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Recent findings have demonstrated that the gut microbiome
complements our human genome with at least 100-fold more
genes. In contrast to our Homo sapiens–derived genes, the micro-
biome is much more plastic, and its composition changes with
age and diet, among other factors. An altered gut microbiota has
been associated with several diseases, including obesity and di-
abetes, but the mechanisms involved remain elusive. Here we
discuss factors that affect the gut microbiome, how the gut micro-
biome may contribute to metabolic diseases, and how to study
the gut microbiome. Next-generation sequencing and development
of software packages have led to the development of large-scale
sequencing efforts to catalog the human microbiome. Further-
more, the use of genetically engineered gnotobiotic mouse models
may increase our understanding of mechanisms by which the gut
microbiome modulates host metabolism. A combination of classi-
cal microbiology, sequencing, and animal experiments may pro-
vide further insights into how the gut microbiota affect host
metabolism and physiology. Diabetes 62:3341–3349, 2013

W
e have coevolved with microbes in the envi-
ronment, and each body habitat has a unique
set of microorganisms (microbiota) (1). The
most abundant and well-studied microbiota

are found in the gut, where the bacterial density reaches
1011–1012 cells/g in the distal human colon (2). The number
of bacteria in the human gut has been estimated to exceed
the number of somatic cells in the body by an order of
magnitude and that the biomass of the gut microbiota may
reach up to 1.5 kg (2). Thus, one may consider the gut
microbiota as a multicellular organ similar in size to the
liver (3). Furthermore, the combined genomes of the gut
microbiota—the microbiome—contain .100-fold more
genes than are encoded in the human genome (4), and
these genes contribute significantly to our physiology and
metabolism (5,6).

The introduction of high-throughput sequencing techni-
ques has helped to reveal the complexity and composition
of the gut microbiota. Most bacterial species in the human
and mouse gut belong to the phyla Bacteroidetes and
Firmicutes (7), but less abundant bacterial phyla, such as
Actinobacteria, Proteobacteria, and Verrucomicrobia, as

well as methanogenic archaea, mainly Methanobrevibacter
smithii, are also present (4,8). The total number of bac-
terial species has been estimated to exceed 1,000, and at
least 160 species are shared among individuals (4). In-
terestingly, a recent study demonstrated marked differ-
ences among populations in the U.S., rural Malawi, and
Venezuela (9). Non-U.S. adult residents had higher levels
of Prevotella, whereas the differences between the Malawi
and Venezuela populations were more subtle, with differ-
ences in the abundance of several species in the Clostridials
order. This finding highlights the necessity to perform meta-
genomic studies in different ethnic populations. Vast num-
bers of viruses are also present in the human gut (10), but
our knowledge about their function is limited, and they will
not be discussed here.

The gut microbiota have the capacity to affect host
physiology within and outside the gut. For example, the
gut microbiota are essential for normal development and
homeostasis of the immune system in the gut, modulate
epithelial cell proliferation, protect against pathogenic
bacteria, and modulate villus architecture and angiogenesis
within the intestine (5,6). Furthermore, the gut microbiota
affect xenobiotic metabolism, bone mineral density, behav-
ior, and several metabolic functions (5,6), and emerging
data from humans and mouse models suggest that the gut
microbiota play a role in the development of metabolic
diseases. Here, we will review factors that affect the gut
microbiota, how the gut microbiota may contribute to
metabolic diseases, and how to assess the composition
and function of the gut microbiota.

ESTABLISHMENT AND DEVELOPMENT OF THE

MICROBIOTA

Age. The fetal gut is sterile and is colonized at birth with
microbes from the mother’s vaginal and fecal microbiota
as well as with other environmental microbes encountered
in the first days of life. Early colonization depends on the
mode of delivery, diet (breast- vs. formula-feeding), hy-
giene, and antibiotic treatment (11). The first colonizers
are facultative anaerobes, such as Escherichia coli and
Streptococcus spp., and obligate anaerobic species colo-
nize as the oxygen levels in the gut decrease. A large study
involving three populations in different geographic loca-
tions found that a child’s microbiota stabilize and become
adult-like at ;3 years of age (9). The metagenome of the
infant gut is characterized by enrichment of genes for simple
sugar breakdown, such as lactose and galactose, whereas the
weaned microbiota are enriched in genes for polysaccharide
breakdown and vitamin production (9,12).

