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Engineering of frustration in colloidal artificial
ices realized on microfeatured grooved lattices
Antonio Ortiz-Ambriz1,2 & Pietro Tierno1,2

Artificial spin ice systems, namely lattices of interacting single domain ferromagnetic islands,

have been used to date as microscopic models of frustration induced by lattice topology,

allowing for the direct visualization of spin arrangements and textures. However, the

engineering of frustrated ice states in which individual spins can be manipulated in situ and

the real-time observation of their collective dynamics remain both challenging tasks. Inspired

by recent theoretical advances, here we realize a colloidal version of an artificial spin ice

system using interacting polarizable particles confined to lattices of bistable gravitational

traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter

system by tuning the strength of the pair interactions between the microscopic units. Via

independent control of particle positioning and dipolar coupling, we introduce monopole-like

defects and strings and use loops with defined chirality as an elementary unit to store binary

information.
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G
eometric frustration emerges in disparate physical and
biological systems that span from disordered solids1, to
trapped ions2, ferroelectrics3, microgel particles4, high-Tc

superconductors5, folding proteins6 and neural networks7. When
topological constraints between the individual elements impede
the simultaneous satisfaction of all local interaction energies, the
system is geometrically frustrated, featuring a low-temperature
residual entropy and a large ground state (GS) degeneracy8, as
observed in water ice9 and in rare-earth pyrochlore oxides, called
spin ice10–12. On the theoretical side, topologically frustrated spin
systems have been scrutinized for a long time, dating back to the
work of Wannier13 on the Ising model applied to a triangular
lattice, in which the system cannot accommodate three spins on
each plaquette in such a way that all antiferromagnetic couplings
are minimized. In pyrochlore crystals, the situation is similar: the
rare-earth ions carry a net magnetic moment, and they are
located on the sites of a lattice of corner-sharing tetrahedra10. At
each vertex, the moments can point either towards the centre of
the tetrahedron or away from it, and pairs of spins align in the
low-energy head-to-tail configuration. The degenerate GS of
pyrochlore crystals follows the ice-rules14 where two spins point
towards the centre of the tetrahedron and two away from it. The
ice rules were first introduced by Bernal and Fowler14 to describe
the proton ordering in water ice (ice Ih). In the hexagonal Ih, the
lowest energy configuration is characterized by two protons near
an oxygen ion in a tetrahedron and two away from it similar to
the spin ice systems. To fulfil these rules, there are six equivalent
atomic configuration at each tetrahedron and Pauling showed
that this degeneracy was at the origin of the residual entropy of
water at low temperature15. However, the ice rules can be locally
violated16 due to the presence of disorder or fluctuations in the
system, giving rise to mobile excitations that mimic the behaviour
of magnetic monopoles and Dirac strings17–20.

Investigating the governing rule in frustrated systems is a key
issue not only for understanding exotic phases in magnetism
but also for providing guidelines to engineer new magnetic
memory and data processing devices21. However, experimental
investigations of bulk spin ice materials have often been restricted
to averaged quantities, such as heat capacity curves22, magnetic
susceptibility23 or neutron scattering data24. Artificial spin ice has
recently been introduced as an alternative system that displays
ice-like behaviour and allows for the direct visualization of the
individual spins25. Such systems are composed of lithographically
fabricated ferromagnetic nanostructures25,26 or nanowires27

arranged into periodic lattices that generate frustration by
design. Given the experimentally accessible length-scale of a few
nanometres, the spin orientation and the system GS can be
visualized by using magnetic force microscopy, although
monitoring the dynamics leading to the system degeneracy
remains an elusive task because of the extremely fast spin flipping
process.

Here we engineer a mesoscopic artificial spin ice that consists
of an ensemble of interacting colloidal particles confined to
lattices of gravitational traps. Our experimental system is inspired
by a recent theoretical proposition28, in which electrically charged
colloids in a square lattice of bistable optical traps were observed
to obey ice-rule ordering for strong electrostatic interactions. The
high demand in laser power required to generate the necessary
optical traps combined with the difficulty of tuning the surface
charge in colloidal systems motivates the use of an alternative
approach. We overcome these problems by using interacting
microscopic magnetic particles confined to the lattices of bistable
gravitational traps. The colloidal spin ice allows us to probe the
equilibrium states and the dynamics of pre-designed frustrated
lattices, and provides guidelines to engineer novel magnetic
storage devices based on frustrated spin states.

