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Intraoperative neuromonitoring (IONM) has been used to help monitor the integrity of the nervous system during spine surgery.
Transcranial motor-evoked potential (TcMEP) has been used lately for lower lumbar surgery to prevent nerve root injuries and
also to predict positive functional outcomes of patients. .ere were a number of studies that proved that the TcMEP signal’s
improvement is significant towards positive functional outcomes of patients. In this paper, we explored the possibilities of using a
machine learning approach to TcMEP signal to predict positive functional outcomes of patients. With 55 patients who underwent
various types of lumbar surgeries, the data were divided into 70 : 30 and 80 : 20 ratios for training and testing of the machine
learning models. .e highest sensitivity and specificity were achieved by Fine KNN of 80 : 20 ratio with 87.5% and 33.33%,
respectively. In the meantime, we also tested the existing improvement criteria presented in the literature, and 50% of TcMEP
improvement criteria achieved 83.33% sensitivity and 75% specificity. But the rigidness of this thresholdmethod proved unreliable
in this study when different datasets were used as the sensitivity and specificity dropped. .e proposed method by using machine
learning has more room to advance with a larger dataset and various signals’ features to choose from.

1. Introduction

Disc herniation and prolapsed disc that compresses the
nerve roots in the lumbar region can cause sensory and
motor disturbances, which contribute to low back pain, leg
pain, and weakened leg’s motor strength [1]. Decompression
surgery or discectomy is a treatment surgery of removing the
bulging disc from compressing the nerve roots.

.e use of intraoperative neuromonitoring (IONM) in
the lumbar discectomy procedure helps to monitor the

integrity of the nervous system from further injury. IONM
modalities such as somatosensory-evoked potential (SSEP),
motor-evoked potential (MEP), and electromyogram
(EMG) are commonly used in lumbar surgery. However,
SSEP has limited function since it only monitors specific
nerve roots that are innervated from the S1 level when the
posterior tibial nerve is stimulated [2]. It is also less sensitive
to the changes of nerve root function because the signal is the
result of a summation of neural signal from multiple seg-
ments before it enters the spinal cord [3]. EMG can show
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continuous nerve root events since it is free running, but it
has a high false positive rate and low specificity in deter-
mining events that are significant for the surgeon to alert on
[4]. MEP or transcranial motor-evoked potential (TcMEP)
has high sensitivity and specificity towards nerve root injury,
but it relies on the alarm criteria used and which myotome is
monitored [5].

Besides showing potential nerve injury during surgery,
several studies which were reviewed by [6] presented in
Table 1 had shown that improvement to the TcMEP signal is
significant towards positive functional outcomes of patients.
Most of the researches utilized amplitude increment as the
improvement indicator. However, they have no common
agreement on what is the increment percentage that is
considered significant to show actual improvement in the
postsurgery patient outcome. .is paper aims to use ma-
chine learning algorithm to classify TcMEP signals into no
improvement and improvement.

2. Related Works

2.1. Literature Reviews on Automated IONM, Objective In-
terpretation on IONM, andMachine LearningApplications on
IONM. Currently, automated feature in commercial IONM
machines only exists for triggered EMG (trigEMG) mo-
dality. It is done by attaching/clipping a stimulating device
with a conductive surgical instrument. While the conductive
surgical instrument is advanced deeper inside the spine
body, increasing continuous stimulus is applied automati-
cally to detect any nearby nerve structure so that nerve injury
can be avoided [16]. .e technique is straightforward, such
that if the nerve is nearby the instrument, less stimulus is
required to trigger the nerve. If a higher stimulus is required
to trigger the nerve, it means that the nerve is further away
from the instrument and safe to operate. It uses a basic
principle by setting a threshold level and does not require an
algorithm to interpret the signal. However, this technique in
Malaysia is often neglected because of the high additional
cost incurred by the IONM service. Moreover, this modality
does not serve as a prognostic tool to determine the neu-
rological condition of the patient.

.ere were several researches that used IONM to predict
patients’ functionality outcome by using an automatic al-
gorithm. .e first research was done by [17] to apply a deep
learning algorithm on visual evoked potential (VEP) mo-
dality in order to detect changes to the VEP signal during
sellar region tumours surgery. Another research was done
for automatic SSEP interpretation by [18] to be used in
cardiac surgery for peripheral nerve injury prevention. .e
application of deep learning and automatic interpretation of
VEP signal and SSEP signal is supported by the fact that
there is a universal acceptable criterion of normal and ab-
normal VEP and SSEP signal patterns tomake the prediction
possible. As far as our knowledge is concerned, no TcMEP
signal has been applied for automatic patients’ functionality
outcomes categorization.

