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N E U R O S C I E N C E

Internally generated population activity in cortical 
networks hinders information transmission
Chengcheng Huang1,2,3*, Alexandre Pouget4, Brent Doiron2,3,5,6

How neuronal variability affects sensory coding is a central question in systems neuroscience, often with complex 
and model-dependent answers. Many studies explore population models with a parametric structure for response 
tuning and variability, preventing an analysis of how synaptic circuitry establishes neural codes. We study stimulus 
coding in networks of spiking neuron models with spatially ordered excitatory and inhibitory connectivity. The 
wiring structure is capable of producing rich population-wide shared neuronal variability that agrees with many 
features of recorded cortical activity. While both the spatial scales of feedforward and recurrent projections 
strongly affect noise correlations, only recurrent projections, and in particular inhibitory projections, can introduce 
correlations that limit the stimulus information available to a decoder. Using a spatial neural field model, we 
relate the recurrent circuit conditions for information limiting noise correlations to how recurrent excitation and 
inhibition can form spatiotemporal patterns of population-wide activity.

INTRODUCTION
A prominent feature of cortical response to sensory stimuli is that 
neuronal activity varies substantially across presentation trials (1), 
even when efforts are taken to control or account for variable animal 
behavior (2–4). A component of this variability is coordinated among 
neurons in a brain area, often leading to shared fluctuations in spiking 
activity (5–7). How stimulus processing is affected by this large, 
population-wide neuronal variability is a longstanding question in 
both experimental and theoretical neuroscience communities.

Recording from neuronal populations while simultaneously moni-
toring an animal’s behavior during a structured task offers a glimpse 
into how neuronal activity supports computation. Correlations 
between spike counts from pairs of neurons in response to repeated 
stimulus, often referred to as noise correlations, are modulated by a 
variety of cognitive factors that are known to affect task performance 
(2). For example, noise correlations decrease with animal arousal 
(8) or task engagement (9). In the visual pathway, noise correlations 
between neurons in the superficial layer are decreased when spatial 
attention is directed into the receptive field of a recorded population 
(10), although the attention-mediated changes in noise correlation 
depend on cortical layer (11) and task conditions (12). In addition, 
perceptual learning (13,  14) and visual experience (15) can also 
result in an attenuation of noise correlations. The common theme 
in all of these studies is that a reduction in noise correlations co-occurs 
with cognitive shifts that improve task performance. This supports 
the often cited idea that shared variability is deleterious to neuronal 
coding because it cannot be reduced by ensemble averaging (16, 17), 
and thus, it is expected that its reduction will enhance neural coding.

While the above narrative is appealing, it oversimplifies a long 
debate in the computational neuroscience community (16, 18–20). 
It is popular (and pragmatic) to restrict analysis to a linear decoding 
of neuronal response, where performance is often measured using 

the linear Fisher information between the estimated and actual 
stimulus (19,  21–23). Linear Fisher information depends on two 
components: the set of neuronal tuning curves and the population 
covariance matrix (19, 21). Whether noise correlations degrade 
or improve stimulus coding depends on the relationship between 
these components. For example, while it is true that correlations 
between similarly tuned neurons limit Fisher information (17), cor-
relations between dissimilarly tuned neurons can actually increase 
information compared to an asynchronous population (18,  19). 
Several more recent studies have built upon this idea and shown 
how stimulus-dependent correlations can also improve linear in-
formation transmission (24–26). Last, Moreno-Bote et  al. (27) 
showed that information is only limited by one specific type of 
correlations, termed differential correlations, which align with 
population activity in the direction defined by the derivatives of the 
tuning curves. In all of these varied modeling studies, both tuning 
curves and covariance structure were assumed and thus had a 
prescribed relation to one another. In this study, we adopt an alter-
native modeling approach and consider biophysically grounded 
population models, where cellular spiking dynamics and synaptic 
wiring are assumed, and population response and its variability are 
emergent properties of the circuit.

A serious obstacle in using circuit models to study neuronal 
coding is the lack of a complete mechanistic theory underlying 
population-wide variability (28). An often used framework assumes 
that neuronal fluctuations are inherited from external sources and 
any circuit wiring filters and propagate this variability throughout 
the population (29, 30). Along these lines, recent modeling work in 
a feedforward circuit model of primary visual cortex shows that 
when such inherited variability originates from a noisy stimulus, 
then population-wide correlations, which limit information transfer, 
naturally develop throughout the circuit (31). Neuronal variability 
can also emerge through recurrent interactions within the network, 
when synaptic weights are large, and excitation is dynamically 
balanced by recurrent inhibition (1, 32). However, these networks 
famously support an asynchronous state (33), making them at the 
surface ill-suited to probe how internally generated population-wide 
variability affects neuronal processing. Recent extensions of balanced 
networks, which include structured wiring, have provided an 
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understanding of how shared variability can emerge through internal 
mechanics (34–39). These networks are a useful modeling framework 
to probe how shared variability generated through circuit dynamics 
affects population coding.

In this work, we study information transmission in spatially 
ordered networks of spiking neuron models, where a balance be-
tween excitation and inhibition produces population-wide variability. 
We embed a columnar organization of stimulus orientation preference 
in our model and measure the performance of an optimal estima-
tion of a stimulus from a linear decoding of population activity. In 
particular, we explore how the spatial scales of feedforward and 
recurrent wiring influence stimulus estimation. First, we show 
that both feedforward and recurrent wiring shape population-wide 
noise correlations within the population, indicating that both aspects 
of circuitry may affect population coding. However, only the struc-
ture of the recurrent network determines whether the network 
generates information limiting noise correlations, which degrade 
stimulus estimation. These correlations emerge from pattern-forming 
dynamics in the recurrent circuit, which prevent a linear model 
from capturing population-wide variability, and thereby degrade any 
linear estimation of a stimulus. As we show, inhibition plays a critical, 
yet complex, role in this pattern-forming dynamics and, hence, in 
information transmission. Broader lateral inhibition creates patterned 
network activity, which decreases information, while for spatially 
narrow inhibition, increasing the mean inhibitory drive stabilizes 
activity, resulting in increased information transfer. In summary, our 
work begins to connect the emerging theory of how neuronal 
circuits produce trial-variable activity with ongoing theories of how 
population-wide variability affects stimulus representation.

RESULTS
Our study measures the propagation of stimulus information in a 
two-layer network of spatially ordered neurons. As motivation, our 
model aims to capture layer (L)4 and L2/3 neurons in the primary 
visual cortex (V1) (Fig. 1A, see Materials and Methods); however, 
our model is sufficiently general to capture an arbitrary layered 
network. We model L4 neuronal spiking activity as a Poisson process 
with Gabor receptive fields defining the stimulus to firing rate 
transfer. The orientation preference of L4 neurons is determined 
from a superimposed pinwheel orientation map [Fig. 1A, bottom 
right; see (40)]. The Gabor visual images are corrupted by spatially 
independent noise obeying a temporal Ornstein-Uhlenbeck process; 
this provides a bound on the stimulus information entering our 
network. L2/3 is modeled as a recurrently connected network of 
both excitatory and inhibitory spiking neuron models. The connec-
tion probability of all recurrent projections within L2/3 and the 
feedforward projections from L4 to L2/3 decays with distance with 
spatial widths rec and ffwd, respectively [see Materials and Methods 
and (36) for details]. The spatial size of the network is normalized to 
be 1 in both x and y directions. The columnar radius is set to be 0.1, 
and the feedforward and recurrent connection widths vary between 
0.05 and 0.2. For comparison, in cat primary visual cortex, the radi-
us of recurrent connection was found to be around 250 m, and the 
column radius was approximately 500 m (41, 42). We assume that 
the image stimulus is in the receptive field of all neurons, meaning 
that the image activates the whole network.

