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Scientific and technological advances within the life sciences have enabled the 

generation of very large datasets that must be processed, stored, and managed 

computationally. Researchers increasingly require data science skills to work with 

these datasets at scale in order to convert information into actionable insights, 

and undergraduate educators have started to adapt pedagogies to fulfill this 

need. Course-based undergraduate research experiences (CUREs) have emerged 

as a leading model for providing large numbers of students with authentic 

research experiences including data science. Originally designed around wet-

lab research experiences, CURE models have proliferated and diversified globally 

to accommodate a broad range of academic disciplines. Within microbiology, 

diversity metrics derived from microbiome sequence information have become 

standard data products in research. In some cases, researchers have deposited 

data in publicly accessible repositories, providing opportunities for reproducibility 

and comparative analysis. In 2020, with the onset of the COVID-19 pandemic and 

concomitant shift to remote learning, the University of British Columbia set out 

to develop an online data science CURE in microbiology. A team of faculty with 

collective domain expertise in microbiome research and CUREs developed and 

implemented a data science CURE in which teams of students learn to work with 

large publicly available datasets, develop and execute a novel scientific research 

project, and disseminate their findings in the online Undergraduate Journal of 

Experimental Microbiology and Immunology. Analysis of the resulting student-

authored research articles, including comments from peer reviews conducted by 

subject matter experts, demonstrate high levels of learning effectiveness. Here, 

we describe core insights from course development and implementation based on 

a reverse course design model. Our approach to course design may be applicable 

to the development of other data science CUREs.
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Introduction

Advances in sequencing throughput and mass 
spectrometry are rapidly converting biology into a data-
driven science in which multi-dimensional datasets 
contribute to knowledge at the individual, population and 
community levels of biological organization (Higgs and 
Attwood, 2005; Hahn et al., 2016). While multi-dimensional 
data generation in life sciences research becomes normative, 
working with these complex datasets to answer scientific 
questions with meaning and insight remains challenging 
across training levels, and raises the question of how to 
prepare undergraduate students in particular for data-driven 
research based on scaffolding and development of core 
competencies (Attwood et al., 2019; Irizarry, 2020).

One way to approach this challenge is to leverage existing 
pedagogical frameworks that embed authentic research 
experience in undergraduate teaching and learning. Course-
based undergraduate research experiences, known as CUREs, 
are scalable, broadly accessible, credit-based courses where 
students conduct authentic research projects often in team-
based settings. Auchincloss et al. (2014) have proposed that 
CUREs encompass core research competencies, including 
scientific practices, collaboration, iteration (as experiments, 
ideas and hypotheses are refined), discovery, and relevance as 
the research topics are novel and have meaning beyond the 
walls of the classroom. As such, several curricular innovations 
have emerged over the last decade that explore data science 
through CUREs (Wang, 2017). Furthermore, remote learning 
due to the global COVID-19 pandemic prompted a recent 
surge in undergraduate lab curricula pivoting from a “bench-
based” or “wet lab” research perspective to a computational 
(dry-lab) one. Supplementary Table 1 captures some of these 
educational innovations spanning the central dogma of 
biology from DNA > RNA > proteins > metabolites. Just as life 
science has become a multi-omics experience expanding its 
focus from DNA sequencing (genomics) to other forms of 
biological information (e.g., transcriptomics, proteomics, 
metabolomics), so have many new CUREs. However, the 
emerging data science CUREs in 2008–2009 emphasized 
more conventional software tools such as implementing the 
Basic Local Alignment Search Tool (BLAST; Furge et  al., 
2009; Lau and Robinson, 2009) for database searches or 
ClustalW or ClustalX for multiple sequence alignment 
(Campo and Garcia-Vazquez, 2008; Furge et  al., 2009). In 
contrast, recent CUREs implement more programmatic 
approaches to using software tools that involve data wrangling 
and statistical inference including correlation networks 
(Brown, 2016), gene expression (Makarevitch et al., 2015), 
and microbial community profiling (Sewall et  al., 2020; 
Zelaya et al., 2020; Baker et al., 2021).

Including a wet-lab component in a data science CURE in 
which students first generate de novo datasets provides an 
exceptional learning context for authentic research. However, 

this model can pose logistic, temporal and financial barriers 
that can limit efficacy and sustainable adoption. First, 
datasets will likely be constrained due to limited time allotted 
for experimentation as well as access to essential 
infrastructure and sequencing resources. This puts added 
pressure on students to generate useable data while their 
experimental skills are still under development. The resulting 
datasets will also be limited in scope thus constraining the 
types of analysis that can be performed and the biological 
questions that can be  answered. Finally, de novo data 
generation limits the time available for developing data 
science skills needed to perform analyses. Based on these 
constraints, a data science CURE that leverages public 
datasets as teaching and learning resources could provide a 
more tenable model. Here we  describe such a course 
combining the structure of a previously established wet-lab 
CURE (Sun et  al., 2020a) and modular data science 
curriculum developed in the context of the Experiential Data 
Science for Undergraduate Cross-disciplinary Education 
(EDUCE) initiative (Dill-McFarland et al., 2021). We describe 
core insights from course development and implementation 
based on a reverse course design model using small subunit 
ribosomal RNA (SSU or 16S rRNA) gene sequences sourced 
from public datasets with emphasis on extensibility and 
adoption within the broader CUREs teaching and 
learning community.