.e interpretation of TcMEP is more difficult even by the
IONM team because of high variability trial-to-trial, an-
aesthetic effect, and high sensitivity [19]. Interpretation of

TcMEP signal drop or usually known as alarm criteria is
based on the complexity of the surgical procedure [20].
Furthermore, if changes are observed on TcMEP signals by
the monitoring personnel, he or she has to go through a
checklist of troubleshooting before the final interpretation is
made to minimize the possibility of false positive or false
negative events [21, 22]. Among the checklist that needs to
be clarified before the surgical reversal is initiated are
technical aspects (electrodes and machine connections and
stimulation parameters) and anaesthesia/systemic (patient’s
mean arterial pressure (MAP), blood pressure, body tem-
perature, and anaesthesia used).

2.2. Literature Review on the Applicability of TcMEP as
Prognostic Tool to Justify Positive Functional Outcome of
Surgery. In creating a meaningful prognostic application to
justify the outcome of the surgery, we first need to identify if
TcMEP has been used for that particular purpose in the
literature. Considerable efforts have been exerted to address
the ability of TcMEP to predict the risk of injuries to the
nervous system, but only a few have focused on proving the
ability of TcMEP to predict positive functional outcome of
the patients intraoperatively. Studies that showed TcMEP as
a prognostic tool to correlate the TcMEP improvement with
the improvement after surgery were reviewed by [6] and are
presented in Table 1.

A previous study by Barley et al. [7] utilized TcMEP on a
15-year-old boy who presented with upper and lower limbs
motor weakness during a tethered spinal cord release pro-
cedure. Only the right abductor pollicis brevis (APB) of the
upper limb was obtained, and no other responses were
observed. Postdetethering revealed that left APB response
appeared and increment of right APB amplitude, but only
left upper extremity had notified improvement after surgery.
Another research had proven that patients with improved
TcMEP signal had better American Spinal Injury Associa-
tion Impairment Scale (AIS) [13]. He et al. [15] presented a
case report of a patient that had percutaneous endoscopic
lumbar discectomy with TcMEP monitored and discovered
that the TcMEP amplitude increment after the decom-
pression was associated with low back and leg pain relief
immediately after the patient was awake. Another study used
IONM on 12375 patients who had spinal surgeries over 25
years with 386 patients exhibiting IONM signals improve-
ment [10]. However, there were several IONM modalities
(including TcMEP) that they monitored without specifying
the improvement indicator. One patient had a permanent
neurological deficit despite having IONM signal improve-
ment, but this is statistically significant with the 14 true
negative cases. Meanwhile, Wang et al. [12] had found that
improvement of TcMEP signals (specifically amplitude
rather than latency) in 59 patients who went through cervical
laminoplasty or laminectomy was highly correlated with a
modified Japanese Orthopaedic Association scale or mJOA
improvement rate. Even though these studies had proven
that the improvement on TcMEP had a high correlation with
functional patient outcome, these five studies did not
mention any specific improvement criteria from the IONM
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Table 1: .e summary of studies that indicated that TcMEP can be used as a prognostic tool [6].

Number Reference Number of
samples

IONM
modalities

used

Stimulation
parameters

Muscles used to
monitor MEP

Improvement
criteria Results

1 Barley
et al. [7]

One (15-month-
old boy)

TcMEP and
SSEP

C1-C2 scalp
electrode

positioning,
current

stimulation
(145mA to

187mA for the left
extremities and

175mA to 200mA
for the right
extremities)

Bilateral
quadriceps femoris,
tibialis anterior,
gastrocnemius,

sphincter, abductor
pollicis brevis, and
abductor hallucis

Not mentioned

TcMEP response
of the left APB had
an increment in
amplitude. .e
patient had

observable left
upper extremity
improvement

2 Voulgaris
et al. [8]

25 (2 had no
IONM results)

TcMEP and
EMG

C1-C2 with
multipulse
current

stimulation, 0mA
to 200mA,

stimulus duration
0.2ms to 0.5ms

Not mentioned
>50% MEP
amplitude

improvement

17 patients with
>50%

improvement had
better VAS score
improvement

3 Rodrigues
et al. [9]

One
(case report)