Networks with large, balanced excitatory and inhibitory connec-
tions are an attractive model framework for cortical activity because 

they capture several aspects of reported in vivo population response. 
When large synaptic connections are paired with random network 
wiring, they naturally produce significant heterogeneity in spiking 
activities across the network (32, 43). In our spatially ordered net-
work, the L2/3 neurons have very heterogeneous tuning curves with 
various widths and magnitudes (Fig. 1B). This produces a large spread 
of orientation selectivity across the population (Figs. 1B and 2B), 
capturing the broad heterogeneity of orientation tuning reported in 
primary visual cortex (44).
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Fig. 1. Spatially ordered balanced networks generate heterogeneous tuning 
curves and structured trial-to-trial variability. (A) Model schematic of a two-layer 
network of spatially ordered spiking neurons modeling L4 neurons and L2/3 
neurons, respectively, from visual area V1. The visual input to the model is a Gabor 
image with orientation . The L4 network consists of Poisson units with Gabor 
receptive fields. The orientation preferences of L4 neurons are assigned according 
to a pinwheel orientation map (bottom right). The L2/3 network consists of both 
excitatory and inhibitory neurons modeled with integrate-and-fire dynamics, all 
arranged on a unit square. The spatial widths of the feedforward projections from 
L4 to L2/3 and the recurrent projections within L2/3 are denoted as ffwd and rec, 
respectively. (B) The L2/3 neurons have heterogeneous orientation tuning curves. 
Ten examples of tuning curves are shown with different colors representing different 
neurons (smoothed with a Gaussian kernel of width 9∘). (C) The model internally 
generates trial-to-trial variability. Three trials of network spike counts (200 ms time 
window) are shown from a network with ffwd = 0.05 and rec = 0.1 in response to a 
Gabor image of 0° (top) or 90° (bottom). Images are smoothed with a Gaussian 
kernel of width 0.01. (D) Noise correlation matrix with neurons ordered by their 
preferred stimulus orientation. Responses were simulated for a Gabor input with 
orientation at  = 0∘ without (left) and with stimulus noise (right).
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Balanced networks produce significant dynamic and trial-to-trial 
spiking variability through internal mechanisms (32). While balanced 
networks with disordered connectivity produce asynchronous activity 
(33), networks with structured wiring can produce correlated variability 
(34,  35,  37), which, under certain conditions, can be population 
wide (36). These past models were concerned with the mechanics of 
neuronal variability and did not model a spatially distributed stim-
ulus to drive network response. In our model, when L4 columnar 
stimulus structure is enforced, a broad L2/3 columnar activation is 
recruited, accompanied by significant population-wide trial-to-trial 
variability (Fig. 1C). Despite the lack of feature-based coupling 
(i.e., connectivity was determined only by the spatial distance be-
tween neurons), there is a clear positive relation between pairwise 
signal and noise correlations (Fig.  1D), matching diverse in  vivo 
datasets (10, 13, 30, 45). This occurs for two reasons. First, the 
stimulus has a spatial columnar profile, so any spatial wiring par-
tially overlaps with the signal profile. Second, it is well known that 
spike count correlations increase with the firing rates of the neuron 
pair (46), so that when neuron pairs with similar stimulus preference 
are coactivated, any significant trial-to-trial covariability in their 
synaptic inputs is better expressed in their output spiking. In our 
model, the relation between signal and noise correlations occurs in 
response to Gabor images, which are noiseless (Fig. 1D, left), or 
those contaminated by sensory noise (Fig. 1D, right). The latter case 
naturally provides feedforward noise correlations (31) with a columnar 
spatial scale. These externally imposed correlations are reduced 
for neuron pairs with a stimulus preference that match the driving 
stimulus, in agreement with past models where correlations are 
inherited from outside the circuit (30). In total, our spiking network 
captures many of the trial-averaged and trial-variable aspects of real 
cortical population response.

We focus on the network’s ability to discriminate two Gabor 
images with similar orientations, a paradigm commonly used in 
experiments (47). Gabor images with orientation  are presented to 
the L4 neurons repetitively with an ON interval of 200 ms and an 
OFF interval of 300 ms (see Materials and Methods). In what 
follows, we consider a decoder that has access to N model L2/3 
pyramidal neurons (randomly chosen from the 4 × 104 L2/3 neurons). 

We simulate the spiking activities of L2/3 neurons and collect spike 
counts from the observed population, n = [n1, …, nN], during each 
stimulus presentation (ON interval). The linear Fisher information 
about  available from n is defined as

	​​ I​ F​​  =  f′​()​​ T​ ​Σ​​ −1​ f′()​	 (1)

where f is the expectation of n conditioned on  (population tuning 
curve), ′ denotes differentiation with respect to , and Σ is the cova-
riance matrix of n (noise covariance matrix). Fisher information is 
a useful metric when considering the estimation of orientation  
from n. Let ​​  ​​ be the optimal linear estimator of the  for a given 
Gabor image, then we have that ​​I​ F​​ =  1 / Var(​̂  ​)​ (48). Put more 
simply, IF measures the accuracy of the optimal linear estimator of 
orientation. In practice, we measure the linear Fisher information 
from the spike counts of the L2/3 excitatory neurons using a bias-
corrected estimation [Materials and Methods and Eq. 8; (49)].

The spatial scales of connectivity in our network are key deter-
minants of overall population spiking activity in unstimulated 
conditions (34–36). In the next sections, we explore how the spatial 
scales of the feedforward L4 to L2/3 connectivity (ffwd; Fig. 1A) and 
those of the L2/3 to L2/3 recurrent projections (rec; Fig. 1A) influence 
information transfer about stimulus  within the network.

Narrow feedforward projections increase information 
saturation rate
Linear Fisher information (Eq. 1) depends on two components: the 
trial-averaged response gain to stimulus orientation (f′) and the 
trial-to-trial covariance matrix Σ. As we will show, the joint influence 
of ffwd on gain f′ and covariance Σ sets a conflict between how ffwd 
should ultimately affect IF.

On the one hand, the population-averaged tuning curve broadens 
as ffwd increases, resulting in reduced orientation gain f′ (Fig. 2A). 
In agreement, the orientation selectivity index (OSI, Eq. 7) of 
individual neurons decreases with ffwd (Fig. 2B). This reduction in 
orientation tuning is due to broader spatial filtering of tuned inputs 
from L4, where the tuning preferences of neurons are spatially 
clustered in a columnar organization. In particular, when the 
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Fig. 2. Both tuning curves and noise correlations change with the feedforward projection width. (A) The average tuning curve, normalized and centered at the 
preferred orientation, broadens as the feedforward projection width, ffwd, increases (color scheme shown on top). The recurrent width, rec, is fixed to be 2ffwd. The co-
lumnar radius, col, is 0.1. The case of ffwd = ∞ means the connection probability is independent of distance. (B) The probability density distributions of orientation selec-
tivity indexes (OSI, Eq. 7) of the L2/3 excitatory neurons. (C) Pairwise noise correlations as a function of distance between neuron pairs from the L2/3 excitatory population. 
The magnitude of pairwise correlations decreases as ffwd increases.
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connection probabilities of all projections are uniform in space 
(ffwd → ∞), the columnar structure is not preserved in L2/3, and 
neurons are least tuned. Hence, considering these changes in tuning 
selectivity alone predicts that the IF about  from L2/3 neurons 
decoding would decrease with ffwd.

On the other hand, the noise correlations between nearby neu-
rons decrease with increasing ffwd (Fig. 2C). Rosenbaum et al. (35) 
showed that for spatially distributed balanced networks, where 
ffwd < rec, an asynchronous solution does not exist. Rather, network 
activity is organized so that nearby cell pairs have positive noise 
correlations, while more distant cell pairs have negative correlations 
(Fig. 2C, pink curves). We remark that while very nearby neurons 
can have large noise correlations (∼0.25), most pairs are distant, so 
that mean noise correlation across all pairs remains low (0.01). 
Previous work on population coding has suggested that positive 
correlation between similarly tuned neurons can limit information, 
while between oppositely tuned neurons, it can benefit coding 
(16–18). Since the tuning preferences of neurons are spatially clus-
tered with a pinwheel orientation map, nearby neurons are likely to 
share similar tuning. Therefore, in contrast to the effect of the 
tuning selectivity, which would suggest that IF could decrease with 
ffwd, the overall reduction in the spatial structure of pairwise noise 
correlations implies that IF could increase with ffwd.

We divide our analysis of how IF depends on ffwd into two cases: 
first, when the decoder is restricted to a small (N ∼ 102) population 
of neurons and, second, for decoders that have access to large (N ∼ 
104) populations. For decoders restricted to small populations, the 
combined effects of reduced tuning selectivity and correlations with 
larger ffwd result in the linear Fisher information being largely 
reduced as ffwd increases (Fig. 3A). Consistently, the neural thresh-
olds of single neurons, measured as the ratio of the standard deviation 
of the spike counts and the derivative of the tuning curve function 
(​​​ i​​ / ​f​ i​ ′​​), also increase with ffwd (Fig. 3B). In total, the population code 
is less informative with larger ffwd, in line with the single neuron 
reduction in orientation selectivity (Fig. 2B), despite the associated 
decrease in pairwise noise correlations (Fig. 2C).

The noise in the Gabor image creates shared fluctuations in the 
L2/3 neurons that cannot be distinguished from signal, limiting the 
available information about  that is possible to be decoded (​​I​F​ in​​; 
Fig. 3A, black dashed line; see Materials and Methods). For decoders 
that have access to large populations, the linear Fisher information 
of the L2/3 neurons saturates to a level close to ​​I​F​ in​​, regardless of the 
feedforward projection width (Fig. 3A). It suggests that the network 
is very efficient at transmitting information. In particular, even 
networks with spatially disordered connections (ffwd → ∞), where 
neurons are very weakly tuned, still contain most of the information 
from the input layer.