Results
Realization of the colloidal spin ice. We use paramagnetic
particles with tunable interactions inside lithographically
sculptured double-well traps, as shown in Fig. 1a. Each trap is
fabricated by etching an elliptical indentation in a photocurable
resin and leaving a small hill in the middle. We arrange these
bistable traps into honeycomb or square lattices, although
different lattice conformations can be easily implemented by
lithographic design. The elliptical wells have an average length of
21mm, width of 11mm and we use a lattice constant of a¼ 33mm
for the honeycomb lattice and a¼ 44mm for the square lattice.
Paramagnetic microspheres of diameter d¼ 10.4mm are dispersed
in water and then allowed to sediment above the surface of the
resin. Later, the particles are placed in the traps at a one-to-one
filling ratio using optical tweezers, (see Methods section). Within
the double wells, the colloidal particles are gravitationally trapped in
one of the two low-energy states. A typical profile of the double
wells obtained via an optical profilometer is shown in Fig. 1b. With
this technique we measure an average barrier height within the well
of h¼ 0.43±0.04mm, where Fig. 1c shows a typical well of
B0.3mm height. Given that the density mismatch is Dr¼ 0.9
g cm� 3 between the particles and the suspending medium, we
estimate a gravitational energy in the centre of the bistable trap of
Ug¼ 540kBT, and an outer confining potential for each island of
B3,000kBT, where kB is the Boltzmann constant and T¼ 20 �C is
the experimental temperature. Thermal fluctuations are unable to
induce spontaneous switching of the particle state unless either
smaller particles or a smaller hill are used.

To tune the pair interaction between the magnetic colloids, the
paramagnetic particles are doped with nanoscale iron oxide
grains; as a result of doping, these particles are responsive to a
magnetic field B. Under the applied field, the particles acquire a
dipole moment m¼VwB/m0, where V¼ (pd3/6) is the particle
volume, w¼ 0.1 the magnetic volume susceptibility and m0¼ 4
p10� 7 H m the susceptibility of vacuum. Pairs of particles
interact via dipolar forces, and for a magnetic field applied
perpendicular to the plane, the interaction potential is isotropic
and is given by Ud ¼ m0m2

4pr3
ij

where rij¼ |ri� rj|, ri is the position of

particle i. We apply a homogeneous field ranging from 0 to 25 mT
with an accuracy of 0.1 mT. When the paramagnetic colloids
cross the central hill, we find that the corresponding out-of-plane
motion produces a negligible effect on the overall collective
dynamics.

Spin configuration and vertex energy. Two typical experimental
realizations are shown in Fig. 1d,e for honeycomb and square
lattices, respectively, both following exposure to a constant field
of amplitude B¼ 18 mT for 60 s. Each experiment is initialized by
loading one particle in each well using optical tweezers, and
randomly flipping the position within the well according to a
random number generator. The repulsive magnetic interactions
force the particles to maximize their distance and are such that
the particles can easily switch state but cannot escape from the
gravitational trap. By assigning a vector (analogous to a spin) to
each bistable trap pointing from the vacant site towards the side
occupied by the particle, one can construct a set of ice rules for
the colloidal spin ice system, equivalent to those for artificial spin
ice28. At each vertex where three traps (in the case of honeycomb)
or four traps (in the case of square) meet, the vector assigned to
each trap can point either in when the colloidal particle is close to
the vertex or out when it is far from the vertex, following the
same classification scheme used in the three-dimensional
pyrochlore tetrahedron. The vertices of the honeycomb lattice,
sometimes called kagome ice since the spin midpoints are
arranged in a kagome lattice, can have four different types of spin
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arrangements. The highest energy configuration occurs when
three particles are close to the vertex (KIV), and the lowest energy
configuration has three particles far from the vertex (KI). In
contrast, the square lattice has six types of spin configurations: the
highest energy vertex is composed of four particles close to each
other (SVI), and the lowest energy vertex has all the particles far
away (SI). The corresponding energetic weight of all the vertices
in both lattices is shown at the bottom of Fig. 1. In particular, for
the elliptical wells used in Fig. 1, the magnetic interaction between
nearest neighbours can vary from Ud¼ 6425 kBT to Ud¼ 450 kBT
in the honeycomb lattice and from Ud¼ 1675 kBT to
Ud¼ 228 kBT in the square lattice. These interactions increase
as more particles are added at each vertex. Moreover, we notice
that in contrast to the artificial spin ice, the colloidal system is
characterized by mobile particles and their pair interaction
depends on the relative distance between them. The energy at
each vertex thus changes as the particles move, and the
corresponding GS results from a collective effect between the
interacting units.