In the elderly, changes in the microbiota occur, resulting
in reduced microbial diversity, which is accompanied by
increased inflammation (13). Compared with elderly sub-
jects in long-stay residential care units, elderly individuals
living in the community have higher levels of fecal butyrate
and other short-chain fatty acids (SCFAs), such as acetate
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propionate and valerate; the presence of SCFAs is gener-
ally believed to be associated with reduced inflammation.
Diet has profound effect on the gut microbiota. Many
of the nutrients in the diet are digested by human enzymes
and absorbed in the small intestine. However, the gut
microbiota have a central role for the metabolism of di-
etary fibers, which are not degraded by human enzymes.
Comparative studies of the gut microbiota across mam-
mals have shown that several bacterial species are shared
and that their presence is influenced by host diet and
phylogeny (14). Herbivores have a more diverse micro-
biota than carnivores, indicating that degradation of plant
polysaccharides is more complex and demanding, which is
also reflected in longer intestinal tracts and transit times.
Metagenomic sequencing of the gut microbiota revealed
that herbivores carry more genes for nitrogen assimilation
into proteins compared with carnivores, which reflects
that amino acids are less abundant in herbivore diets (15).
Similarly, the gut microbiota of vegetarians and vegans are
unable to metabolize carnitine, which is present in red
meat (16).

In humans, microbes respond differently to dietary com-
ponents, and long-term dietary habits have been linked to the
abundance of microbial genera: Bacteroides correlates
positively with a protein-rich diet, whereas Prevotella
is associated with a diet rich in fiber (17). A short-term
controlled-feeding study in which subjects were random-
ized to high-fat/low-fiber or low-fat/high-fiber diets and
followed up for 10 days showed that although diet change
had an initial rapid effect on the microbiota, the inter-
individual differences dominated (17). Furthermore, a study
comparing the gut microbiota of children living in Italy
with those living in Burkina Faso showed marked differ-
ences between the populations: the children from Burkina
Faso, who consumed higher amounts of plant poly-
saccharides, had higher levels of Prevotella together with
higher levels of SCFAs, which are likely linked to in-
creased fermentation of indigestible plant polysaccharides
(18). Thus, the gut microbiota are important for process-
ing, but at the same time, diet may alter the gut microbial
community (16).

MICROBIAL ALTERATIONS ASSOCIATED WITH

METABOLIC DISEASES IN HUMANS

Obesity. Studies in humans and mice have shown that
obesity is associated with changes in the composition of
the gut microbiota. Early studies reported an enrichment
in Firmicutes and a corresponding decrease in Bacte-
roidetes levels in the microbiota of obese individuals; the
Bacteroidetes-to-Firmicutes ratio normalized to the level
observed in lean individuals after weight loss (19). An in-
creased ratio of Firmicutes to Bacteroidetes has also been
observed in mice genetically predisposed to obesity (ob/ob)
(7). However, more recent studies have not observed
this association (20) or observed an opposite association,
with an increase in Bacteroidetes in obese individuals (21).
When considering these results, it should be noted that the
initial studies were limited in sample size and differed in
study design and subjects (adults, adolescents, and some
were compared before and after weight loss). Further-
more, the studies differed in methodology (16S rRNA gene
sequencing, fluorescence in situ hybridization, and quanti-
tative PCR). It should also be noted that the Bacteroidetes-
to-Firmicutes ratio is a rough measure because these broad
classifications of bacterial taxa that include pathogens such

as Clostridium botulinum and Listeria monocytogenes
as well as species such as Eubacterium rectale and
Faecalibacterium prausnitzii that are known butyrate
producers and generally regarded as beneficial to the host.
Therefore, more standardized study protocols are needed
to allow cross-comparisons between studies as well as
a more taxonomically detailed description than phylum-
level changes.

To determine whether the altered gut microbiota con-
tribute to obesity or whether obesity alters the gut micro-
biota requires prospective studies. A prospective Finnish
study of 49 infants sampled at 6 and 12 months of age
showed that children who were overweight at 7 years of
age had higher levels of Staphylococcus aureus and lower
levels of Bifidobacteria during infancy (22).