Course design

Since 2001, the Department of Microbiology and Immunology 
at the University of British Columbia in Vancouver, BC, Canada, 
has been implementing a wet-lab CURE model centered around 
student publications in an undergraduate research journal called 
the Undergraduate Journal of Experimental Microbiology and 
Immunology (UJEMI; Sun et al., 2020a,b). In brief, student teams 
design their research projects inspired by the research published 
by their peers in UJEMI. The skills and domain knowledge 
required to generate an original UJEMI manuscript define the 
learning outcomes for this CURE model as summarized in 
Table 1.

In 2020, with the onset of the COVID-19 pandemic and the 
shift to online teaching, we set out to build an alternative data 
science CURE model in which students plan a research project 
using public data, conduct data processing and analysis steps, and 
disseminate their findings (Sun et al., 2020a). Design of this new 
course involved (1) vetting the scope and breadth of research 
projects, (2) leveraging the existing CURE model to build 
pedagogical scaffolding to provide students with the skills required 
to carry out their projects, and (3) assembling resources such as 
domain expert teaching assistants. As a first step, research faculty 
and educators with expertise in data science joined the core CURE 
design team to assemble the necessary domain knowledge to form 
a course development team.
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Vetting the scope and breadth of 
research projects

Data type selection
The course was developed iteratively through a series of 

discussions focused on the types of research projects to 
be  supported including data sources and types, software 
applications, and analysis methods. Initially we  considered 
allowing students to work with any type of biological data 
spanning the central dogma. However, the large variety of analyses 
in this model would have fragmented the instructional effort to a 
degree deemed unfeasible in a relatively high enrollment CURE 
(e.g., greater than 50 students). Furthermore, students in our 
program enter the course with limited prior experience related to 
data-driven analysis. For these reasons, the team decided to 
constrain the course to (1) a single type of data and (2) an 
integrated software framework for data processing and analysis 
(Figure 1). The team considered several types of biological data, 
including amplicon sequencing, genome assembly, and RNA-seq 
based on the potential for student development, alignment with 
our undergraduate curriculum, required scaffolding, and practical 
relevance. Ultimately, we decided to focus course projects on using 
16S rRNA gene amplicon sequences as a robust introduction to 
data science in microbiology.

Amplicon gene sequencing is a DNA-based method that 
involves PCR amplification and sequencing of a specific genomic 
interval.  In the context of microbiology, this interval is most 
commonly one or more variable regions in the 16S rRNA gene. It 
is used to describe microbial communities within a sample (e.g., 
feces, soil, skin; Cullen et al., 2020). It essentially resolves taxa 

present in the community and allows for both compositional and 
ecological diversity analyses. Current sequencing platforms can 
generate thousands of amplicon sequences per sample enabling 
more quantitative insights into microbial community structure. 
Each sequence variant within a sample essentially represents a 
bacterial taxon, resolvable across ranks from phylum to species 
using conventional hierarchies. The concept of 16S rRNA gene 
amplicon sequencing is simple enough for a course introducing 
students to data science, but also allows relatively complex projects 
on topics of broader interest.

Additional criteria supporting our decision included: (1) the 
underlying concepts of 16S rRNA gene sequence analysis are well 
established in our undergraduate curriculum, e.g., consideration 
of its ancestral role in information processing, relevance to 
phylogenetic inference including the discovery of the 3rd domain 
of life, as well as concepts related to microbial diversity (Woese 
and Fox, 1977), (2) amplicon sequencing technology is widely 
employed to study microbial community structure, e.g., 
microbiome composition in natural and engineered environments 
including our own bodies, and (3) extensive research activity in 
this area over recent years has generated many large datasets that 
have been made publicly available with metadata that have not 
been fully investigated.

Integrated software framework
Having decided to use amplicon sequencing data, we set out 

to identify an integrated software framework to support student 
training and ongoing project development (Figure 1). Among 
established software used for this application we settled on QIIME 
2 (Bolyen et al., 2019) due to the availability of extensive tutorials, 

TABLE 1 General and technical course learning objectives aligned to the domains of a CURE as defined by Auchincloss et al. (2014).