SSEP, MEP,
and free

running EMG

C3-C4
stimulation

Not mentioned
muscles’ names
specifically but
monitoring

covered L3-S2
myotomes

Not mentioned

MEP improved as
much as 30%, and

patient had
returned to sports

4 Raynor
et al. [10]

386 patients had
IOM signals
improvement
out of 12375

patients who had
spinal surgeries
over 25 years

DNEP,
TcMEP,

spontaneous
EMG,

triggered
EMG, and
dermatomal

SSEP

C3-C4 TcMEP
scalp electrode
stimulation
montage

Upper extremity
TcMEP was

recorded from
deltoid, flexor/
extensor carpi
radialis, and/or
abductor digiti
minimi/abductor
pollicis brevis.
Lower extremity
TcMEP was

recorded from
anterior tibialis,

medial
gastrocnemius,
and/or extensor
hallucis longus

Not mentioned

.e results did not
mention
specifically
TcMEP

improvement, but
out of the

modalities used,
88.7% of patients
had IOM signals
improvement, but
one patient out of
this percentage
had permanent
neurological

deficit
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Table 1: Continued.

Number Reference Number of
samples

IONM
modalities

used

Stimulation
parameters

Muscles used to
monitor MEP

Improvement
criteria Results

5 Visser et al.
[11] 74 patients TcMEP

Cz-Fz with
monophasic

stimulation and
C3-C4 with
biphasic

stimulation

For the lower
limbs, the

quadriceps muscle
(L2-L4), the tibialis
anterior muscle
(L4-L5), the

hamstrings (L5-
S1), or the

gastrocnemius
muscle (S1–S2).
For cervical, the
bilateral trapezoid
muscle (C2–C4),

the biceps
(C5–C6), and
triceps muscle
(C7–C8) of the
arm; the extensor
muscles of the

forearm (C6–C7);
or the abductor
digitus V muscle

(C6–C8)

>200% of
amplitude
increment

.ere is a
correlation
between the
duration of

symptoms onset
and the MEP
improvement.

MEP
improvement can
be accurate if the
symptoms’ onset
duration is less
than half a year

6 Wang et al.
[12]

59 patients who
had cervical

myelopathy who
underwent

laminoplasty or
laminectomy

MEP and SSEP Not mentioned Not mentioned Not mentioned

Patients who had
MEP signals

improvement had
a significant

mJOA
improvement rate.
MEP amplitude
was found to be a
more accurate
parameter

compared to MEP
latency in

predicting surgery
outcome

7 Dhall et al.
[13] 32

EMG, MEP,
and SSEP (not
used for the

study)

100V–1000V
constant voltage
stimulation, C1-

C2 anodal
stimulation,

double train with
a total of 9 pulses,
50ms pulse width,

1.7ms
interstimulus, and

13.1ms ISI

Not mentioned

Comparison
with AIS grade
and BASIC
score of MRI

images

MEP outcome
(present) highly
correlated with
better AIS grade
and BASIC grade

8 Piasecki
et al. [2] 18

MEP and SSEP
(not used for
the study)

50V–150V C1-
C2 biphasic

stimulation, 5 to 7
train pulses,

500Hz, and 1ms
interstimulus

pulse

One upper limb
muscle (control),
bilateral tibialis
anterior/bilateral
abductor hallucis

>20% of AUC
MEP; > 50% of
ZCQ score

.e MEP
improvement was
related to the early

follow-up
functional
outcome
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signal that they used to indicate significance towards
postsurgery improvement.