Analysis of the metagenome of twins concordant for
obesity showed that obese individuals harbor more genes
for phosphotransferase systems involved in carbohydrate
processing (23), suggesting an increased capacity to de-
grade polysaccharide-rich diets. Importantly, transfer of
microbiota harvested from lean or obese individuals to
germ-free mice demonstrated that the obese phenotype
can be transferred by the microbiota, thus suggesting
a causal relationship between the altered microbiota and
obesity development (24,25).

Little is known about the mechanisms by which the gut
microbiota modulate obesity apart from a potential role in
energy harvest from the diet. Colonized mice consume less
food than their germ-free counterparts and so increased
food consumption cannot explain the obese phenotype in
colonized mice (26). Activation of AMP-activated protein
kinase and expression of angiopoietin-like protein 4 (also
known as fasting-induced adipose factor), which are both
associated with reduced energy expenditure (27), are
suppressed by the gut microbiota and thus may be part
of the potential mechanism through which the gut micro-
biota promote obesity. However, these studies need to be
expanded, and the use of genetically modified germ-free
mice may facilitate to delineate the molecular mechanisms
by which specific microbes or consortia affect host
metabolism.
Type 2 diabetes. The incidence of type 2 diabetes (T2D)
is increasing in parallel with obesity, and environmental
factors that are associated with T2D risk include diet and
the gut microbiota (28). Low-grade inflammation is ob-
served in T2D patients, and diabetic mice and humans
have increased plasma levels of lipopolysaccharide (LPS),
a membrane component of Gram-negative bacteria, which
has been shown to impair glucose metabolism in mice
(29,30). Germ-free mice have fewer macrophages in their
adipose tissue and improved glucose metabolism com-
pared with colonized mice (31).

Recent metagenomics approaches have investigated
whether the gut microbiota are altered in patients with
T2D. Shotgun sequencing of the gut metagenome revealed
that butyrate-producing bacteria, known to be anti-
inflammatory (e.g., Roseburia spp. and Faecalibacterium
spp.), are less abundant in T2D patients than in healthy
control subjects (32,33). By comparing metagenomic data
from Chinese and Swedish subjects, we showed that T2D-
associated metagenomes encode similar functions, but the
species involved are markedly different (33). Furthermore,
we developed a model based on metagenomic data that
could distinguish T2D subjects from control subjects with
a predictive power that was far better than that of the body
mass index (33). The predictive power of the metagenome

ASSESSING GUT MICROBIOTA IN METABOLIC DISEASES

3342 DIABETES, VOL. 62, OCTOBER 2013 diabetes.diabetesjournals.org



was similar when trained on Chinese subjects (33), sug-
gesting that it may be possible to develop novel diagnostic
approaches based on analysis of the gut metagenome.

Gastric bypass surgery in obese patients not only pro-
motes sustained weight reduction but also reduces the
risks of T2D and cardiovascular mortality (34,35). Impor-
tantly, diabetes resolution occurs before weight reduction,
suggesting that gastric bypass has direct antidiabetic effects.
The mechanisms are not defined, but two independent
studies in humans observed shifts in the composition of
the fecal microbiota (36,37), thus suggesting that the gut
microbiota may contribute to the improved metabolic
phenotype associated with gastric bypass. In particular,
abundance of the beneficial microbe F. prausnitzii was
decreased in obese T2D patients and increased after sur-
gery (36). The levels of F. prausnitzii negatively corre-
lated with inflammatory markers, thus indicating that this
microbe may contribute to the amelioration of T2D after
gastric bypass by modulating systemic inflammation. Simi-
lar microbial changes are also seen in rats and mice un-
dergoing bariatric surgery (38,39). Interestingly, mice that
received microbiota from mice that underwent gastric
bypass surgery exhibited improved metabolism compared
with mice that received microbiota from mice that un-
derwent sham surgery (39), providing direct evidence that
an altered gut microbiota contribute to the beneficial
effects of gastric bypass surgery.