Moreno-Bote et  al. (27) explicitly make the observation that 
while networks may show significant noise correlations, it is the 
shared fluctuations that align with the direction of response gain that 
limit information. In particular, they consider the decomposition of 
the covariance Σ = Σ0 + ϵf′f′T, with ϵ measuring the shared variance 
along the coding direction (f′). They show that for decoders that 
have access to a large number of neurons, IF ∼ 1/ϵ. By assuming that 
the information of the nonlimiting covariance component (Σ0) 
scales linearly with N, we estimated the asymptotic value of IF at the 
N → ∞ limit [Fig. 3A, dots, and fig. S1A; (50); see Materials and 
Methods]. For our network, it is not (to our knowledge) possible to 
formally decompose Σ into Σ0 + ϵf′f′T, meaning we do not have a 

way of estimating how network interactions contribute to ϵ. How-
ever, the fact that the information eventually saturates close to ​​I​F​ in​​ 
for all values of ffwd indicates that ffwd does not affect the value of ϵ. 
This is consistent with our network being in a regime where the 
origin of information limiting correlations stems from strictly 
external fluctuations, as has been previously studied (31). Recent 
experiments have found strong evidence supporting the existence 
of information-limiting correlations in mouse visual cortex in re-
sponse to grating images (50–52). Information with respect to the 
orientation of gratings increased sublinearly with the number of 
decoded neurons and was estimated to approach a plateau with tens 
of thousands of neurons (50, 51). Consistently, the information in 
our model typically approaches the asymptotic value with around 
10,000 neurons.

Recurrent connections with spatially balanced excitation 
and inhibition have small effects on information transfer
Next, we study how the spatial scales of recurrent connections (rec) 
affect information transmission. We first consider networks with 
the same spatial scale of recurrent excitatory and inhibitory projec-
tions. A previous study has shown that the relative spatial scale 
between recurrent and feedforward projections has a large impact 
on the spatial structure of pairwise noise correlations (35). For fixed 
ffwd and increasing rec, pairwise noise correlations become spatially 
structured with large magnitude (Fig. 4D). In addition, the individual 
neuron orientation selectivity is higher when rec is larger than ffwd 
since the recurrent synaptic current is effectively inhibitory and 
thus sharpens the tuning curves (Fig. 4C) (34).

For decoders that consider only small populations (N ∼ 102 to 
103 neurons), we see a clear difference between how rec and ffwd 
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affect IF. Specifically, IF is relatively insensitive to rec (the brown 
curves scanning over rec for ffwd = 0.05 are clustered in Fig. 4A; 
similar to the blue curves with ffwd = 0.075). Both the distributions 
of neural thresholds and OSI show similar ordering as the Fisher 
information (Fig. 4, B and C). By contrast, the spatial structures of 
pairwise correlations vary in both magnitude and width and do not 
show a clear relationship with the ordering of the Fisher information 
curves for finite N (Fig. 4D). In addition, the fact that all IF saturate 
at the same value for N → ∞ suggests that the changes in the popula-
tion correlations do not affect the information-limiting component. 
Overall, for spatially balanced recurrent excitatory and inhibitory 
projections, the specific scale of rec has much smaller effect than 
that of the feedforward projections when considering information 
transfer.

Broad inhibitory projections reduce information
Our cortical network can exist in one of two regimes. The preceding 
sections consider a regime where circuit parameters are such that 
the firing rate dynamics across the network are stable despite 
pairwise correlations being structured. The second regime is where 
the firing rates are no longer dynamically stable, and large rate 
fluctuations are produced through internal interactions (as we will 
formalize below). In past work (36), we showed how model networks 
in this second regime produced the low-dimensional, population-wide 

shared variability characteristic of a variety of cortical areas 
(6, 7, 53, 54). In this section, we consider how networks in this 
second regime transfer information across layers.

Dynamical networks with spatially ordered coupling can produce 
rich spatiotemporal patterns of activity (55). To explore how the 
network circuitry in our cortical model determines its pattern-forming 
dynamics, we first implement two simplifications. First, we restrict 
our analysis to an associated firing rate model (56, 57), sharing the 
same spatial connectivity as our network of model spiking neurons 
(see Materials and Methods). This greatly simplifies any linear 
stability analysis, and it provides qualitatively, but not quantitatively, 
similar macroscopic network firing rates when spiking neuron 
models are in a fluctuation-driven regime (58). Second, we analyze 
the dynamics of the network when driven by spatially uniform 
inputs. This provides a spatial translational symmetry in the network 
needed for Fourier analysis.

A stable, spatially uniform solution of the firing rate model 
corresponds to an asynchronous state in the network of spiking 
neuron models. We linearize the firing rate network dynamics around 
this uniform solution and obtain a set of eigenvalues and associated 
eigenmodes. This eigenstructure governs the linearized firing rate 
dynamics near the uniform solution. Each eigenmode has a wave 
number indicating its spatial scale across the network; the zero wave 
number eigenmode describes a spatially uniform solution, while 
higher wave number eigenmodes contribute to spatially structured 
solutions (at the spatial period of the wave number). The stability of 
the solution at each eigenmode is given by the sign of the real com-
ponent of the associated eigenvalue: Negative (positive) eigenvalues 
imply that dynamics about that eigenmode are stable (unstable). If 
all eigenmodes are stable, then we say that the solution is stable. The 
imaginary component of the associated eigenvalue near the insta-
bility indicates the temporal frequency of the unstable solution. A 
zero imaginary component implies a nonrhythmic solution, while a 
nonzero imaginary component suggests an oscillatory solution with 
a characteristic frequency proportional to the imaginary component.

Networks with spatially balanced recurrent excitatory and inhibi-
tory projections (e = i) and strong static inputs to the inhibitory 
neurons (i) have a stable spatially uniform solution (Fig. 5, A and B, 
gray region and orange curves, respectively). In this regime, the net-
work dynamics is approximately linear with weak perturbations, 
meaning that the network fluctuations are linearly related with 
input fluctuations. Since linear Fisher information is conserved under 
an invertible linear transformation (see Discussion), a network in 
a stable regime preserves almost all of its input information. As 
shown in previous sections, IF converges to ​​I​F​ in​​ for large N decoders, 
and this convergence is independent of the connectivity scales of 
both the feedforward and the recurrent pathways (Figs. 3A and 4A).

When the excitatory and inhibitory projections differ in spatial 
scale, recurrent connectivity can have a large impact on network 
dynamics. As the inhibitory projection width (i) increases, the 
uniform solution in the spatial firing rate model loses stability at a 
band of nonzero wave numbers (Fig. 5, A and B). This is via a 
Turing-Hopf bifurcation (55), a pattern-forming transition com-
mon to spatially distributed neuronal network models (56, 57). The 
unstable eigenmodes that emerge from the bifurcation contribute 
to population dynamics confined to the spatial scale of their wave 
numbers. The temporal structure of the population dynamics is due 
to the eigenvalues having nonzero imaginary components at the 
bifurcation (fig. S2). Similar pattern-forming transitions are also 
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Fig. 4. The recurrent projection width has small effects on the linear Fisher 
information. (A) The linear Fisher information is slightly lower when the recurrent 
projection width (rec) is narrower than the feedforward width (ffwd) (light shade). 
When rec is broader than ffwd, the saturation curve of the Fisher information overlaps 
(darker shades). Examples of two ffwd values are shown (brown, ffwd = 0.05; blue, 
ffwd = 0.075). The asymptotic values of IF at N = ∞ (dots) are estimated by fitting 
Eq. 10 (see Materials and Methods). Solid curves are the fits of IF (the linear fits 
shown in fig. S1B). Open circles are the numerical estimation of the linear Fisher 
information (Eq. 8). Error bars are the 95% confidence intervals. (B) The probability 
density distributions of neural thresholds (​​​ i​​ / ​f​ i​ ′​​) of the L2/3 excitatory neurons. 
(C) The probability density distributions of OSI of the L2/3 excitatory neurons. 
(D) Pairwise noise correlation as a function of the distance between a neuron pair. 
The excitatory and inhibitory projection widths are set to be equal (e = i = rec).
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observed in the spontaneous activity of spiking neuron networks 
(movies S1 to S3) (34, 36, 39). To quantify the spatial scales of 
population activity, we compute the spatial power of population 
spiking (at zero temporal frequency) in the spontaneous state. The 
power at the zero temporal frequency is measured using the same 
time window (200 ms) as used for Fisher information calculation; 
therefore, it measures the fluctuations in population activity 

relevant for the readout information. When i equals e the power 
spectrum is small (Fig. 5C, right, orange curve) showing a band at a 
wave number of approximately 3.6 (Fig.  5C, left), reflecting the 
spatial scale of the feedforward projections [see fig. S3 in (35)]. As i 
increases, there is a large increase in power at some nonzero wave 
numbers (Fig. 5C), reflecting large, internally generated fluctuations 
at nonzero spatial frequencies. The pattern-forming dynamics vary 
slowly in time, with temporal power concentrating in a frequency 
band below 5 Hz (fig. S3A). Overall, this suggests that as i increases, 
the network of spiking neuron models transitions through either a 
pure Turing instability, where spiking noise causes slow diffusion, 
or a Turing-Hopf bifurcation.