Ice-selection rules in the colloidal spin ice. Systematic experi-
ments performed by increasing the interaction strength via the

applied field reveal that the colloidal spin ice has a clear tendency
to follow ice-selection rules for both the square and honeycomb
configurations. Figure 2a,b shows that the fraction of low-energy
vertices of type SIII and KII increases up to B0.8. We confirm
both trends by performing Brownian dynamic simulations,
shown as continuous lines in Fig. 2a,b. In these simulations, we
neglect many-body effects due to the relatively large separation
between the interacting particles at each vertex, more details can
be found in the Methods. In the ferromagnetic artificial square
ice, Wang et al.25 found that as the interaction increases, the
system is dominated by vertices of types SIII and SIV. In contrast,
we observe that when the applied field increases, the SIII vertices
dominate over the SIV vertices due to their slightly lower energetic
weight. This is closer to the true GS of the square ice, which
corresponds to a lattice that is fully covered by SIII vertices. To
obtain the GS in the magnetic bar system, Zhang et al.26 recently
used a dedicated annealing procedure based on a rotating
demagnetizing field, while for the colloidal spin ice system a
long-range ordered GS arises by simply increasing the
interactions strength between the magnetic particles. In the case
of the honeycomb lattice, a different set of ice rules arises, in
which the high-energy KIV vertices and their topologically
connected KI disappear in favour of the KII and KIII vertices. In
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Figure 1 | Realization of the colloidal spin ice system. (a) Schematic view of the colloidal spin ice made by a honeycomb lattice of double-well islands

filled with paramagnetic colloids. The applied field B perpendicular to the plane induces repulsive dipolar interactions between the particles. (b) Optical

profilometer image of the honeycomb spin ice, and (c) the cross-section of a double well with a small central hill, giving a gravitational potential Ug. (d,e)

Equilibrium state of a honeycomb ice (d) (lattice constant a¼44mm) and a square ice (e) (lattice constant a¼ 33mm). Blue arrows denote spin direction,

while green circles highlight vertices of type KII (in d) and SIII (in e). Scale bars, 20mm for all images. (f,g) Vertex configurations for honeycomb (f) and

square (g) ices. The lowest panel shows the normalized magnetostatic energy for each type of vertex.
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the colloidal system, beyond a field of B¼ 9 mT, the KII vertices
begin to prevail, because they are energetically more favourable
and maximize the average particle distance. In reality, at much
higher strength, the number of observed KII and KIII vertices
should converge due to the isotropy of the honeycomb lattice
vertices compared with the square one.

Particle dynamics above the square and honeycomb lattices.
One advantage of our mesoscopic system is that by using particle
tracking routines, we can directly follow the colloid displacement
and monitor the entire ordering process for a given interaction
strength. The dynamics are better visualized by displaying the net
topological charge q at each vertex, calculated according to the
dumbbell model, in which each spin carries a pair of opposite
charges at each of its ends25. Colour maps of the charge in the
system at different times are shown in Fig. 2c,d for the square and
honeycomb lattices, respectively. The GS for the square ice
corresponds to vertices with a zero net charge. The highly
frustrated honeycomb ice shows how low-energy vertices with net
charge q¼±1 are preferred over high-energy vertices with
q¼±3. Starting from an initial random distribution of particles
within the traps, the square ice shifts towards a state without
highly charged defects. However, some defects do remain frozen
close to the sample edges, and the system converges to a low-
energy metastable state. In contrast to the square ice, the
honeycomb spin ice has two equivalent vertices and thus an
inherent extensive degeneracy. It has been predicted to undergo a
series of phases (Ising paramagnet, Ice I, Ice II and ‘solid’ ice) as
the temperature decreases27. In Fig. 2d, we observe that the
system organizes into a superlattice region of þ 1 and � 1
charged vertices when a strong magnetic field is applied. This is

more similar to the Ice II phase with the presence of few defects
located at the edges which break the long-range order present in
the solid ice phase. We note that the order observed in both types
of lattices can be further improved either by applying annealing
protocols with dynamic fields or by applying a bias force obtained
by a strong magnetic gradient29.