A direct link between an altered gut microbiota and in-
sulin resistance in humans was recently provided: insulin
sensitivity and levels of butyrate-producing bacteria in-
creased in patients with the metabolic syndrome after
transplantation with intestinal microbiota from lean healthy
donors (40). Transplanting unfractionated microbiota into
humans is not without risk, and a more direct and targeted
approach on single microbes or a community of microbes
is desirable. In this context, more work is needed to
identify individual species or groups of species that con-
tribute to improvements in health and how these can be
safely and effectively administered to patients.
Type 1 diabetes. Even though the autoimmune disease
type 1 diabetes (T1D) has a known genetic risk factor in-
volving mutation in the human leukocyte antigen genes,
the recent rise in incidence of this disease points to envi-
ronmental factors playing an increasing role (41). A study
of four children with newly developed T1D and four
matched control children found differences in the com-
position of the gut metagenome between the groups and
reduced diversity in T1D-associated metagenomes (42).
Studies in nonobese diabetic (NOD) mice have shown that
germ-free NOD mice or those housed in specific-pathogen
free conditions are more likely to develop diabetes, sug-
gesting that the gut microbiota are involved in the de-
velopment of autoimmune diabetes. Specifically, a species
of segmented filamentous bacteria was found to protect
against autoimmune diabetes in NOD mice (43). Inter-
estingly, children who progress to develop T1D have a
markedly altered serum metabolome that could already
be detected in the cord blood (44), and many of these
metabolites are microbially regulated (unpublished
observation).
Atherosclerosis. Accumulation of cholesterol and re-
cruitment of macrophages to the arterial wall promote the
formation of atherosclerotic plaques, which may lead to
myocardial infarction and stroke. Bacterial species from
the genera Chryseomonas, Veillonella, and Streptococcus
have been found in plaques and are also present in the oral

cavity or the gut (45). We recently demonstrated that
patients who had experienced an atherosclerotic event
had higher levels of Collinsella and lower levels of
Eubacterium and Roseburia in their gut microbiota than
healthy control subjects (46). The health status in these
patients correlated with several aspects of the functional
metagenome, such as an increase in proinflammatory
peptidoglycan genes and a decrease in genes involved in
the synthesis of anti-inflammatory molecules (e.g., buty-
rate) (46). A particularly interesting finding was the in-
creased prevalence of genes involved in biosynthesis of
the antioxidant b-carotene, together with increased blood
levels of b-carotene in healthy control subjects (46). These
observations suggest that it may be possible to develop
strategies to prevent atherosclerotic events based on the
gut microbiota.

Recent findings have revealed that the microbial me-
tabolism of dietary choline to betaine and trimethylamine,
which can be further metabolized in the liver to trime-
thylamine N-oxide, strongly correlates with cardiovascular
events (47,48). The authors also showed that feeding mice
with choline promoted the formation of atherosclerotic
plaques and that plaque formation could be prevented by
antibiotic treatment (47). Dietary L-carnitine, which is
abundant in red meat and has a similar polar head group to
choline, was recently shown to be metabolized by the gut
microbiota and to contribute to atherosclerosis and car-
diovascular disease (16).

STUDYING THE MICROBIOTA

16S rRNA–based profiling. Most of the species in the
human gut are strictly anaerobic and are difficult to cul-
ture. Molecular methods have thus been developed to an-
alyze microbial composition in a given sample (Fig. 1,
Table 1). For bacteria and Archaea, methods are primarily
based on the 16S ribosomal gene (49,50). A number of
fingerprinting analyses have been developed for studying
the human gut microbiota. These include temperature
gradient gel electrophoresis, denaturing gradient gel elec-
trophoresis, and terminal restriction fragment length poly-
morphism (51,52). These methods are semiquantitative and
provide a rapid profiling of the microbiota but normally do
not provide detailed taxonomic information.

Microarrays with probes complementary to 16S rRNA
sequences are high-throughput tools for characterizing
abundance and diversity. The human intestinal tract chip
(HITChip) probes were designed based on the hyper-
variable region of 1,140 unique rRNA (,98% identity)
sequences that were clustered from a set of more than
16,000 human intestinal 16S rRNA sequences (53). The
HITChip targets only known sequences and gives in-
formation on the relative abundance.