When the spiking network is driven by a Gabor image, the inter-
nal dynamics of the network interacts with the spatial patterns of 
the feedforward inputs. In the stable regime, where excitation is 
spatially balanced with inhibition (i = e), the spatial patterns of 
the network activity are similar across trials and are inherited from 
the input spatial scale (Fig. 5D, first row). As i increases, the inter-
nal pattern-forming dynamics of the network become dominant 
over the feedforward input patterns (Fig. 5D, top to bottom rows). 
The spatially periodic patterns of the internal dynamics become 
evident in the variations of spike counts from the mean (fig. S4). 
The broad inhibition suppresses significant activity, resulting in only 
a few stimulus-evoked areas compared to the spatially balanced 
case. The locations of the evoked areas vary from trial to trial, hence 
introducing excessive trial-to-trial variability in the population 
activity patterns. The mean population activity pattern across trials 
also degrades as i increases (Fig. 5D, left). In total, this suggests 
that there will be information loss in networks with larger i.

The Fisher information IF about stimulus  is markedly reduced 
when the network loses stability through broader inhibitory projec-
tions (Fig. 6A). The orientation selectivity of neurons only changes 
slightly with i (Fig. 6B), which means that a reduction in tuning 
selectivity cannot be the primary reason for the decrease in IF.  
However, the magnitude of pairwise correlations increases drastically 
as i increases. Because of the internal pattern-forming dynamics in 
networks with large i, nearby neurons are strongly correlated, 
while neuron pairs that are separated by half the distance between 
active zones are strongly anticorrelated. Consider the decomposition 
of network covariance Σ = Σ0 + ϵf′f′T, recalling that in the limit of 
large decoded populations (N), we have that the Fisher information 
IF ∼ 1/ϵ, so that ϵ measures the strength of information limiting 
correlations. In the stable regime, IF converges to the input informa-
tion ​​I​F​ in​​ (Fig. 6A, orange curve), implying that all information-limiting 
correlations are inherited through the feedforward pathway (as 
reported earlier in Figs. 3 and 4). However, for broader inhibition, 
it appears that for large N, the information IF saturates to a level that 
is below ​​I​F​ in​​. This argues that a component of the internally generated 
network covariability actually limits information transfer (i.e., 
contributes to ϵ). While our simulations support this conclusion, 
we admit that since it is computationally prohibitive to consider N 
beyond 104 neurons, we cannot verify how IF truly converges. In 
total, the pattern-forming dynamics in networks with broad inhibi-
tory projections largely reduce the transmitted information.

Depolarizing inhibitory neurons improves information flow
Even when excitatory and inhibitory projections are spatially matched, 
a network can nevertheless have an unstable uniform solution. This 
occurs when the static input to the inhibitory neurons (i) is low 
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Fig. 5. Networks with broad inhibitory projections exhibit pattern-forming 
dynamics. (A) Bifurcation diagram of a firing rate model (Eq. 6) as a function of the 
inhibitory projection width i and the depolarization current to the inhibitory neurons 
(i). The excitatory projection width and the drive to the excitatory neurons are 
fixed at e = 0.1 and e = 0.5, respectively. Color represents the wave number 
whose eigenvalue has the largest positive real part, and the gray region is marked 
stable since all eigenvalues have a negative real part. (B) The maximum real part of 
eigenvalues as a function of wave number for increasing i (e = 0.1), when i = e. 
Nonzero wave numbers lose stability as i increases, indicating that the network 
will exhibit firing rate dynamics with spatial scales of the unstable eigenmodes of 
the uniform solution. (C) The power spectrum at temporal frequency  = 0 for 
different spatial Fourier modes (nx, ny) of the spontaneous spiking activity from the 
spiking neuron networks with i = 0.1 (left, the nonzero spatial frequency power 
peaks around wave number 3.6.) and i = 0.3 (middle). Right: The average power at 
 = 0 across wave numbers (​k  = ​ √ 

_
 ​n​x​ 2​ + ​n​y​ 2​ ​​). The power spectra are computed using 

a 200-ms time window. (D) Activities of spiking neuron networks with different i 
when driven by a Gabor image (right, three trials of spike counts within the 200-ms 
window; left, mean spike counts). The scale bars indicate wavelengths of 0.5 
(normalized unit, corresponding to wave number 2; middle) and 1 (normalized 
unit, corresponding to wave number 1; bottom). The spatial domain of the network 
is [0,1] × [0,1]. Images are smoothed with a Gaussian kernel of width 0.01. Other 
parameters for the spiking neuron networks (C and D) are e = 0.1, ffwd = 0.05, and 
feedforward strengths JeF = 240 mV and JiF = 400 mV.
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(Fig.  7A, blue region), and the firing rate network is unstable 
through the eigenmode with zero wave number (Fig. 7B). In this 
case, the stability of the uniform solution is mediated by a Hopf 
bifurcation, through which bulk population-wide firing dynamics 
are produced (Fig. 7A, transition from blue to gray regions; movies 
S4 and S5), as opposed to the spatially confined dynamics produced 
via a Turing instability (Fig. 5). The spiking network shows a similar 
instability; when the static current to the inhibitory neurons is 
small, the spontaneous activities of spiking neuron networks exhibit 
large power at zero wave number, indicating large magnitude global 
fluctuations (Fig. 7C). The global fluctuations exhibit oscillations in 
the gamma frequency band, with temporal spectra peak around 
25 to 50 Hz (fig. S3B). We note that networks in this regime lack 
fluctuations on the slow time scale as measured in the visual cortex 
[around 70 to 150 ms; (59, 60)]. Furthermore, the global fluctua-
tions in the spontaneous activities of the spiking neuron network 
are largely suppressed with more input to the inhibitory neurons 
(Fig.  7C). In response to a stimulus , the population activity 
patterns show large fluctuations in the overall spiking activity level 
when i is small (Fig. 7D). However, unlike the case for broad inhi-
bition, since the instability is at zero wave number, then no spatially 
patterned internal dynamics occur that would compete with the 
stimulus-evoked spatial patterns. Consequently, the spatial patterns 
of the evoked activities are similar across trials (Fig. 7D).

The Fisher information about  increases with i as the network 
becomes more stable (Fig. 8A). Once the network is in the stable 
regime, a further increase in i has little effect on the IF (Fig. 8A, 
i = 0.8 compared to i = 1.2). To understand this, we again consider 
how response gain and population covariability are affected by i. 
First, as i increases, the tuning curves of the excitatory neurons are 
sharpened (Fig. 8B). Second, since the unstable dynamics correlate 
the whole network, they give rise to positive correlations between 
neurons across long distances. As i increases, these population-wide 
fluctuations are suppressed, and overall neurons are less correlated 
(Fig. 8C). This combination could, in principle, conspire to produce 
the increase in information. However, we note that the impact of 
global fluctuations upon information transfer is much less than that 
of the spatially confined fluctuations induced by broad inhibition 
(compare Figs. 6A and 8A).