Prospective research was done by Piasecki et al. [2] on
patients who went through lumbar decompression surgery
with TcMEP monitored. By using 20% of TcMEP area under
the curve (AUC) increment as improvement criteria, they
compared the findings with the Zurich Claudication Ques-
tionnaire (ZCQ) assessment of patients. It was found that the
patients with improved TcMEP’s AUC had higher ZCQ
scores. A study conducted by Rodrigues et al. [9] had TcMEP
monitored during a decompression surgery of a 22-year-old
male athlete who was having lumbar pain and weakness on
the right foot. .e patient had a 30% of TcMEP amplitude
increased after the discectomy procedure and was able to
return to competitive athletic activities a month after surgery.
Visser et al. [11] had used 200% of TcMEP amplitude in-
crement criteria as significant to show actual patients’ neu-
rological improvement..is threshold was suggested by them
to rule out any influence possibilities on the TcMEP gener-
ations. .ey found out that the MEP improvement should
also be associated with the symptom’s duration of less than 6
months for it to be significant. Another research that was
done by Voulgaris et al. [8] compared the TcMEP outcomes
with pain visual analogue scale (VAS) in patients who un-
derwent lumbar decompressive laminectomy. .e TcMEP
improvement criteria were set on a 50% increment mark, and
it was shown that the patients who had more than 50%
TcMEP-increased amplitude had better VAS score at 12-
month follow-up compared to the others who had lower
amplitude increment. Wi et al. [14] found out that patients
with more than 100% amplitude increment had better Motor
Index Scoring System (MISS). It was then concluded by Wi
et al. [14] that improvement of IONM signals could indicate
the success of decompression. However, among these five
studies, they have no common amplitude increment per-
centage that they used in their studies to indicate significance
(>50% in [8] and >200% in [11]).

.e proposed approach of this paper requires features
that are the signal characteristics or parameters that we need

to feed to the machine learning models. Hence, we will make
use of the TcMEP signal’s parameters that were already
established as presented in Table 1, which are the peak-to-
peak amplitude and the AUC values. We also added the
onset latency of the signal as one of the features selected for
the machine learning models..e onset latency has not been
used to predict the functional positive outcome. But it was
used in [23] as the alarm criteria to indicate significant
postoperative motor deficit. It was proven in the study that
the onset latency had high sensitivity and specificity (100%
and 84%, resp.) towards the detection of motor deficit
compared to the amplitude threshold criteria (using more
than 70% drop of amplitude as a significant indicator) at
100% sensitivity and 72% specificity. But when they com-
bined both criteria (amplitude and onset latency), the
sensitivity remained at 100%, and the specificity increased to
93%. Hence, in our study, we decided to include the onset
latency parameter to be experimented as one of the features
to run with the machine learning models.

In this paper, we are proposing a machine learning
approach to be applied to the TcMEP signal that could
identify patients that would have positive functional out-
come and patients that has no changes from presurgery to
postsurgery. We will also compare the efficacy of our results
with two of the presented approaches in Table 1 from [8, 11]
that utilized the TcMEP amplitudes threshold (>50% of
amplitude increment and >200% of amplitude increment,
resp.) as their improvement criteria since we are also using
the peak-to-peak amplitude as one of the features that we
used for the machine learning.

3. Methods

3.1. Data Source. .e TcMEP data are the selected 55 pa-
tients who underwent lumbar disc decompression surgeries
and patients who underwent instrumentation and correc-
tion surgeries from August 2021 until January 2022 at
Sunway Medical Centre, Malaysia. Among the 55 patients,
13 patients had presurgery motor weakness and developed

Table 1: Continued.

Number Reference Number of
samples

IONM
modalities

used

Stimulation
parameters

Muscles used to
monitor MEP

Improvement
criteria Results

9 Wi et al.
(2019) [14]

29 patients who
had

improvement in
IONM signals
out of 317 cases

MEP and SSEP Not mentioned

Upper extremity
TcMEP was

recorded from
deltoid, triceps, and
thenar muscles.
Lower extremity
TcMEP was

recorded from
anterior tibialis and
abductor halluces

Comparison
with MISS, SF-
36, JOA, NDI,
and Oswestry
Disability Index

.e patients with
MEP

improvement had
a better MISS

improvement rate,
while the patients

with SSEP
improvement only
had a better SF-36
improvement rate

10 He et al.
[15]

One (case
report)

MEP and free
running EMG Not mentioned

Bilateral iliopsoas,
rectus femoris,
tibialis anterior,
and medial

gastrocnemius

Not mentioned

MEP
improvement

aligned with the
patient’s relieved

symptoms
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positive motor improvement after surgery (named as group
MI for motor improvement), 34 patients had presurgery
symptoms such as numbness, back pain, and leg pain which
had improved after surgery (named as group PNR for pain
and numbness relief ), and eight patients had no symptoms
before surgery and after surgery (named as group NC for no
changes). .e actual outcomes of the postsurgeries were
recorded based on the attending surgeons’ evaluations. .e
eight patients who had no symptoms before surgery and
after surgery were patients who only had instrumentation
and correction surgeries.