Direct sequencing of 16S rRNA genes has become in-
creasingly used for assessing microbial diversity and
abundance in the human gut because of reduced costs of
sequencing, new bioinformatics algorithms and methods
for data analysis, and better databases with sequences of
known taxonomy. Initial studies used Sanger sequencing
that produced nearly full-length sequences of the 16S
rRNA gene (7,8). This procedure was time-consuming
because it included the amplification of 16S rRNA gene
sequences with universal primers, cloning into vectors,
transformation into E. coli, and picking colonies for
sequencing, purification of plasmid and bidirectional
sequencing.
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With the introduction of 454 sequencing technology,
amplified sequences could be directly sequenced at
a lower price, and more data could be generated (54,55).
Read lengths obtained with 454 sequencing range from
;100 to ;450 bp and encompass regions of the 16S rRNA
gene that are hypervariable but surrounded by conserved
regions. The conserved regions allow for design of uni-
versal primers; however, the affinity is not universal across
different species so there is still a bias in amplification
efficiency between taxonomic groups.

A recent study showed that sequencing on the Illumina
Genome AnalyzerIix (GAIIx) platform using paired reads
of 100 bp could be used for 16S rRNA gene studies, pro-
viding consistent results with previous platforms and
allowing a large number of samples to be analyzed simul-
taneously at a lower cost per sample (56). The Illumina
MiSeq platform promises to deliver easy-to-use interface
and sequence reads of 2 3 250 bp with the possibility to
generate overlapping paired end reads with up to 30 mil-
lion reads.

The choice of sequencing technology is coupled with the
choice of primers for PCR amplification, and there is
a large number to choose from. Primer choice will affect
the taxonomic coverage, phylogenetic information of the
generated fragments, and length of fragments. Common
regions for amplification of the 16S rRNA gene are the V1,
V2, V4, and V6 regions; V6 has been shown to perform
poorly in taxonomic classification of sequences with a
length of 250 bp, and the V1–V2 region underestimates
Bifidobacteria (57). Longer read lengths are better for de-
fining novel taxa but short reads, down to 100 bp, have
been shown to resolve differences between communities
(58). The choice of primer, 16S rRNA gene region, se-
quencing technology, number of sequences, cost, read

length, and purpose are tightly coupled and need to be
balanced to get the most out of each study.

Several tools for analysis of 16S rRNA gene sequences
have been developed and are increasingly becoming more
user-friendly and available to a large number of scientists.
Quantitative Insights Into Microbial Ecology (QIIME) (59)
and mothur (60) are highly used software packages that
can be run on a laptop or computer cluster, depending on
the size of the dataset, and can analyze millions of 16S
rRNA gene sequences from microbial communities. The
analysis is based on command line scripts that take raw
sequences as input and cluster them into operational tax-
onomic units, producing phylogenetic trees and measure-
ments of microbial diversity within and between samples.
The analysis can be performed de novo when all opera-
tional taxonomic units are considered and compared across
samples, but common sequences are compared with a ref-
erence database, such as Greengenes (61) and SILVA (62),
and taxonomically annotated. A reference-based analysis is
more straightforward to interpret and allows for compari-
son of different datasets sequencing different regions of the
16S rRNA gene.
Shotgun metagenome sequencing. By sequencing the
whole genomic content of a microbiota, the microbiome,
and not only a marker gene, such as the 16S rRNA gene,
a more detailed understanding of the functional potential
of the community can be acquired. This is important be-
cause reference genomes are lacking for many organisms,
and the gene content in different strains with an identical
16S rRNA gene sequence can differ in important aspects
(e.g., in toxicity and pathogenicity genes). Sequencing of
metagenomic reads enables taxonomic classification and
diversity of community members as well as assessment of
functional potential. The high density of microbial cells in

FIG. 1. Methods for studying the microbiota. Traditionally, microbial communities have been characterized by culturing on specific plates, but this
is only amenable to the culturable fraction of the members (20–50% [84,86]) and has limited resolution. Culture-independent methods based on
characterization of the 16S rRNA genes have been developed and also provide information for organisms that cannot be cultured. Shotgun se-
quencing of the whole genome provides information about the functional and metabolic potential of the community.
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the fecal content combined with the high diversity requires
deep sequencing if low abundant species and genes should
be studied. Because an individual carries at least 500,000
genes in a fecal sample, with a wide range of relative
abundance, tens of million reads must be sequenced to
cover the least abundant ones (4). The Illumina HiSeq
and GAIIx systems can be used to obtain a quantitative
measure of these genes, but the data amounts generated
require that analyses are performed on a computer
cluster with a large amount of storage and computing
power.