Learning objectives Domain of a CURE if relevant

By the end of this course, students will be able to:  

Overarching objective: Apply science process skills to address a research question in a course-based or independent research 

experience.

All domains

General scientific development (adapted from Clemmons et al., 2020):

 1. Explain how science generates knowledge of the natural world. Scientific practice

 2. Locate, interpret, and evaluate scientific information. Scientific practice, broader meaning

 3. Pose testable questions and hypotheses to address gaps in knowledge. Scientific practice, iteration, discovery, 

broader meaning

 4. Plan, evaluate, and implement scientific investigations. Scientific practice, iteration

 5. Interpret, evaluate, and draw conclusions from data in order to make evidence-based arguments about the natural world. Scientific practice, iteration

 6. Work productively in teams with people who have diverse backgrounds, skill sets, and perspectives. Collaboration

Technical development:

 7. Connect to and work in a server environment using command line.

 8. Maintain an annotated record of programming scripts. Scientific practice: documentation

 9. Describe the different steps of the QIIME2 pipeline.

 10. Adapt the QIIME2 pipeline to different datasets.

 11. Interpret and analyze microbiome data.

 12. Perform microbiome analyses using R and RStudio.

 13. Generate and interpret alpha and beta diversity outputs.

General scientific development learning objectives were adapted from Clemmons et al. (2020).
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online community support, and widespread adoption by industry 
and academic research labs. A key pedagogical reason for selecting 
QIIME 2 is that the analysis begins with simple universal steps and 
increases in complexity. The first step is simply a copy-paste 
command and only requires that the students can navigate a 
server. Students then view and interpret the output to adjust a 
single analysis parameter for their second step. Later, more 
complex decisions are necessary to choose among different 
diversity metrics whose results entail more sophisticated 
interpretation while still using the standard QIIME 2 interface. 
Finally, students move into R, a language and software 
environment for statistical computing and data visualization, for 
more creative and refined analyses that require more complex 
interpretations. The progression from the QIIME 2 web interface 
to command line into R involves a progressive scaffolding process 
that builds core competency in data science through the lens of 
16S rRNA amplicon sequences, and requires students to apply 
more compounded levels of thinking as the course progresses.

Dataset acquisition and curation
The next task was to acquire datasets suited for novel 

analysis by novice users using QIIME 2 and R. Initially, 
we searched locally and solicited UBC researchers for data, but 
this turned out to be more difficult than expected, and we were 
unable to source more than one useable dataset. To broaden 
the search for appropriate data sources we  hired a domain 
expert teaching assistant to curate datasets from published 
papers. The datasets were scrutinized and ranked as suitable 
for student projects based on the following criteria: (1) 
availability of “unmined” metadata (independent variables 
that were not fully explored in previous publications involving 
the dataset), (2) data is complete (all samples and categories 
are available as mentioned in the original publication), (3) 
sufficient sequence quality (data yields reliable results). The 
term metadata describes independent (i.e., controlled) 
variables recorded by the primary researcher describing each 

sample, for example, host age, sex, geographical location of 
sample collection site, or diet. Metadata might be immediately 
relevant for the initial study’s design or considered for future 
studies. An investigator might only strictly explore a 
microbiome dataset and the associated metadata to answer 
previously defined research questions leaving other metadata 
unexplored. In some cases, datasets are incompletely analyzed 
and are made available to other researchers following 
deposition in publicly accessible online repositories. The 
number of variables in the metadata were expected to define 
the longevity of the dataset in the course, where more variables 
support more diverse research questions over time.

Using personal computers, students remotely accessed a 
server environment provisioned with sufficient memory and 
computing power. The server acted as a virtual lab to process, 
manage and analyze data. Due to the size and the amount of 
computational power or time necessary to process the datasets, 
students were provided with computational resources (i.e., access 
to the remote server) ensuring equitable working conditions. A 
departmental IT expert was essential to set-up and maintain 
server resources throughout the course.

Adapting the CURE model

Our wet-lab CURE follows a 16-week research cycle divided 
into 3 phases: planning, experimentation, and dissemination 
(Sun et al., 2020a). As a capstone course, students enter the CURE 
with an established foundation of microbiology skills and concepts 
and design their research questions based on a body of published 
student work in our in-house undergraduate journal, UJEMI. The 
journal thereby acts as a repository of student-authored data that 
drives the investigative direction of incoming students.