All of the patients went through the surgery with the aid
of IONM consisting of SSEP, MEP, and EMG modalities as
requested by the surgeons. .e myotomes involved in all of
the surgeries were different depending on the spine levels
that were being operated on. Since all of the operations
involved spine lumbar L2 and below, the monitoring in-
cluded vastus lateralis (VL) muscle (innervated from L2 to
L4 nerve roots), tibialis anterior (TA) that innervated from
the L5 nerve root, and abductor hallucis (AH) that inner-
vated from S1 to S2 nerve root. Reference electrode was
placed on hand muscle abductor digiti minimi (ADM) or
abductor pollicis brevis (APB), whichever is easily accessible.
Only TcMEP data were chosen for this study. Since the
parameters used on the IONM and the approaches of the
IONM setup on the patients were not experimental, they
were all applied accordingly to the necessities of the surgeries
and the surgeons’ requests, and this study is not categorized
as a prospective study. .is study was approved by Sunway
Medical Research Council, and since it was only a retro-
spective study, no informed consent was obtained from the
patients.

3.2. Intraoperative TcMEP Monitoring. TcMEP monitoring
was applied using the NIM Eclipse E4 system (Medtronic,
Minneapolis, MN). .e TcMEP was stimulated by using
corkscrew electrodes placed at the C3 and C4 over the motor
cortex on the scalp according to the International 10–20
System scalp electrode placements. .e monitoring elec-
trodes were placed at different muscles bilaterally by using
dual subdermal needle electrodes.

.e stimulus intensity varied from 250V to 600V. Train
pulse stimulus of three to five pulses was applied to most of
the patients to overcome the response variability or in-
consistency. Sometimes, double train stimulation of five
pulses and three pulses was used if it was difficult to elicit
TcMEP response. Interstimulus interval was set to be either
at 5ms or 10ms, which was based on which produced the
better MEP response. Overall, the ideal TcMEP stimulation
would be to elicit a response of more than 20 µV of peak-to-
peak amplitude for each channel with minimal patient
movement.

Short-acting muscle relaxant was used in all of the pa-
tients during intubation, and the anaesthetic protocol was
maintained with total intravenous or TIVA for the rest of the
surgery. However, some of the anaesthetists applied inha-
lational agents such as desflurane and/or sevoflurane during
intubation which made the baseline reading establishment

difficult and affected the interpretation of IONM. One
anaesthetist had used midazolam on the patient.

Ideally, the baseline reading was obtained after the pa-
tient was intubated and before any incision was made, but
most of the time, the muscle relaxant used during intubation
lasted longer and required some time to completely wear off.
So, the baseline readings were at least obtained before the
spine area was fully exposed and operated on. .e TcMEP
was then stimulated from time to time to compare with the
baseline reading so that any deterioration could be detected
and reversed if needed.

3.3. Feature Selection and Machine Learning. .e features
that are used for the proposed approach in this paper were
the onset latency which is the start point of theMEP signal in
ms [23], the peak-to-peak amplitude in µV, and AUC.
Figure 1 shows the frame of an MEP signal from the start of
the response to the end of the response. Figure 2 shows the
definition of onset latency, peak latency, peak amplitude,
and peak-to-peak amplitude of an MEP signal. .ese values
were obtained straight from the NIM Eclipse E4 system. .e
AUC was obtained through NIM Eclipse E4 by selecting the
section of TcMEP response which is within the start point of
the signal until the end point of the signal as presented in
Figure 1.

We went through the recorded patients’ history in the
IONM machine to identify which of the patients had pre-
surgery neurological symptoms and which of the patients
had no presurgery neurological symptoms. .ese data were
obtained from preclinical evaluation made by the surgeons
on their patients and were recorded in NIM Eclipse E4
during the surgery for future references. .en, we further
investigated along the timeline of each patient’s comment
history to find at what time was the best TcMEP baseline
achieved and the final reading for analysis. .en, we
recorded three TcMEP features (peak-to-peak amplitude,
onset latency, and AUC) from these two times. .e readings
were obtained from one target muscle and three reference
muscles. .e target muscle is the muscle that indicates
weakness or pain. .e three reference muscles were sup-
posed to represent the asymptomatic myotome of the patient
and not involved in the surgical site such as the handmuscles
or the side of the limb that was not symptomatic.