The small improvement in information transfer between two 
layers can be compounded during multilayer processing. We 
consider a four-layer network model with the same spatial wiring to 
model for the processing hierarchy in the visual cortex (Fig. 9A). 
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Fig. 6. Broad inhibitory projections reduce information flow. (A) The linear Fisher information from the L2/3 excitatory neurons is largely reduced as the inhibitory 
projection width (i) increases. The asymptotic values of IF at N = ∞ (dots) are estimated by fitting Eq. 10 (see Materials and Methods). Solid curves are the fits of IF (the 
linear fits shown in fig. S1C). Open circles are the numerical estimation of the linear Fisher information (Eq. 8). Error bars are the 95% confidence intervals. (B) The proba-
bility density distributions of OSI of the excitatory neurons from L2/3. (C) Pairwise noise correlations as a function of distance between a neuron pair in L2/3.
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Fig. 7. Lack of inhibitory drive gives rise to network-wide fluctuations. (A) Bi-
furcation diagram of a firing rate model (Eq. 6) as a function of the inhibitory pro-
jection width i and the depolarization current to the inhibitory neurons. The same 
as Fig. 5A. (B) The real part of eigenvalues as a function of wave number for increasing 
i (e = 0.5) when i = e. The zero wave number loses stability when i is small, 
indicating that the network will exhibit network-wide nonlinear dynamics. (C) The 
power spectrum at temporal frequency  = 0 for different spatial Fourier modes 
(nx, ny) of the spontaneous spiking activity from the spiking neuron networks with 
i = 0 (left) and i = 1.2 (middle). Right: The average power at  = 0 across wave 
number (​k  = ​ √ 

_
 ​n​x​ 2​ + ​n​y​ 2​ ​​). The power spectra are computed using a 200-ms time 

window. (D) Activities of spiking neuron networks with different i when driven by 
a Gabor image (right, three trials of spike counts within the 200-ms window; left, 
mean spike counts). Images are smoothed with a Gaussian kernel of width 0.01. 
Other parameters for the spiking neuron networks (C and D) are e = i = 0.1, ffwd = 0.05, 
JeF = 140 mV, and JiF = 0 mV, and the tonic current to excitatory neurons is e = 0. 
This corresponds to an average current of 1.56 to each excitatory neuron.
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The first and the second layer are the same as the L4 and L2/3 
networks of the V1 area, respectively, in the previous model. The 
third and fourth layer can be considered as modeling for V2 and V4 
areas, respectively. We compare the two networks with different 
inhibitory biases (i) applied to the neurons in layers 2, 3, and 4. The 
feedforward strength was adjusted such that the firing rates were 
similar across layers 2 to 4 (fig. S5C) and between the two conditions 
of i. As expected, the information about  decreases as it propagates 
to higher-order layers (Fig. 9, B and C); this is simply an expression 
of the data-processing inequality (61). This suggests that informa-
tion becomes more diffuse in higher-order layers (Fig. 9, B and C); 
indeed, the pairwise correlations are higher, and the thresholds of 
single neurons are larger in higher-order layers (fig. S5, A and B). 
However, the information deteriorates much faster across layers in 
networks with smaller i (Fig. 9, B and C), not only because of the 
compounding effect but also because of the increase in spike train 
synchrony among neurons for small i (fig. S5D). Since the inhibition 

is insufficient to cancel correlations at each layer, the synchrony builds 
up as signal propagates to higher-order layers (62). With stronger 
input to the inhibitory neurons, excitation is more balanced by in-
hibition, leading to stable asynchronous dynamics (fig. S5D). In 
total, the improvement in the Fisher information by increasing i 
markedly increases with the number of processing layers (Fig. 9D).

Tuning-dependent connectivity partially mitigates 
information loss
We have, thus far, considered networks with only spatially depen-
dent connections. However, the connection probability between 
neurons depends not only on the physical distance between them 
but also on the similarity of their tuning preferences (41, 63, 64). To 
investigate how tuning-dependent connections shape the informa-
tion flow, we modified network connectivity by rewiring a percentage 
of recurrent excitatory connections to be only between similarly 
tuned neurons (Fig. 10A; see Materials and Methods). This mimics 
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the long-range “patchy” connections found in the visual cortex of cat 
and tree shrew (41, 63). We denote the percentage of such tuning-
dependent connections as Pts. Networks with Pts = 0 are the same as 
those described previously with only spatial-dependent connections.

We focus on our two identified mechanisms that transition 
the network between the stable and the pattern-forming dynamical 

regimes: varying the spatial scale of inhibitory projections (i; 
Fig. 10, C and D) and the bias current to the inhibitory neurons (i; 
Fig. 10, E and F). We find that the tuning-dependent connections 
increase the information encoded in small ensembles of neurons, 
which is likely due to the large improvement in the orientation 
selectivity of individual neurons (Fig. 10B). Despite this difference, 
our main conclusions from previous sections still hold in networks 
with tuning-dependent connections. First, the addition of tuning-
dependent connections does not change the asymptotic information 
value when networks are in a dynamically stable regime (Fig. 10C). 
Second, broadening the inhibitory projections largely reduces the 
total amount of information (Fig. 10D compared with C), although 
tuning-dependent connections partially mitigate the information 
loss (Fig. 10D, different colors). Last, depolarizing inhibitory neu-
rons improves the information transmission across the processing 
layers in multilayer networks (Fig. 10, E and F). Tuning-dependent 
connections do not have much of an effect on information trans-
mission in networks with smaller i (Fig. 10E), whereas it partially 
reduces the information loss in higher layers with larger i (Fig. 10F).

DISCUSSION
The performance of a population code depends on the relationship 
between the individual tuning curves and the shared variability 
among neurons (18, 20, 21). Previous studies have tacitly assumed a 
prescribed structure between tuning and variability, allowing a dis-
section of their respective impacts on population coding (19, 24, 25). 
While this approach has given some critical insights, an under-
standing of how the mechanics of a neural circuit affect population 
coding has remained elusive. It is well known that the trial-averaged 
(65) and trial-to-trial variability (22, 31, 35, 36) of a population 
response are shaped by both feedforward and recurrent network 
connectivity. In this study, we estimated the information available 
(to a linear decoder) about a simple, one-dimensional stimulus that is 
contained in the activity of a recurrently coupled network of spatially 
ordered spiking neuron models. We show that simply understand-
ing how pairwise noise correlations are determined through circuitry 
is insufficient to predict how information will be transferred across 
layers. Rather, an analysis of how circuitry determines the stability of 
network firing activity provides a better understanding of informa-
tion transfer. Our work reveals in particular the critical role of inhi-
bition in information transmission. Increasing the mean inhibitory 
drive resulted in better information transmission, while increasing 
the width of lateral inhibition worsened information transmission.

A central result of our paper is that in the limit of a large number 
of decoded neurons, the linear Fisher information IF can either 
saturate to the input information ​​I​F​ in​​ for networks with stable firing 
rate dynamics (Figs. 3 and 4) or fall short of that bound for net-
works in a pattern-forming regime (Figs. 6, 8, and 9). To appreciate 
why this is the case, it is useful to recall a simple fact about how 
linear systems encode inputs. Consider a one-dimensional stimulus 
 that drives a vector of noisy inputs x() = s() + , where the noise 
process  has zero mean with covariance matrix Σx. Let the output y() 
be a linear mapping of the input; specifically, we take y() = Lx() 
for some invertible matrix L. Then, we have that the linear Fisher 
information available to a decoder from y, termed ​​I​F​ y ​​, is simply

	​​ I​F​ y ​( ) = ​y′​​ T​ ​Σ​y​ −1​ y′= ​x′​​ T​ ​L​​ T​ ​[L ​Σ​ x​​ ​L​​ T​]​​ 
−1

​ Lx′= ​x′​​ T​ ​Σ​x​ −1​ x′= ​I​F​ x ​()​	 (2)
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Fig. 10. Networks with tuning-dependent connectivity. (A) Locations of post-
synaptic excitatory neurons (black dots) of one example presynaptic excitatory 
neuron (white asterisk). The connection probability is defined similar to the 
networks described previously, except that a percentage (Pts) of recurrent excitatory 
connections were rewired to connect similarly tuned neurons across the whole 
network (see Materials and Methods). (B) The probability density distributions of 
OSI of the excitatory neurons from L2/3 for varying the percentage of tuning-
dependent connections (Pts). The network parameters are the same as in (C) with 
i = e = 0.1. (C to F) The linear Fisher information as a function of the number 
of neurons sampled from the excitatory population for networks with different Pts 
[color scheme the same as in (B)]. The asymptotic values of IF at large N limit (dots 
at N = ∞) are estimated by fitting Eq. 10 (see Materials and Methods). Solid curves 
are the fits of IF. Open circles are the numerical estimation of the linear Fisher infor-
mation (Eq. 8). Error bars are the 95% confidence intervals. (C) Networks with 
i = e = 0.1; (D) networks with i = 0.3 and e = 0.1; (E) multilayer networks with 
Pts = 0.2 (dark color) or Pts = 0 (light color), and i = 0; (F) the same as (E) with i = 1.2. 
The information curves of networks with Pts = 0 (light color) in (E) and (F) are the 
same as those in Fig. 9 (B and C).
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In other words, deterministic linear mappings do not distort or 
degrade information transfer (when the decoder is also linear). We 
remark that ​​I​F​ y ​()​ does not depend on the linear mapping L.