Discussion
Our system allows us to manipulate individual particles within
the wells using optical tweezers. This method can be used to
introduce defects, which can be later erased by turning on the
magnetic field and thus increasing the interaction between the
particles. We demonstrate this feature with the square lattice,
although we have the same degree of control over the honeycomb
ice. For the colloidal square ice, the spin directions in the GS
(Fig. 3c) define chiral cells, which alternate in chirality in a
checkerboard pattern. Pairs of defects emerge in the form of
achiral cells with a net excess of magnetic charge when flipping
one spin from the GS configuration. Depending on the location of
these cells within the array, defects can be made stable or unstable
at a given applied field. In Fig. 3a–c, we observe the evolution of a
pair of defects with opposite charges, separated by a string of
achiral domains indicated by the green crosses in Fig. 3a. When
the annihilation of these defects involves only a few spin flips, the
energetic cost for the system to recover its GS is low, and the
defects rapidly disappear as the field is turned on, as shown in the
sequence in Fig. 3b. The defect annihilation process occurs via a
stepwise flipping of the particle position rather than via a
cooperative shift of all spins simultaneously, as seen in Fig. 3f. In
contrast, in Fig. 3d,e, where we show a string of defects that acts
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Figure 2 | Ice rules and dynamics in colloidal spin ice. (a,b) Average fraction of vertices at equilibrium for square (a) and honeycomb (b) ice versus the

applied magnetic field. In both cases, ice-selection rules (blue) emerge for large interaction strengths. Scattered points are experimental data, continuous

lines are results from Brownian dynamic simulation (Methods). The experimental points were averaged over 10 realizations, the numerical data over 1,000.

(c,d) Evolution of the net vertex charge q in the square (c) and honeycomb (d) ice (experimental system) after the application of an external field with

amplitude B¼ 18.5 mT. Point charges at each vertex were assigned by considering a positive value for an incoming spin and a negative value for an outgoing

spin, relative to the centre of the vertex. The schematics on the side of the colour bar illustrate the total sum of the charges q¼0; ±2; ±4 for the square

ice and q¼±1; ±3 for the honeycomb ice.
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as a domain wall separating two GS regions with unmatched
chirality, defective vertices are more difficult to erase because they
require an entire region to flip to escape this metastable state. As a
result, the domain wall remains practically frozen in place. The
presence of large GS regions separated by domain walls emerges
as a natural low-energy metastable state in ferromagnetic spin
ice19, even after a subsequent thermally induced annealing
process30, given the elusive nature of the true long-range
ordered GS.

The stability of domain walls between regions of different
chirality suggests that one possible mechanism of information
storage in the square system can be achieved by arranging
the particles in the vertices in such a way as to maximize the
number of spin flips required to reach the GS. For example, the
triangular pattern of achiral cells shown in Fig. 4a is formed by
flipping three of the four spins in a cell. The defects disappear by
applying a field of 25 mT, which causes the three particles to
shift consecutively, in a manner similar to that presented in
Fig. 3b. In contrast, if we set a counterclockwise chiral cell in
place of a clockwise chiral cell, surrounded by four achiral cells,
fixing the defects requires a simultaneous four-spin reversal
because each individual switch leads to a higher energy state.
This simultaneous flipping is an energetically higher erasure
process, as shown in Fig. 3c. Beyond 25 mT, the pair interactions
can become stronger than the lateral confinement, and the
colloids have been observed to escape from their gravitational
trap in such a way that they rearrange into a triangular lattice.
For this reason, we use numerical simulation to determine
the threshold field Bc necessary to reset the GS, (details in the
Methods). We confirm that the GS is reached by inverting the
chirality of the central cell at a field of Bc¼ 30 mT. Cell writing
with defined chirality can be used to store digital information in
the form of 8 bit ASCII characters. Once written with optical
tweezers, the chiral domains are stable below Bc. In addition,
any low-energy defect, such as those shown in Fig. 4a, easily
disappears. More examples of stable and unstable achiral cells
are shown in Supplementary Figs 1 and 2, and commented in
Supplementary Note 1.