We recognized that students entering the data science 
CURE would have minimal to no data science experience 
making additional scaffolding necessary. In our wet-lab 

FIGURE 1

Core decision points of course design involved in vetting the scope and breadth of research projects. Designing a data science CURE from our 
perspective started with narrowing the scope of the projects by: (1) deciding on the type of data to focus on where in our case, we selected 
amplicon sequencing data; (2) deciding on a particular tool to teach, we selected QIIME 2, and (3) ultimately curating datasets from public 
repositories where research groups around the world contribute to. The implementation phase (detailed in Figure 2) involves student-driven 
investigations and analyses that are disseminated into an undergraduate research journal, UJEMI.
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CURE, students enter the course having completed a set of 
prerequisite wet lab courses. In contrast, preliminary student 
survey data in the data science CURE (Supplementary Figure 1) 
indicated that only about half of the respondents had some 
previous data science exposure, usually from other 
undergraduate courses. Our philosophy was that students 
should have a concrete understanding of how biological 
samples are processed to collect genetic information as digital 
data and then used to produce statistical results and 
visualizations. Based on these skills and the domain knowledge 
required to generate an original research article suitable for 
publication in UJEMI, we defined learning outcomes (Table 1) 
and used reverse course design to develop classroom activities 
and assignments to scaffold student learning. The resulting 
data science CURE was divided into two phases over 16 weeks: 
the scaffolding phase and research investigation phase, the 
latter followed by the same three stages as our original wet-lab 
CURE (Figure 2). We found this to be a significant difference 
from our wet-lab model, where students start planning their 
investigations from the outset of the term. This change could 
be  accommodated because the data science projects were 
feasible within a relatively short time frame compared to some 
of the wet-lab projects (see section Course implementation for 
an outline of our model).

Assembling the teaching team

Once the course structure was defined our attention shifted to 
implementation with particular emphasis on teaching team 
composition. Experienced data scientists and CURE instructors 
co-taught the course, a teaching model well established in the 
literature as an effective means of promoting learning (Gillespie 

and Israetel, 2008; Chanmugam and Gerlach, 2013). In 
collaboration with the CURE instructors, experts in data science 
developed content fitting the CURE model, such as data wrangling 
and analysis, workflows, experimental logic and specific aspects 
of project design. The CURE instructors’ limited experience in 
data science was beneficial as their beginner’s mindset facilitated 
content design at a level appropriate for new learners ensuring 
students understood not only what they were doing but why.

We recruited domain expert graduate student teaching 
assistants (TAs) to help support the development and 
implementation of the course. TAs were selected from within and 
outside of our home department as graduate students who work 
extensively with amplicon sequencing data as part of their thesis 
projects. TAs often had prior experience as teaching assistants but 
no formal pedagogical training. TAs were extensively involved in 
the curriculum development process that occurred before 
implementation of this course including creating content to 
scaffold student learning and developing tutorials to manage tools 
and datasets.

Weekly student team meetings with TAs and instructors were 
integral to successful implementation of this CURE. These 
meetings were used to discuss project development, analyze data 
and sort out team dynamics. TAs contributed both mentorship 
and expertise. TAs with more domain expertise also provided 
guidance and training when student projects evolved beyond the 
core analyses introduced in lectures to pursue more refined 
analyses, ones that we termed “boutique analyses.” Outside of the 
core course curriculum, students pursued boutique analyses to 
address specific aspects of their research questions. On average, 
each TA was responsible for mentoring 4 to 5 teams per term 
which equated to approximately 3 to 4 h of student meetings per 
week. During the first iteration of the course with 60 students, 2 
instructors were supported by 4 TAs.

FIGURE 2

3-phase wet-lab CURE model compared to 4-phases of the data science CURE. A scaffolding phase was added to the data science CURE. During 
the scaffolding phase, students use a combination of tutorials and lectures to learn about amplicon sequence analysis through the use of QIIME 2. 
Subsequent phases are similar in nature between the wet lab and data science CURE. The planning phase involves teams of 3 to 4 students 
developing a novel research question(s) and developing a proposal on how to answer said question(s). Proposed analyses are conducted during 
the experimentation phase which is done on a remote server environment (i.e., a remote computer that can be accessed on a personal computer) 
or in the lab. Students present and write up their findings during the dissemination phase. All student projects are published in the Undergraduate 
Journal of Experimental Microbiology and Immunology (UJEMI).
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Course implementation

Since developing this course in 2020, we have been offering it 
in the Fall (September–December) and Winter (January–April) 
terms. The CURE serves approximately 40–60 students per term. 
This section provides an overview of how the course operates in 
each of the four phases of our data science CURE (Figure 2).