Analysis of shotgun sequence data starts with removal
of low-quality reads and trimming of reads with poor
quality at the 39 end. Removal of human reads by align-
ment to the human genome or other suspected con-
taminants is also required. After high-quality reads are
generated, two approaches are typically performed: tax-
onomical classification of metagenomic reads and their
functional classification. Several approaches for taxo-
nomic classification of metagenomic reads exist and are
commonly based on sequence alignment to a database,
such as Basic Local Alignment Search Tool (BLAST), or
short-reads sequence aligners or sequence composition
methods that make use of short substring (k-mer) fre-
quencies (63). The tool MEtaGenome ANalyzer (MEGAN)
relies on a BLAST search to a reference catalog, such as
National Center for Biotechnology Information nr, and
analyzes and displays the results in a graphical user in-
terphase (64). With large datasets, alignment with BLAST
to a full reference catalog can be infeasible; alternative
approaches include use of tools such as Metagenomic
Phylogenetic Analysis (MetaPhlAn), which reduces the
size by removing redundancy (65), or the use of accel-
erated but often less sensitive aligners (66).

For the functional classification of metagenomic reads,
de novo assembly is often performed: single reads are
assembled into contigs that are sequences of typical
gene lengths or longer. The Metagenomics of the Human

Intestinal Tract (MetaHIT) project used this approach to
construct a gene catalog of 3.3 million genes found in 124
individuals, and each individual carried about half a mil-
lion genes (4). Several different short read assemblers
have been used for metagenomic data such as Short Oli-
gonucleotide Analysis Package (SOAP) de novo (67) and
Velvet (68) and, recently, MetaVelvet designed especially
for metagenomic datasets (69). Dedicated pipelines for
assembly of metagenomic data have also been developed:
for example, MOCAT, which assembles metagenomic reads,
predicts genes from contigs, and performs quality control of
assembled contigs (70), and Metagenomic Data Utilization
and Analysis (MEDUSA) (Fig. 2), which has been used for
analysis of data from two metagenomics studies (33,46). De
novo assembly is typically performed for each sample sep-
arately and then unassembled reads are used in a global
assembly to maximize data use.

Functional analysis and annotation can be done on
predicted genes or directly on sequenced reads. Typically,
sequences are annotated to genes and functions in the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (71),
Clusters of Orthologous Groups (COG) (72), Pfam (73), or
more specialized databases such as Carbohydrate-Active
enZYmes (CAZy), which is important because of the ex-
tensive breakdown and fermentation of indigestible fibers
in the gut. The KEGG database organizes genes into KEGG
orthologs, enzymes, and pathways that are suitable for
interpretation of metabolic capabilities of the community.
Pipelines for automating some of these tasks include
SmashCommunity (74) and the Human Microbiome Pro-
ject Unified Metabolic Analysis Network (HUMAnN) (75),
which are efficient but lack some of the flexibility of a
custom pipeline. The recently developed pipeline Func-
tional Annotation and Taxonomic Analysis off Metagenomes
(FANTOM) is user-friendly and also enables visualization
at different stages of the analysis (76). Several Web ser-
vices exist for analysis of metagenomic data where the user
uploads the data and can get a taxonomic and functional