.e relevance behind this was because it is the similar
approach used by the IONM technicians intraoperatively,
which is that any change (either drop or increase of amplitude
or latency delay) of a certain myotome, especially the target
myotome, is compared with reference readings from refer-
ence myotome. .is is based on the idea that there should be
no significant changes in the reference myotome during the
surgery, and any changes to the target myotome can be
interpreted as significant and require further attention.

.e final features that were used for the machine
learning were obtained from the percentage difference be-
tween features from the baseline reading against features
from the final reading. We also added the averaged values of
peak-to-peak amplitude, onset latency, and AUC from all of
the four muscles as another feature.

6 Computational Intelligence and Neuroscience



Consequently, the 55 patients were split into training
and testing at two different ratios, which were 70 : 30
(39 patients for training and 16 patients for testing) and 80 :
20 (44 patients for training and 11 patients for testing). Since
the data was quite small, we carefully selected the patients
from MI, PNR, and NC groups for them to have equal
numbers in both training and testing. .e baseline readings
of three MI patients and one NC patient were highly
influenced by anaesthesia. .e anaesthetist for these four
patients used midazolam during the intubation, which
highly suppressed the baseline reading. We included these
samples because firstly we need the NC sample because the
sample number of NC is limited and small. Secondly, if the
proposed approach is able to classify the different groups
despite the baseline readings being poor because of the
anaesthetic factor, this study could be beneficial for current
and future works since the chance of getting a false positive
result is high with these types of samples. .e two ratios
(70 : 30 and 80 : 20) were chosen as it is commonly accepted

as the training and testing ratio in machine learning
studies. Moreover, through our experimental procedures,
the results obtained from the ratios 70 : 30 and 80 : 20 are
worth presented and significant in this study compared to
the results obtained from the other ratio sizes.

Test run was done with different sets of features:

(i) Set A: all features included.
(ii) Set B: only target and three reference muscles peak-

to-peak amplitudes and onset latencies.
(iii) Set C: target and three reference muscles peak-to-

peak amplitudes, onset latencies, and AUCs.

We utilized the classification learner application in
MATLAB to run the samples for training. After the training
run was done with all of the models available in the clas-
sification learner application, we identified which of the
models had 100% accuracy. We then chose these models
with 100% of accuracy to run testing with the remaining
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samples. Specific models that were used and the results
achieved will be presented in Section 4.

We also utilized the improvement criteria presented by
[8, 11], which were more than 50% of peak-to-peak am-
plitude increment and more than 200% of peak-to-peak
amplitude increment, respectively, to compare the accuracy
of their proposed threshold against our proposed model..e
way we applied these criteria was by setting the rule as
follows:

(i) We used the target muscle for each patient. Target
muscle is the muscle that is claimed to be having
symptoms before surgery.

(ii) We obtained the percentage difference between the
amplitudes from the baseline reading and the final
reading of the target muscle’s TcMEP response.

(iii) For 50% rule, if the difference in amplitude is more
than 50%, then the result will be a true improve-
ment. Otherwise, the result will be no changes.

(iv) For 200% rule, if the difference in amplitude is more
than 200%, then the result will be a true im-
provement. Otherwise, the result will be no changes.

4. Results

.e results are shown in Table 2 for 70 : 30 ratio of training
and testing samples and Table 3 for 80 : 20 ratio of training
and testing samples. .e first two columns of both tables
showed the results of using the 50% amplitude increment
criteria and 200% amplitude increment criteria on the same
testing samples for comparison with the proposed method.
.e second column of each table represents Set A, the third
column of each table represents Set B, and the fourth column
of each table represents Set C as described in Section 3.3.
Only the machine learning models that achieved 100%
accuracy during the training session were selected for the
testing session, and these are presented in both tables.

.e machine learning models’ ability to detect the
positive outcome showed high sensitivity percentage. In
Table 2, Fine KNN and Weighted KNN achieved 100%
sensitivity in Sets A, B, and C. But they had no specificity,
which means they were unable to identify patients who have
no positive outcome. However, 50% amplitude increment
criteria showed high specificity percentage on the same test
samples used, which was 75% and had a high sensitivity of
83.33%.