Scaffolding phase (week 1–4)

The course begins with the scaffolding phase, where students 
learn the core concepts and basic coding skills underpinning 
amplicon sequence analysis in lectures essential to their project. In 
this phase all assessments are assigned to each individual student. 
The last three phases of the CURE are completed as a team, and 
students are assessed as a team. We identified three critical areas for 
learning, including (1) understanding the biochemistry and 
molecular biology involved in converting a sample containing 
microbes to digital sequence information, (2) understanding basic 
concepts required to interpret ecological diversity metrics and (3) the 
skills required to work with the selected software framework. 
We make use of existing tutorials published on the QIIME 2 website 
(Bolyen et al., 2019) to reinforce core concepts covered in lectures. 
We  conclude this phase by implementing individual student 
assessments which include a quiz and short assignment where 
students write a technical paper on the QIIME 2 pipeline which 
addresses Learning Objectives (LOs) 9–11 (Table 1).

Planning phase (week 5–8)

Publicly available datasets are introduced into the course as 
the starting point for student investigations during the planning 
phase (Figures 1, 2). Students form project teams of three to four 
participants. Student teams discuss their projects in weekly 
meetings with teaching team members. All meetings are 
conducted synchronously. Similar to our wet-lab CURE, students 
analyze the literature and the metadata associated with their 
selected dataset and pose novel research questions not addressed 
in the original published study. The planning phase culminates 
with submission of a team-based proposal describing the research 
project background, research objectives, hypothesis, workflow, 
and possible modes of analysis. The teaching team reviews the 
proposal and provides extensive feedback in both written and 
verbal forms to each team (see rubric in Supplementary material).

Experimentation phase (week 9–12)

During the experimentation phase, students are responsible 
for independently scheduling the time spent on their project 
outside the regular course activities and distributing tasks among 
team members. Data processing is executed in a team-shared 

server environment, which plays a role similar to an open lab in 
the original wet-lab CURE model. Teams document their progress 
in shared lab notebooks in a format of their choice (often a shared 
drive file). In an informal in-class survey, most students reported 
spending on average 5 to 6 hour per week working on their 
projects (most likely fewer hours in the early stages of their project 
and more hours during late stages) in addition to the scheduled 
course activities which make up about 2.5 to 4 hour per week. 
Student workload (i.e., time commitment) in our data science 
CURE is approximately equivalent to our wet lab CURE.

Dissemination phase (week 13–16)

In the final phase of the course, students disseminate their 
project findings first as an oral presentation to their peers and then 
as a full written manuscript. Teams first submit a draft manuscript 
and, after review by the instructor and teaching assistant (see rubric 
in Supplementary material), implement any feedback into their final 
manuscript. Final manuscripts are intended to be as publication-
ready as possible and ultimately published in the undergraduate 
research journal, UJEMI. Students receive instructions on submitting 
their manuscript to the UJEMI editorial team for publication after 
course completion as either a non-referred or peer-reviewed article 
(Sun et al., 2020b). Of the 22 teams that participated in this CURE 
in September to December 2020 and January to April 2021, 8 teams 
decided to submit their manuscripts for formal review and 
publication in the peer-reviewed issue of UJEMI, UJEMI+. 
Manuscripts from the first two iterations of the course of 
non-referred1 and peer-reviewed articles2 can be found online.

Outcomes

We collected data from the first 2 iterations of the course in 
September to December of 2020 (Term 1) with 60 students and 
January to April 2021 (Term 2) with 18 students. The collection of 
student data in this study was approved by the University of 
British Columbia’s Behavioral Research Ethics Board (Project ID: 
H19-02879). Students were divided into teams of 3 to 4 for a total 
of 16 teams and offered the choice of among 5 available datasets 
in term 1. In term 2, students were divided into 6 teams of 3, each 
assigned to a different dataset. The two iterations of the course 
were taught by two different instructors. We  collected the 
following data to validate the model:

 • Analysis of student manuscripts
 • Peer reviews of manuscripts submitted to UJEMI
 • Student perspective data

1 https://ojs.library.ubc.ca/index.php/UJEMI/issue/view/183016

2 https://ojs.library.ubc.ca/index.php/UJEMI/issue/view/183015
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Analysis of manuscripts

We assessed the scientific practice of students by analyzing the 
written course outputs from the first iteration. Fundamentals of 
this practice have been defined as collecting and analyzing data, 
disseminating scientific findings, contextualizing findings to the 
broader literature, collaborating with other researchers, and 
designing a research investigation (Lopatto, 2003; Buck et  al., 
2008; Weaver et al., 2008; Auchincloss et al., 2014) which align to 
our course learning objectives (Table 1 Learning Objectives (LOs) 
#2–6) and how student manuscripts were evaluated (see 
manuscript rubric in Supplementary material). We  evaluated 
written proposals as evidence for designing an investigation (LOs 
#3,4) and final manuscripts as evidence for disseminating research 
findings (LO #5; Table 2). On average, teams cited 17 references in 
their proposal and 37 in their final manuscript showing relevance 
of their research topic within the broader literature. Each 
manuscript had, on average, 5 data-driven figures. Students 

referred to the broader literature (i.e., peer reviewed papers 
outside of the course) in the discussion section of their 
manuscripts to contextualize their findings. Citing an average of 6 
papers, students reported corroboration, or in some cases 
contradiction, with their own data demonstrating balanced and 
rigorous scientific interpretation of their results.