In conclusion, we have engineered artificial colloidal spin ice
states in which an external magnetic field fully controls the spin

interactions and the collective dynamics leading to the degenerate
GS of the system. Unlike the original proposition of a completely
optical system28, our bistable gravitational traps are sculptured in
soft-lithographic platforms, can be arranged into periodic lattices
and can be designed with diverse geometries and lattice constants.
Our geometrically frustrated soft matter system provides a robust
approach for probing the effect of disorder by manually
introducing defects into the lattice pattern. Disorder in the
system can be also created by either leaving traps empty or, as
recently proposed31, by creating sites of double occupation
which correspond to pairs of outward pointing spins, not possible
with the nanoscale spin ice system. Finally, the strategy presented
here can offer guidelines for designing similar experiments on
nanoscopic systems or probing the stability of spin arrangements
to record information in magnetic data storage devices32.

Methods
Fabrication of the soft-lithographic platform. The pattern was written via direct
write laser lithography (DWL 66, Heidelberg Instruments Mikrotechnik GmbH)
on a 5-inch Cr mask with a l¼ 405 nm diode laser at a 5.7 mm2 min� 1 writing
speed. As shown in Supplementary Figs 3 and 4, the small hill in the centre of each
trap was obtained by drawing a small constriction in the middle of the elliptical
well. These structures were exposed on a B100-mm-thick coverglass by a 2.8-mm-
thick layer of a positive photoresist AZ-1512HS (Microchem, Newton, MA)
deposited by spin coating (Spinner Ws-650Sz, Laurell) performed at 1,000 r.p.m.
for 30 s. After the deposition, the photoresist was irradiated for 3.5 s with ultraviolet
light at a power of 21 mW cm� 2 (UV-NIL, SUSS Microtech). Later the exposed
regions were eliminated by submerging the plate in AZ726MF developer solution
for 7 s. Some representative images of the resulting structures are shown in the
Supplementary Figs 3–5. The substrate was finally covered with a thin layer of
polysodium 4-styrene sulfonate by using the layer-by-layer adsorption technique.
More details are given in the Supplementary Note 2.

Magneto-optical set-up and experiments. The experimental set-up allows
applying simultaneously and independently magnetic and optical forces. It is
composed by an inverted homemade optical microscope equipped with a white
light illumination LED (MCWHL5 from Thorlabs), a charge-coupled device
(Basler A311f) and custom-made coil perpendicular to the sample cell such that the
main axis points along the z-direction. The coil was connected to a programmable
power supply (KEPCO BOP-20 10M), which is remotely controlled along with the
image acquisition and recording with a custom-made LabVIEW programme. The
photoresist is sensitive to ultraviolet light, so the white light of the LED is filtered
with a long pass filter with a cutoff at 500 nm (FEL0500 Thorlabs). Optical tweezers
are realized by tightly focusing a l¼ 975 nm, P¼ 330 mW, Butterfly Laser Diode
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Figure 3 | Defect annihilation and dynamics. (a) Microscope image showing a square ice state prepared with a pair of q¼±2 charged defects separated

by two parallel strings composed of seven achiral cells (green crosses). The string is introduced in a ground state region with cells that possess defined

clockwise (orange arrows) or counterclockwise (yellow arrows) chirality. (b) Upon application of an external field (B¼ 18.5 mT), the defect pair rapidly

annihilates via a sequence of particle flips, restoring the ground state after 18 s (c). (d) Square ice state in which a single grain boundary of achiral cells

separates two incompatible ground state regions. Scale bars, 20mm for all images. In e, the time evolution of the defect line when subjected to the same

field condition as in b shows no change because ground state recovery requires the high-energy cost of flipping all the spins in one of the two regions. (f)

Stepwise defect reduction as the field is applied, reflecting the consecutive spin flipping process that leads to the ground state in b.
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(Thorlabs) with a 100� Achromatic microscope objective (Nikon, numerical
aperture¼ 1.2) which is also used for observation purpose. During the
experiments, a solution is prepared with 3.5 ml of polystyrene paramagnetic
particles (PS-MAG-S2874Microparticles GmbH) with 10 ml of high-deionized
water (MilliQ system, Millipore). A drop is placed on the soft lithography
structures and after few minutes, the particles sediment due to density mismatch
until they are suspended above the substrate due to the electrostatic repulsive
interactions with the negative charged surface. We use the optical tweezers to fill all
the bistable traps with exactly one particle, removing excess or aggregated colloids.
After the initial setting, the particles are allowed equilibrate in their wells for
B2 min before applying the external field. We place a total of 84 particles in the
square lattice and 64 in the honeycomb lattice in an experimental field of view of
325� 222 mm2. The effect of the boundary on the experimental system is discussed
in Supplementary Note 3 and shown in Supplementary Fig. 6.