When the cortical network is in the stable regime and any input 
noise is weakly correlated, then we can linearize network dynamics 
about an operating point (29, 58). In this regime, the noisy spike 
counts during a trial, n(), in response to stimulus  obey

	​ n( ) = G(Jn( ) + x( ) ) +   ⟹  n( ) = ​(I − GJ)​​ −1​(Gx( ) + )​	

Here, Gij = giij is a diagonal matrix of the neuron response gains 
(depends on the operating point) and Jij is the synaptic coupling 
from neuron j to i. In addition to stimulus noise in x(), there is an 
internal noise process  that can reflect any trial fluctuations 
accrued from the digitization from continuous inputs to spike 
counts (27) or a “background” noise that is present even when 
coupling and stimulus are absent (29); in all cases,  is independent 
across neurons. If sufficiently large numbers of neurons are decoded 
or sufficiently long observation times are used, then the contribu-
tion of  to population statistics is negligible, and we have that 
n ≈ (I − GJ)−1Gx, or in other words, the population output is a 
linear function of the input. Given this linearization and Eq. 2, we 
would then expect that ​​I​ F​​ ≈ ​ I​F​ in​​, so long as the coupling J and input 
x provide a stable operating point around which to linearize. In 
contrast to this stable case, when the network is in a pattern-forming 
regime, then there is not a stable operating point about which to 
linearize. This means that Eq. 2 is no longer valid, and we would 
expect that ​​I​ F​​  < ​ I​F​ in​​. In total, this argument sketches how an under-
standing of the network firing rate stability translates quite naturally 
to an understanding of what circuit conditions will allow the net-
work to faithfully transfer all the information available (to a linear 
decoder) in an input signal.

Broad inhibitory projections, also referred to as lateral inhibition, 
are a common circuit structure used to support various neural com-
putations, such as working memory (56, 66), sharpening of tuning 
curves (22, 65), formation of clustered networks (67), and the periodic 
spatial receptive fields of grid cells (68). In this work, we show 
that the pattern-forming dynamics generated by lateral inhibition 
degrade information transmission, which is consistent with previous 
results (22). Anatomical measurements of local cortical circuitry in 
the visual cortex show that excitatory and inhibitory neurons project 
with similar spatial scales (41, 64). Our results suggest that such 
spatially balanced excitatory and inhibitory projections are important 
for maintaining faithful representations of sensory stimuli. Never-
theless, lateral inhibition may be important for transforming sensory 
information into task-related information in higher-order cortices, 
such as the prefrontal cortex.

Information transmission in feedforward networks has been 
studied in several models. Bejjanki et al. (69) show that by improving 
feedforward template matching of Gabor filters, perceptual learn-
ing can increase the information gleaned from a presented image. 
In our model, the L4 network is similar to such models (31, 69), 
where information loss depends on the Gabor filters of the L4 
neurons. In contrast, the feedforward projections from L4 to L2/3 
neurons in our model are random and expansive (meaning there 
are much more neurons in L2/3 than L4), which is known to mini-
mize information loss (23, 70). Therefore, there is little information 
loss in the feedforward projections from L4 to L2/3 in our model, 
regardless of the projection width. Renart and van Rossum (71) and 

Zylberberg et al. (70) study information transmission with external 
noise added to the output layer and compute the optimal connectivity 
and input covariance that maximize the information in the output 
layer. In our model, there is no external noise imposed on the 
L2/3 neurons. All the neuronal variability in the L2/3 network is 
either internally generated or inherited from the feedforward 
inputs (32, 35, 36).

Our results can potentially explain the improvement in discrim-
inability by selective attention. Spatial attention has been shown to 
significantly reduce the global fluctuations in cortical recordings 
and, meanwhile, improve animals’ performance in the orientation 
change detection task [(10); but see (11, 12)]. However, the magnitude 
of global fluctuations is found to have little effect on information, 
and instead, information is only limited by input noise (27, 31). 
Recently, we developed a circuit model where large-scale wave 
dynamics give rise to low-dimensional shared variability (36), thus 
capturing properties of population recordings in the visual cortex 
(6, 45, 54). By depolarizing the inhibitory neurons, the attentional 
modulation in our model stabilizes the network and decreases noise 
correlations. To account for attention-mediated increase in firing 
rates, the model requires additional mechanisms such as increasing 
the feedforward projection strengths (72). Our past work suggests 
that the attention-mediated reduction in noise correlations reflects 
an increase in the stability of network dynamics. Results from the 
present study imply that enhanced network stability can increase 
information flow by quenching the internally generated, turbulent 
dynamics in the recurrent circuit (Fig. 8A).

In this work, we focused on two types of solutions in spatial 
networks, each with distinct nonlinear dynamics. In the pattern-
forming regime with broad inhibition, networks generate slow fluc-
tuations (below 5 Hz), positive correlations between nearby neuron 
pairs, and negative correlations for neurons pairs that are half 
wavelength away. In the regime of wave dynamics, network activity 
shows gamma rhythms (25 to 50 Hz) and, on average, positive 
correlations across all distances. Recordings from visual cortex have 
found fluctuations around the 70- to 150-ms time scale (59, 60) and, 
on average, positive correlations across long distance (36), which is 
more consistent with the wave dynamics regime.

In addition to the two types of nonlinear dynamics focused in 
our work, there are other mechanisms for networks to internally 
generate shared variability. For example, models with bistability can 
produce stochastic transitions between active and inactive states 
(11, 67, 73), which have been commonly observed in anesthetized 
(73) and awake behaving animals (74). Networks with bistability 
generate slow fluctuations and large correlations among neurons 
within the same population (11, 67, 73). The time scale of variability 
depends on the adaption time constant and input noise strength. A 
recent spatial network model with local bistability models attention 
as excitatory inputs and predicts a reduction in the spatial scale of 
noise correlations by attention (11). In contrast, networks in the 
wave dynamics regime produce a more spatially uniform shift of 
correlations (Fig. 8C). A reanalysis of multielectrode recordings 
from the V4 area shows that noise correlations have a shorter 
spatial scale in the attended state (fig. S6), which is more consistent 
with models with local bistability. Despite the differences in 
mechanisms, models with local bistability also predict that attention 
improves the stability of the active state of local populations (11). 
Since the transitions between active and inactive states are internal 
nonlinear dynamics, results from the present study suggest that 



Huang et al., Sci. Adv. 8, eabg5244 (2022)     1 June 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 14

they may also reduce information transmission. A more detailed 
study is needed to compare how different mechanisms of nonlinear 
network dynamics affect information processing.

Spontaneous dynamics of cortex have been shown to mimic the 
response patterns evoked by external stimuli (75, 76). It has been 
hypothesized that the spontaneous dynamics reflect the prior distri-
bution of the stimulus statistics, which is critical for optimal Bayesian 
inference (76, 77). Our results show that the internal dynamics 
of recurrent networks do not improve information flow and can 
reduce it drastically when they are excessive. This is consistent with 
the correlation between the reduction in global fluctuations in 
population activity by attention and learning and the improvement 
in animal’s performance (13, 14). The inclusion of tuning-dependent 
wiring only partially mitigates the information loss that is due to 
internal dynamics in some networks. The exact role of spontaneous 
dynamics in information processing and neural computation remains 
to be elucidated in future studies.

MATERIALS AND METHODS
Network model description
The network consists of two stages, modeling for the L4 and L2/3 
neurons in V1, respectively (Fig. 1A). Neurons on the two layers are 
arranged on a uniform grid covering a unit square  = [−0.5,0.5] 
× [−0.5,0.5]. L4 population is modeled similarly to the model in 
(31). There are Nx = 2500 neurons in L4. The firing rate of neuron i 
from L4 is determined by its Gabor filter Fi acting on the presented 
image ​​   m ​(, t)​

	​​ r​ i​​(, t ) = ​[​F​ i​​ · ​   m ​(, t ) ]​ +​​​	

where ​​​[x]​ +​​ = ​ {​​​x, x  ≥  0​ 0, x <  0 ​ . denotes half rectification, ​F​ i​​ = ​ F​ (x,y)​​(​​pref​ 
i  ​ ) ∈ ​ R​​ P​​​ 

is a Gabor filter, ​​ ̃  m ​(, t ) ∈ ​ℛ​​ P​​ is a Gabor image corrupted by in-
dependent additive noise, ​​ ̃  m ​(, t ) = m( ) + (t)​, P is the number of 
pixels in each image, and · is the inner product of two vectors. The 
noise on each pixel follows the Ornstein-Uhlenbeck process

	​​ ​ n​​ d  =  − dt + ​​ n​​ dW​	

with n = 40 ms, n = 3.5, and W being a vector of P independent 
Wiener processes. Spike trains of L4 neurons are generated as 
inhomogeneous Poisson process with rate ri(t). The shared stimu-
lus noise generates correlations across L4 neuron pairs and provides 
an external source of information limiting correlations, as in (31). 
These correlations are weak, yet nonzero (0.0052 on average) and 
match the weak values reported in the literature (78).