Students selected different analyses (Table 3) indicating that a 
range of analyses were supported by the material used to scaffold the 
CURE. Most, if not all, teams analyzed core metrics taught in the 
lecture component. This included alpha- and beta-diversity, 
taxonomic assignment, and differential abundance, where the ability 
to generate diversity metrics was defined as a final course learning 
objective (LO #13). This final learning objective was supported by 
the technical learning objectives. Table 3 shows that student teams 
performed this analysis and generated the output showing that they 
had achieved the technical learning objectives of the course. Beyond 
this expectation, teams also conducted boutique analyses, including 
statistical tests specific to certain metadata types, as well as 

TABLE 2 Summary of literature cited, data figures/tables and literature used to contextualize their own findings based on course outputs.

Literature cited

Project # Dataset Proposal Final 
manuscript

# Data figures/
tables

# Papers that students 
contextualized to their 

own findings

1 Organic matter removal treatment of soil (Wilhelm 

et al., 2017)

9 23 5/1 5

2 10 52 5 10

3 16 25 5 6

4 34 50 3 2

5 Infant feeding study (Dawson-Hahn and Rhee, 2019) 12 19 7 0

6 17 43 3 4

7 35 43 8 7

8 7 33 5 11

9 Human Parkinson’s study (Cirstea et al., 2020) 38 37 4/1 10

10 15 56 5 6

11 19 42 5 7

12 10 37 5 9

13 Hunter-gatherer lifestyle of the Hadza people of 

Tanzania (Smits et al., 2017)

16 32 4/2 4

14 17 34 7 7

15 10 56 5 6

16 6 23 5 2

17 Dog IBS study (Vázquez-Baeza et al., 2016) 7 22 5 7

18 13 47 4/2 6

19 Effects of animal captivity (McKenzie et al., 2017) 18 36 5 5

20 22 32 3 7

21 17 35 6 8

22 HI-SEAS space isolation study (Mahnert et al., 2021) 16 42 4 2

Literature cited was taken from the reference list at the end of each project proposal and final manuscript. The number of data figures/tables and the number of papers that students 
referenced in the discussion section that either corroborated or contradicted their findings were taken from their final manuscript. Data in this table was collected from 22 student 
projects spanning two iterations of the course offered in September–December 2020 (60 students, 16 teams of 3–4) and January–April 2021 (18 students, 6 teams of 3) where 7 different 
datasets were available to choose from.
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TABLE 3 Summary of analyses conducted per project and dataset.

Analyses conducted

Project # Dataset Alpha and 
beta diversity

Taxonomic 
analysis

Differential 
abundance

Correlation 
analysis

Linear 
regression

Logistic 
regression

Longitudinal 
analysis

Functional 
microbiota 

profiling

Total analyses 
conducted

1 Organic matter removal 

treatment of soil (Wilhelm 

et al., 2017)

3

2 2

3 3

4 4

5 Infant feeding study 

(Dawson-Hahn and Rhee, 

2019)

3

6 3

7 3

8 2

9 Human Parkinson’s study 

(Cirstea et al., 2020)

3

10 3

11 3

12 3

13 Hunter-gatherer lifestyle of 

the Hadza people of 

Tanzania (Smits et al., 2017)

2

14 2

15 3

16 3

17 Dog IBS study (Vázquez-

Baeza et al., 2016)

3

18 3

19 Effects of animal captivity 

(McKenzie et al., 2017)

2

20 3

21 3

22 HI-SEAS space isolation 

study (Mahnert et al., 2021)

2

Summary of analyses conducted per student investigation was derived from the methods section of the students’ final manuscripts. Students were taught alpha and beta diversity, taxonomic analysis, and differential abundance analysis (green) in class but only 
required to conduct an alpha and beta diversity analysis for their final project (dark green). All additional analysis (yellow) were “boutique analyses” that students pursued to expand the breath of their study including seeking out additional training and support 
for.
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trait-based mapping (the others listed in Table 3) driven by their own 
initiative with support from instructors and TAs.