Brownian dynamics simulation. We perform two-dimensional Brownian
dynamics with periodic boundary conditions containing N particles arranged into
an ensemble of double-well traps. A particle i at position~ri � xi; yið Þ obeys the set
of overdamped equations:

Z _x ¼~Ftot � êx þ xx tð Þ
Z _y ¼~Ftot � êy þ xy tð Þ

�
ð1Þ

where Z is the viscous friction and ~Ftot is the sum of external forces acting on the
particle, composed by three terms~Fext ¼~Fg þ~FN þ~FM. Here~Fg is the gravitational
force, ~FN the normal force exerted by double-well confinement and ~FM the
magnetic interaction between particles. The gravitational force is given by

~Fg ¼ gVDr, where g is the gravitational acceleration, V is the volume of the
particles and Dr is the density mismatch. We assume the following shape for
the double-well potential,

z d~rð Þ ¼ h
2
d

� �4

d~r � êk
� �2 � d

2

� �2
 !2

þ k d~r:ê?ð Þ2 ð2Þ

where d~r the displacement vector from the centre of the trap, d the distance
between the two stable positions, h the height of the central hill and k is the
transverse width of the trap. The two unit vectors êk and ê? define the orientation
of the trap; êk is the vector that joins the two stable positions and ê? is the
transverse axis. The corresponding trap is shown in Supplementary Fig. 7a.
Assuming the walls have a small inclination angle, the normal force can be
calculated as ~FN ¼ ~Fg

�� ��rt z; which gives:

~FN¼ ~Fg

�� �� h
d
2

� �4

4dr3
k � drkd

2
� 	

êk þ 2kdr? ê?

" #
ð3Þ

where drk ¼ d~r � êk and dr? ¼ d~r � ê?: The magnetic interaction is calculated

assuming every particle has a magnetic moment ~m ¼
~Bj jwV
m0

ẑ. Here ~B
�� �� is the

amplitude of the magnetic field, w is the magnetic volume susceptibility, m0 is the
permeability of the medium and V is the particle volume. The total magnetic force
exerted on one particle is then given by: ~FMi¼

P
j

3m0

2p rijj j4 ~mj j
2~rij where~rij is the

vector that goes from particle i to particle j. Finally x(t) in Equation (1)
is a Gaussian white noise with zero mean, and a correlation function:
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Figure 4 | Defect stability and binary writing procedure. (a,b) Microscope images showing the evolution with time of three (a) and four (b) achiral cells

in a square lattice when subjected to a static field of B¼ 25 mT. Flipping three spins is necessary in a to reach the ground state, while in b the defect

arrangement requires the inversion of the chirality of the central cell, which is energetically more expensive. (c) Reduction of defects versus applied field

obtained from numerical simulation. At a field of B¼ 30 mT, (d) the simulation shows that it is possible to drive the system to its ground state by the

simultaneous flipping of all four particles, inverting the cell’s chirality. Inset shows an enlargement of the central cell. (e) Example showing the word ‘UB’

written in a square ice using the binary ASCII representation (8 bit). (f) Schematic showing how it is assigned a value of 0 (1) to a clockwise

(counterclockwise) chiral cell. Bits in e are read from left to right and from top to bottom. Scale bars, 20mm for all images.
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hx(t)x(t0)i¼ 2ZkBTd(t� t0). We numerically integrate Equation (1) using a finite
time step of 0.01 s and substituting experimental parameters for most quantities.
However, the height of the central hill h connecting the two circular traps in the
double wells is modified to match the experimental data. Small discrepancies can
arise in the hill elevations in photolithographic platforms realized during different
fabrication process. First, to validate our theoretical model, we perform initial
simulation to match the displacement observed between isolated pair of particles
placed within two double well-oriented in a square and honeycomb lattice. The
good comparison between experimental data (scattered points) and simulation
results (continuous lines) is shown in Supplementary Fig. 7b. The step-like beha-
viour of the pair distance observed for the blue and green curves is due to the
barrier overcoming of one particle. This process is energetically more expensive for
isolated particles, reflecting that in the colloidal spin ice system the particle
arrangement is a true collective effect rather than resulting from local energy
minimization.
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