The Gabor image is defined on  with 25 × 25 pixels (x = 0.04),

	​​ ​m​ (x,y)​​( ) = exp ​(​​ − ​ 
​x​​ 2​ + ​y​​ 2​

 ─ 
2 ​​​ 2​

 ​​ )​​cos ​(​​ ​ 2 ─ 


 ​(x cos ( ) + y sin ( ) ) + ​)​​​​	

The size of the spatial Gaussian envelope was  = 0.2, the spatial 
wavelength was  = 0.6, and phase was  = 0. The orientation  is 
normalized between 0 and 1. The Gabor filters were

​​​F​ (x,y)​​(​​ pref​​ ) ∝ exp ​(​​ − ​ 
​x​​ 2​ + ​y​​ 2 ​

 ─ 
2 ​​​ 2​

 ​​ )​​cos ​(​​ ​ 2 ─ 

 ​(x cos (​​ pref​​  ) + y sin (​​ pref​​  ) ) + ​)​​​​	

with the same , , and  as the image. The orientation map was 
generated using the formula from (40) (Supplementary Materials, 

eq. S20). The preferred orientation at (x, y) is pref(x, y) = angle(z(x, 
y))/(2) and

	​​ z(x, y ) = ​ ∑ 
j=0

​ 
n−1

​​exp ​(​​i ​ 2 ─ 


 ​(​l​ j​​(cos (j / n ) x + sin (j / n ) y ) + ​​ j​​ ) ​)​​, n =  30​​	

where  = 0.2 is the average column spacing, lj = ±1 is a random 
binary vector, and the phase j is uniformly distributed in [0,2].

The L2/3 network consists of recurrently coupled excitatory 
(Ne = 40,000) and inhibitory (Ni = 10,000) neurons. Each neuron is 
modeled as an exponential integrate-and-fire neuron whose mem-
brane potential is described by

	​​ C​ m​​ ​ 
d ​V​j​  ​

 ─ dt  ​  =  − ​g​ L​​(​V​j​ ​ − ​E​ L​​ ) + ​g​ L​​ ​​ T​​ ​e​​ (​V​j​ ​−​V​ T​​)/​​ T​​​ + ​I​j​ ​(t)​	 (3)

where superscript  = e, i denotes excitatory and inhibitory neurons, 
respectively. Each time ​​V​j​ ​(t)​ exceeds a threshold Vth, the neuron 
spikes and the membrane potential is held for a refractory period 
ref and then resets to a fixed value Vre. Neuron parameters for excit-
atory neurons are m = Cm/gL = 15 ms, EL = −60 mV, VT = −50 mV, 
Vth = −10 mV, T = 2 mV, Vre = −65 mV, and ref = 1.5 ms. Inhibitory 
neurons are the same except m = 10 ms, T = 0.5 mV, and ref = 0.5 ms. 
The total current to each neuron is

	​​  
​I​j​ ​(t)

 ─ ​C​ m​​  ​  = ​  ∑ 
k=1

​ 
​N​ F​​

 ​​ ​ 
​J​jk​ F​

 ─ 
​√ 
_

 N ​
 ​ ​∑ 

n
​ ​​ ​​ F​​(t − ​t​n​ F,k​ ) + ​ ∑ 

=e,i
​​​​ ∑ 
k=1

​ 
​N​ ​​

 ​​ ​ 
​J​jk​ ​

 ─ 
​√ 
_

 N ​
 ​ ​∑ 

n
​ ​​ ​​ ​​(t − ​t​n​ ,k​ ) + ​​ ​​​	 (4)

where N = Ne + Ni is the total number of neurons in the network. 
Postsynaptic current is

	​​ ​​ ​​(t ) = ​  1 ─ ​​ d​​ − ​​ r​​ ​​{​​​​e​​ −t/​​ d​​​ − ​e​​ −t/​​ r​​​,​  t ≥  0​  
0,

​ 
t  <  0

 ​​​	

where er = 1 ms, ed = 5 ms for excitatory synapses and ir = 1 ms, 
id = 8 ms for inhibitory synapses. The feedforward synapses from 
L4 to L2/3 have the same kinetics as the recurrent excitatory synapse, 
i.e., F(t) = e(t).

The probability that two neurons, with coordinates x = (x1, x2) 
and y = (y1, y2), respectively, are connected depends on their distance 
measured on  with periodic boundary condition

	​​ p​ ​​(x, y ) = ​​p ̄ ​​ ​​ g(​x​ 1​​ − ​y​ 1​​; ​​ ​​ ) g(​x​ 2​​ − ​y​ 2​​; ​​ ​​)​	 (5)

Here, ​​​p ̄ ​​ ​​​ is the mean connection probability and

	​ g(x;  ) = ​  1 ─ 
​√ 
_

 2 ​ 
 ​ ​  ∑ 
k=−∞

​ 
∞

 ​ ​ ​e​​ −​(x+k)​​ 2​/(2​​​ 2​)​​	

is a wrapped Gaussian distribution. A presynaptic neuron is allowed 
to make more than one synaptic connection to a single post-
synaptic neuron.

The mean recurrent connection probabilities were ​​​p ̄ ​​ ee​​  =  0.01​, 
​​​p ̄ ​​ ei​​ =  0.04​, ​​​p ̄ ​​ ie​​ =  0.03​, and ​​​p ̄ ​​ ii​​  =  0.04​, and the recurrent synaptic 
weights were Jee = 80 mV, Jei = −240 mV, Jie = 40 mV, and Jii = −300 mV.  
The feedforward connection probabilities were ​​​p ̄ ​​ eF​​  =  0.1​ and 
​​​p  ̄​​ iF​​  =  0.05​. The feedforward connection strengths were JeF = 240 mV 
and JiF = 400 mV for Figs. 1 to 6, and JeF = 140 mV and JiF = 0 mV for 
Figs. 7 and 8. The static inputs to inhibitory neurons were i = 0 mV/ms 
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for Figs. 1 to 6, and i = 0,0.4,0.8, and 1.2 mV/ms for Figs. 7 and 8. 
The static inputs to excitatory neurons were e = 0 mV/ms for all 
simulations.

The feedforward connection widths, ffwd, were 0.05, 0.625, 0.75, 
0.1, and ∞, and the excitatory and inhibitory connection widths 
were fixed to be e = i = 2ffwd for Figs. 2 and 3. The inhibitory 
connection widths i were 0.1, 0.2, and 0.3 for Figs. 5 and 6, and the 
excitatory and the feedforward connection widths were e = 0.1 and 
ffwd = 0.05, respectively. The feedforward connection width was 
ffwd = 0.05, and the excitatory and inhibitory connection widths 
were e = i = 0.1 for Figs. 1 and 7 to 9.

In the multilayer network (Fig. 9), the recurrent and the feedforward 
connections of all layers are rec = 0.1 and ffwd = 0.05, respectively. 
The first and the second layer are the same as the L4 and L2/3 net-
works, respectively, described above. The other layers are modeled 
the same as the L2/3 network. In the condition when i = 0 mV/ms, 
the feedforward connection strength from L1 to L2 excitatory neurons 
is JeF = 140 mV, and the feedforward connection strengths between 
other layers are JeF = 35 mV. In the condition when i = 1.2 mV/ms, 
the feedforward connection strength from L1 to L2 excitatory neu-
rons is JeF = 180 mV, and the feedforward connection strengths 
between other layers are JeF = 54 mV. The feedforward connection 
probability from L1 to L2 excitatory neurons was ​​​p ̄ ​​ eF​​  =  0.1​, and 
feedforward connection probabilities to other layers were ​​​p ̄ ​​ eF​​  =  0.01​ 
in both conditions of i. All the feedforward connections to inhibi-
tory neurons and the static inputs to excitatory neurons were set to 
be zero, i.e., JiF = 0 mV and e = 0 mV/ms. The feedforward strengths 
were chosen such that the mean firing rates of L2 to L4 are similar 
across layers and between the two conditions of i.

In networks with tuning-dependent connections (Fig. 10), Pts 
percentages of recurrent excitatory connections are randomly 
chosen from similarly tuned neurons and do not depend on space. 
The remaining 1 − Pts connections are generated according to 
connection probability that depends only on the physical distance 
between neurons (Eq. 5). Neurons i and j are called similarly tuned if 
their preferred orientations, i and j, satisfy condition cos (i − j) > 0.6. 
The tuning preference of the excitatory neurons are determined by 
choosing the preferred orientation  of the estimated feedforward 
input, h(x, y, ) = f(x, y, ) * g(x, y, ffwd), where f is the tuning curve 
function of neurons in the feedforward layer, g is a wrapped Gaussian 
spatial kernel of width ffwd, and * is convolution over space. Other 
parameters are the same as described above.

All simulations were performed on the High Performance Com-
puting Cluster at the Center for the Neural Basis of Cognition in 
Pittsburgh, PA. All simulations were written in a combination of 
C and Matlab (Matlab R 2015a, Mathworks). The differential equa-
tions of the neuron model were solved using the forward Euler method 
with a time step of 0.05 ms.