FIG. 2. In the bioinformatic pipeline for analysis of whole metagenome shotgun sequences, sequences are subjected to quality control by removing
uncertain base calls and contaminant sequences. Alignment of sequence reads to reference genomes is used for calculating species abundance. De
novo assembly is used to identify genes not present in public databases. Genes can be functionally annotated and mapped onto metabolic networks
such as in KEGG. Abundance of genes and species are compared among groups, and associations with disease can be tested.
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annotation as well as the possibility to compare with other
published metagenomes (77–79).
Modeling of the microbiota. Metagenomics provides
a parts list of the gut microbiome, enabling the presence of
genes and metabolic functions to be determined. Because
of the extreme complexity of the gut ecosystem, it is,
however, difficult to dissect specific metabolic functions
solely from gene lists and statistical analysis. As for studies
of other complex biological systems, mathematical mod-
eling can assist to gain increased functional insight, par-
ticularly because setting up mathematical models may
enable integration of different data types as well as eval-
uation of different hypotheses (80). Genome-scale meta-
bolic models (GEMs) are particularly well suited for this
kind of analysis because they are comprehensive collec-
tions of gene-protein reaction mappings that can take the
parts list of genes in an organism and predict intracellular
fluxes of metabolites during biomass production and
growth. For example, GEMs have been used to model the
metabolic interaction betweenMycobacterium tuberculosis
and the human alveolar cell (81). New improved drug tar-
gets could be predicted with the integrated bacteria and
human model. Efforts to reconstruct GEMs for species of
the gut microbiota have been initiated, and the prospects of
simulating the production of SCFAs from carbohydrates
will increase our understanding of the interactions between
organisms in the human gut. GEMs provide excellent scaf-
folds for interpreting the metabolic implications of tran-
scriptomic and other high-throughput data (82).
Personalized gnotobiotics. Transplantation of human
fecal microbiota into germ-free mice can be viewed as
capturing an individual’s microbial community at a fixed
moment in time (83). Importantly, the structure and com-
position of the transplanted human microbiota is well
maintained in the mouse (84). Thus, humanized mice can
be monitored over time and under highly controlled con-
ditions. Therefore, potentially confounding variables can
be constrained in ways that are not achievable in human

studies to demonstrate whether specific phenotypes are
transferred and mediated by the gut microbiota (Fig. 3).
For example, the gut microbiota are altered during preg-
nancy in humans and at the third trimester resemble that
of obese individuals (85). Interestingly, pregnant women
develop a state that resembles insulin resistance to allow
nutrients to be shuttled to the fetus. We investigated
whether the altered microbiota conferred any of the
metabolic effects by transferring the gut microbiota from
women in the first and third trimester to germ-free female
mice, and we observed that mice transplanted with
microbes from the third trimester had increased body
fat and also exhibited some impairment of glucose
metabolism (85).

PERSPECTIVES

Our knowledge of the gut microbiota and the microbiome
has advanced at a rapid pace because of the improvements
and cost reduction in DNA sequencing technology. Further
development of sequencing technology promises longer
read lengths and more data from a reduced amount of
sample DNA at a lower cost, which will further enable
deeper and more detailed studies of the gut microbiome.
Advances in data analysis tools and statistical methods are
needed and are being developed to speed up data analysis
and make it available to a broader range of scientists.
Cloud-based services, such as the Amazon Elastic Com-
pute Cloud, can make data analysis available to research-
ers without an in-house computer cluster and eliminate the
need for investment in hardware.

One key challenge is to perform prospective studies
where serial fecal samples are obtained and the patients
are carefully phenotyped to demonstrate if the altered gut
microbiota is altered before metabolic disease or if the
microbiota merely reflect the disease state. Because diet is
an important modulator of the microbiota, it is essential to
also record the composition and quantity of food intake.
Care should be taken with regard to how samples are

FIG. 3. Germ-free mice can be used to study the effect of a gut microbiota on its host. Colonization of germ-free mice with human microbiota from
different donors can test if there are functional differences between communities. Colonization of germ-free mice also allows investigation of the
interaction between the microbiota and specific diets. Synthetic microbiota are defined communities with known species composition and provide
a controlled environment for testing the interaction of microbes with diet and host.

F. KARLSSON AND ASSOCIATES

diabetes.diabetesjournals.org DIABETES, VOL. 62, OCTOBER 2013 3347



obtained and stored as well as which extraction protocol is
used.

Metagenomic analyses provide information on the ge-
nomic content of microorganisms (dead or alive) whereas
other methods such as metatranscriptomics and meta-
proteomics are needed to gain information on the active
part of the microbiome. Metatranscriptomic studies are
scarce and require more care when samples are taken to
capture the actual in vivo activity of gene transcription. Yet
another challenge is how to assess the composition of the
microbiota in the small intestine, which requires invasive
sampling in contrast to the fecal samples that are typically
used today.

Despite the challenges in the field, the rapid advances
made during the past decade suggest that the gut micro-
biota may constitute an important environmental factor
that contributes to metabolic diseases. Further analysis of
this “second” human genome is required to get additional
insights into factors that determine its composition and
function and how it interacts with key human cellular
functions.
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