbanization rate and the total number of 
health staffs lead to the feedback effects that 
causing impacts passing through neighboring re-
gions and back to the regions themselves. The 
total effects of per-capita GDP, urbanization rate 
and the total number of health staffs are signifi-
cant at 10%, 1% and 5% level respectively, these 
imply that the increases of them will decrease the 
perinatal mortality. However, the direct effect of 
per-capita GDP is negative and indirect effect of 
it is positive, which implies that an increase in 
per-capita GDP in one region will lead to a peri-
natal mortality decrease in this region but an in-
crease in its neighboring regions. The indirect 
effects of urbanization rate and the total number 
of health staffs are negative, which means an in-
crease in the urbanization rate and the total num-
ber of health staffs in one region will reduce the 
perinatal mortality of neighboring regions. 
 

Conclusion 
 
The results of the Moran test confirm the posi-
tive spatial autocorrelation in China province-
level perinatal mortality, which in turn indicates 

that the perinatal mortality tends to cluster to-

gether. Besides, by using Moran's Ⅰ scatter plot, 
we find that China has significant clustering of 
perinatal mortality in high-rate regions and signif-
icant clustering of perinatal mortality in low-rate 
regions. The regression results suggest that the 
increase of per-capita GDP and health staffs de-
creases the perinatal mortality, but the increase of 
urbanization rate and the total number of health 
agencies have no significant effect on perinatal 
mortality. 
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