Peer review

Eight teams out of the 22 from the first two iterations of the 
course (September 2020 and January 2021) chose to have their 
manuscripts published as peer-reviewed articles in UJEMI+ (Sun 
et  al., 2020b). The feedback provided by domain experts who 
reviewed these student papers contributed interesting insight into 
the quality of research conducted by our students in comparison 
to real-world practices. Reviewers provided feedback on all 
aspects of the manuscripts. Comments often focused on missing 
details and rationale in Methods sections, and suggested authors 
provide more concise and careful interpretations in the 
discussions. Other suggestions emphasized the need for clarity in 
the presentation of figures and figure legends.. Most reviews 
indicated that the quality of research conducted by the students 
was considered to comply with “industry-standards.” Many of the 
more critical comments focused on the structure or writing of the 
manuscript rather than the depth or breadth of analysis reinforcing 
the effectiveness of the CURE model to support effective 
knowledge transfer and practice through course outputs. This 
validated that the expectations and standard of quality (see rubric 
for the manuscript in Supplementary material) we set for the final 
manuscripts reflect industry-standard practices.

Student perspective data

In addition to the analysis of course outputs, we  also 
implemented an end of course survey to gather insight into 
student perceptions of learning. This survey consisted of three 
parts: (1) a section on previous experience in research and data 
science (Supplementary Data), (2) the laboratory course 
assessment survey (LCAS; Corwin et  al., 2015), (3) questions 
about internal and external collaborations. The survey was 
implemented in the first 2 iterations of the course (September to 
December 2020, January to April 2021) with a response rate of 
45% (n = 35).

Results from the first section of the survey which asked 
students about their prior experience in bioinformatics 
(Supplementary Figure 1) indicated that all respondents (n = 27) 
had previously participated in an undergraduate research 
experience (URE) at some point in their degree, most during the 
latter half. The experiences ranged from volunteer experiences to 
full-time paid internships, also called co-ops (summary in 
Supplementary Figure 1). Among the respondents, 52% indicated 
that they had some data science experience before the course. 
Most of them attributed this experience to previous courses in the 
program participating in the EDUCE initiative (Dill-McFarland 
et al., 2021), and a few to their previous UREs. In total, 65% of the 
students indicated that they were in a team with at least one 

student with prior data science experience and felt this was helpful 
in moving projects forward. Among students without any team 
members with previous experience, 60% considered it 
a disadvantage.

To further assess learning effectiveness, we administered the 
LCAS, a validated, well-established survey (Corwin et al., 2015). 
The LCAS measures student perceptions of participating in 
collaboration, broader discovery, and iteration in terms of 
frequency and challenge. We gathered 18 responses (30% response 
rate) in term 1 (September to December 2020) and 17 responses 
(94% response rate) in term 2 (January to April 2021). The two 
iterations of the course were taught by different instructors, but 
we did not observe significant differences in responses between 
the two terms suggesting no instructor bias. The data was 
combined for subsequent analysis.

Based on the LCAS data (Figure 3), most respondents agreed 
that they covered the content indicated in the course manual 
which aligns with the core learning objectives for the CURE. All 
the responding students reported frequently discussing their 
investigation with their peers, instructors and TAs. They did not 
think that they often participated in providing constructive 
feedback to their peers, which may be  an area for further 
improvement. From the survey data we were able to identify at 
least 2 cases of inter-team collaboration and 1 of external 
collaboration that occurred during the two instances of this 
course. Teams collaborated to share analysis resources or 
information from external sources. One case of external 
collaboration happened when a team sought support from experts 
in the field. Promoting student collaboration is an area of focus for 
future iterations of the course.

Doing research tends to be time intensive and students in our 
wet-lab CURE report that they invest approximately 6 to 8 hours 
per week on the project which includes lab work, team meetings, 
and lectures. Students in our dry-lab CURE report a similar time 
investment; however, the computational nature of the work 
provides added flexibility as students can work remotely and 
outside of the hours that would be  allocated for wet-lab 
experimentation (e.g., 8 a.m. to 5 p.m. weekdays). Data science 
workflows also lend themselves to more rapid processing and 
iteration (e.g., minutes to hours) compared to the wet-lab where 
repeating an experiment can take days to weeks. These attributes 
associated with a data science CURE (e.g., flexibility, remote work, 
rapid iteration) are well suited to students requiring approaches to 
education where personal constraints exist (e.g., commuting 
students, family obligations, work requirements, living in off 
campus rural locations).

Discussion

Here we describe the development and implementation of 
a new data science CURE that leverages existing, published 
16S rRNA gene amplicon sequencing datasets to study 
microbial community structure. Many new data 
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science-driven CUREs have emerged in the last 2 years, 
especially in microbiome research (Jung et al., 2020; Sargent 
et al., 2020; Sewall et al., 2020; Zelaya et al., 2020; Baker et al., 
2021). Emerging CURE models in this area have focused on 
student-generated datasets coupling a dry-lab experience with 
a wet-lab component. We  decided to forgo a wet-lab 
experience and focus exclusively on data processing and 
analysis using public datasets. This approach allowed us to 
concentrate primarily on developing core competencies in 
data science while exposing the students to real-world data in 
the context of a CURE (16 weeks).