Neural field model and stability analysis
We use a two-dimensional neural field model to describe the dynamics 
of population rate (Figs. 4 and 6). The neural field equations are

	​​ ​ ​​ ​ 
∂ ​r​ ​​(x, t) ─ ∂ t  ​  =  − ​r​ ​​ + (​w​ e​​ * ​r​ e​​ + ​w​ i​​ * ​r​ i​​ + ​​ ​​)​	 (6)

where r(x, t) is the firing rate of neurons in population  = e, i near 
spatial coordinates x ∈ [0,1] × [0,1]. The symbol * denotes convolution 
in space,  is a constant external input and ​​w​ ​​(x ) = ​​ _ w ​​ ​​ g(x; ​​ ​​)​, 
where g(x; ) is a two-dimensional wrapped Gaussian with width 

parameter ,  = e, i. The transfer function is a threshold-quadratic 
function, ​(x ) = ​[x]​+​ 2 ​​. The time scale of synaptic and firing rate 
responses is implicitly combined into .

For constant inputs, e and i, there exists a spatially uniform 
fixed point, ​​r​​ * ​​. Linearizing around this fixed point in Fourier domain 
gives a Jacobian matrix at each spatial Fourier mode (34).

	​​ J(​ → n ​ ) = ​[​​​
(− 1 + ​g​ e​​ ​​ ~ w ​​ ee​​(​ → n ​ ) ) / ​​ e​​​ 

​g​ e​​ ​​ ~ w ​​ ei​​(​ → n ​ ) / ​​ e​​​   
​g​ i​​ ​​ ~ w ​​ ie​​(​ → n ​ ) / ​​ i​​

​ 
(− 1 + ​g​ i​​ ​​ ~ w ​​ ii​​(​ → n ​ ) ) / ​​ i​​

​​]​​​​	

where ​​ → n ​  =  (​n​ x​​, ​n​ y​​)​ is the two-dimensional Fourier mode, ​​​ ~ w ​​ ​​(​ → n ​ ) = 
 ​​ _ w ​​ ​​ exp (− 2 ∥ ​  → n ​ ​∥​​ 2​ ​​​ 2​ ​​​ 

2 ​)​ is the Fourier coefficient of w(x) with 
​∥ ​  → n ​ ​∥​​ 2​ = ​ n​x​ 2​ + ​n​y​ 2​​, and ​​g​ a​​ = ​  ′ ​(​w​ e​​ * ​r​e​ *​ + ​w​ i​​ * ​r​i​ *​ + ​​ ​​)​ is the gain. The 
fixed point is stable at Fourier mode ​​ → n ​​ if both eigenvalues of ​J(​ → n ​)​ 
have negative real part. Note that stability only depends on the wave 
number, ​k =  ∥ ​  → n ​ ∥​, so Turing-Hopf instabilities always occur simul-
taneously at all Fourier modes with the same wave number (spatial 
frequency).

For the stability analysis in Figs. 5 and 7, i varied from 0.1 to 
0.7 with a step size of 0.002, i varied from 0.05 to 0.2 with a step 
size of 0.0005, and e = 0.5 and e = 0.1. The rest of the parameters 
were ​​​ _ w ​​ ee​​ =  80​, ​​​ _ w ​​ ei​​ =  − 72​, ​​​ _ w ​​ ie​​ =  120​, ​​​ _ w ​​ ii​​ =  − 90​, e = 5 ms, and i = 8 ms.

Statistical methods
Each simulation was 20 s long consisting of alternating OFF (300 ms) 
and ON (200 ms) intervals. Image was presented during ON intervals, 
where the average firing rate of L4 neurons was rX = 10 Hz. During 
OFF intervals, spike trains of L4 neurons were an independent Poisson 
process with rate rX = 5 Hz. Spike counts from the L2/3 excitatory 
neurons during the ON intervals were used to compute the linear 
Fisher information and noise correlations. The first spike count in each 
simulation was excluded. For each parameter condition, the connec-
tivity matrices were fixed for all simulations. The initial states of each 
neuron’s membrane potential were randomized in each simulation.

To compute tuning curve functions, the orientation for each ON 
interval was randomly sampled from 50 orientations uniformly 
spaced between 0 and 1. There were 9750 spike counts in total for all 
orientations. Tuning curves were smoothed with a Gaussian kernel 
of width 0.05. OSI for neuron i is computed as

​​OSI​ i​​  = ​ 
​√ 
_________________________________________

     ​​(​​​∑ k=1​ ​N​ th​​ ​​ ​r​​ i​(​​ k​​ ) sin (2 ​​ k​​ ) ​)​​​​ 
2
​ + ​​(​​​∑ k=1​ ​N​ th​​ ​​ ​r​​ i​(​​ k​​ ) cos (2 ​​ k​​ ) ​)​​​​ 

2
​ ​
     ────────────────────────────   

​∑ k=1​ ​N​ th​​ ​​ ​r​​ i​(​​ k​​)
 ​​     (7)

where ri() is the tuning curve function of neuron i, and k = k/Nth.
To compute the linear Fisher information and noise correlation, 

the orientations of the Gabor images during ON intervals were 
randomly chosen from 1 =  + /2 and 2 =  − /2, where  = 0.5 
and  = 0.01. The linear Fisher information of L2/3 neurons is 
computed using the bias-corrected estimate (49)

	​​​    I ​​ bc​​ = ​  ​(​f​ 2​​ − ​f​ 1​​)​​ T​ ─ 


  ​ ​​(​​ ​ ​Q​ 1​​ + ​Q​ 2​​ ─ 2 ​​ )​​​​ 
−1

​ ​ (​f​ 2​​ − ​f​ 1​​) ─ 


  ​ ​ 2 ​N​ tr​​ − N − 3 ─ 2 ​N​ tr​​ − 2 ​  − ​  2N ─ 
​N​ tr​​  ​​​ 2 ​

 ​​	(8)

where fi and Qi are the empirical mean and covariance, respectively, 
for i. Ntr was the number of trials for each i. The number of 
neurons were N = 50, 100, 200, 400, 800, 1600, 3200, 6400, and 
12,800, randomly sampled without replacement from the excitatory 
population of L2/3.
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To estimate the asymptotic value of the linear Fisher information, 
I∞, at the limit of N → ∞, we used the fitting algorithm proposed by 
Kafashan et  al. (50). Briefly, the theory of information-limiting 
correlations (27) shows that the linear Fisher information, IN, in a 
population of N neurons can be decomposed into a limiting 
component, I∞, and a nonlimiting component I0(N),

	​​ I​ N​​ = ​   1 ─ 
​ 1 _ ​I​ 0​​​ + ​ 1 _ ​I​ ∞​​​

 ​​	 (9)

where we assume that the nonlimiting component increases linearly 
with N, i.e., I0 = cN. Hence, Eq. 9 can be rewritten as

	​ 1 / ​I​ N​​  =  (1 / c ) (1 / N ) + 1 / ​I​ ∞​​​	 (10)

which shows that 1/IN scales linearly with 1/N with 1/I∞ as the inter-
cept. Hence, we did a linear fit of 1/IN versus 1/N, with N varying 
from 200 to 12,800 and estimated 1/I∞. A summary of the linear fit 
is shown in fig. S1.

The linear Fisher information of L4 neurons can be estimated 
analytically as ​​I​F​ in​  =  f′​()​​ T​ ​Σ​​ −1​ f( ) ′​ (31), with

	​​
​f′​ i​​( ) = ​TF​ i​​ · m′( ) ,

​  
​Σ​ ij​​( ) = ​F​ i​​ · ​F​ j​​ Var(​​​ T​ ) + ​​ ij​​ ​TF​ i​​ · m′( ) ,

​​ 	

where ​​​​ T​(t ) = ​∫t​ 
t+T

 ​​ (s ) ds​, T is the time window for spike counts, 
and ij is a Kroenecker delta, which is 1 if i = j, and 0 otherwise. We 
can calculate the variance of the integrated noise over time window 
T as ​Var(​​​ T​ ) = ​​n​ 2 ​ [ T − ​​ n​​(1 − ​e​​ −T/​​ n​​​ ) ]​.

The noise correlation was computed with N = 1600 neurons 
randomly sampled without replacement from the excitatory popu-
lation of L2/3. The Pearson correlation coefficients were computed 
from the average covariance matrix (Q1 + Q2)/2.

For the computation of both noise correlations and linear Fisher 
information, there were 20 sampling of neurons for each N. Neurons 
of firing rates less than 1 Hz were excluded. There were 117,000 spike 
counts in total for 1 and 2.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abg5244

View/request a protocol for this paper from Bio-protocol.
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