Based on our experience we explain (i) our rationale for using 
16S rRNA gene amplicon sequencing analysis in our CURE, (ii) 
how our data science CURE aligns with the 5 proposed domains 

of a CURE (Auchincloss et al., 2014), and (iii) key considerations 
in the design of a data science CURE.

(i) Using 16S rRNA gene amplicon sequences provides a 
robust introduction to data science in microbiology for the 
following reasons:

Rich data source for novel research: Microbiome studies are 
of broad interest with exciting and dynamic research potential 
(Cullen et al., 2020) and readily available in large public dataset 
repositories. Datasets are often underexplored, allowing students 
to devise and pursue novel research questions within the 
constraints of the course timeline.

Pedagogical advantages: The workflow for 16S rRNA 
gene amplicon sequence analysis provides a framework for 
learning. Analysis starts with a reasonably simple processing 

A

B

FIGURE 3

Laboratory course assessment survey (LCAS) results supported student perceptions that they participated in collaboration, iteration, broader 
meaning, and discovery. Students were asked about the frequency of activities (A) and course expectations (B) that align to 4 of the 5 domains of a 
CURE as indicated above with discovery and relevance grouped together. The above data represents 35 responses out of 78 students that took the 
course in September–December 2020 and January–April 2021. This survey was developed by Corwin et al. (2015).
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step offering a more accessible point of entry for students 
with minimal to no data science experience and develops into 
more complex analyses and decision points. The uniform 
structure of these data enables a standard workflow and the 
sequence diversity requires critical thinking at each 
analysis step.

Low cost: The software used for 16S rRNA gene amplicon 
sequence analysis (QIIME 2 and R) in this CURE are free and well 
documented [https://docs.qiime2.org/2021.8/; (Bolyen et  al., 
2019)]. The size of these datasets is reasonably small (usually 
several megabytes per sample), reducing the demand on university 
servers and allowing for rapid command execution.

(ii) Our course model aligns with the five proposed CURE 
domains (Auchincloss et al., 2014) as follows:

Scientific practices: Each team develops a novel research 
question, designs and executes experimental workflows, and 
reports their research findings as an oral presentation and 
published manuscript.

Discovery: Students pursued novel research questions and 
generated data to analyzed and gather new insights.

Collaboration: Students work in teams of 3 to 4 and conduct 
research on datasets generated by research groups from around 
the world. In some instances, student teams collaborate within the 
classroom as well as with researchers outside of the classroom who 
had generate the primary data.

Iteration: Weekly team meetings offer students the 
opportunity to refine their research questions and troubleshoot 
methods. Student teams use feedback received on end-of-term 
oral presentation and draft manuscript to revise the final 
manuscript for publication.

Broader meaning: Student teams discuss their results in the 
context of other published studies. Comments from peer review 
have consistently indicated that the students’ research findings 
were of general interest to the broader scientific community.

(iii) Based on our experience, the following requirements were 
essential to the development and implementation of our data 
science CURE model, which may be useful to other educators 
developing similar courses:

 •   Assembling an effective team of both domain and 
educational experts.

 •   Constraining the type of data and software used by the 
students in their projects.

 •   Acquiring resources such as datasets from publicly available 
databases, a computational framework, and expert 
teaching assistants.

 •   Developing scaffolding teaching material around the type 
of data and tools used.

Our model for a data science CURE is both sustainable 
and scalable. Students publish their findings in our in-house 
journal, UJEMI, creating an archive of student-authored 
projects which minimizes project repetition and primes the 
direction of novel research projects. To sustain this model, 

we  anticipate introducing new 16S rRNA gene amplicon 
sequence data sets into the course every 2 to 3 years to refresh 
and seed new course projects. For future iterations of the 
course, we will continue to work with published datasets and 
add additional ones from the microbiome research community. 
Establishing and fostering connections between our students 
and active research groups around the world is a program 
goal. At present, our data science CURE accommodates 
approximately 60 students per term; however, we can envision 
scaling up the course size given the necessary teaching 
resources. Unlike a wet lab CURE requiring lab space and 
equipment, our data science CURE uses personal computers 
and servers so “experiments” in the form of computational 
workflows can be  done in regular classrooms or remotely. 
Enrolment in our data science CURE is primarily constrained 
by the availability of experienced graduate student teaching 
assistants. We anticipate that teaching assistant expertise will 
become more readily available as the field develops and more 
students receive data science education, in courses such as this 
one, as well as graduate school. Skills acquired through data 
science CUREs will serve students well as demand for 
scientists with domain knowledge (e.g., microbiology) 
combined with data science experience grows.
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