Meanwhile, in Table 3, Fine KNN in Set B and Set C
achieved 100% and 87.5% sensitivities, respectively, with
33.33% specificity in both sets. .is indicates that the ad-
ditional feature, which was the AUC in the Fine KNNmodel,
dropped the sensitivity percentage. But when the 50%
amplitude increment criterion was applied to the dataset in
Table 3, the sensitivity and specificity dropped to 75% and
67%, respectively, compared to the result achieved by using
the dataset in Table 2.

On the other hand, the other machine learning models
that achieved 100% accuracy during the training session
(Weighted KNN, Ensemble Subspace KNN, and Ensemble

Bagged Trees) in Sets A, B, and C produced 0% specificity in
both Tables 2 and 3. Ensemble Subspace KNN in Table 2 had
8.33% false negative and 12.5% false negative in Table 3 when
AUC was added as one of the features compared to when
only peak-to-peak amplitude and onset latency were used. In
fact, in Table 3, when peak-to-peak amplitude, onset latency,
and AUC were used as features, Fine KNN, Ensemble
Bagged Trees, and Ensemble Subspace KNN exhibited a
12.5% false negative rate. .ere was no false negative rate at
both tables when Set B was used as the features.

.e 200% amplitude increment criteria had lower sen-
sitivity in both tables, which is 25% but had relatively higher
specificity (75% in 70 : 30 ratio and 67% in 80 : 20 ratio) than
the machine learning approach.

Overall, the proposed machine learning approach had
higher sensitivity and lower specificity compared to the
improvement criteria proposed by [8, 11]. We will look in-
depth on what are the possibilities that lead to these findings
in Section 5.

5. Discussion

In this paper, we proposed the utilization of machine
learning to analyse the characteristics of TcMEP signals in
order to group them objectively into TcMEP signals that
significantly show positive functional outcome or TcMEP
signals that do not indicate any positive functional outcome.
We also compared the performance of the proposed ap-
proach with the amplitude criteria presented in the litera-
ture, and we found that the proposed method could
potentially assist in the interpretation of TcMEP monitoring
during lower lumbar decompression surgeries.

Among the tested machine learning models, Fine KNN
with peak-to-peak amplitude and onset latency as the fea-
tures achieved high sensitivity (100%) on TcMEP response to
predict whether there will be a positive functional outcome
to the patient or not. Several limitations to the proposed
method are acknowledged. .e proposed method needs
input from the IONM technical personnel to select the best
baseline signal for comparison with the final signal. Some of
the surgeries finished in under two hours of time, for which
the baseline readings were still influenced bymuscle relaxant
and inhalational agents induced during intubation, causing
some false positive events to the analysis. After several
encounters of difficulty to achieve the best baseline in some
of the patients who had the same anaesthetist, the anaes-
thetist was enquired about his/her technique, and he/she
admitted that midazolam was used in all of his/her patients.
It is understood from the previous study made by [24] that
midazolam could also highly suppress the TcMEP response.
.ese patients were still included in this study for the sake of
testing whether the prediction can still be made even though
anaesthetic influence was involved.

With the small number of patients from the NC group,
the machine learning was unable to distinguish clearly be-
tween patients who were expected to have improvement and
patients who were expected to maintain their strength and
functionality. .is caused the low specificity in most of the
models even though Fine KNN in 80 : 20 ratio exhibited
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33.33% specificity. Additional numbers of data in the NC
group would help in increasing the prediction capability of
the proposed approach. Moreover, it can be observed that
the specificity of Fine KNN improved when more samples
were added to the training dataset (70 : 30 ratio compared
with the 80 : 20 ratio). But we did not go for 90 :10 ratio as
10% of samples for testing are too little and do not produce a
significant finding.

Another finding was when AUCwas added as the feature
(in Set A and Set C), the false negative rate increased for Fine
KNN, Ensemble Bagged Trees, and Ensemble Subspace
KNN. Even though the study made by [2] presented that
they used 20% AUC increment as the criteria of improve-
ment, AUC had no significance in increasing the accuracy of
the machine learning models in our study when it was added
to the models’ feature.

.e NC group introduced by this paper should not be
assumed as patients who develop postsurgery deficit. Al-
though the introduction of a group of patients who develop

postsurgery deficit would be another valuable information
that could lead to better patient management intra-
operatively, we have not come across enough data for
training and testing purposes (only two cases appeared
during the period of the data collection).

Surprisingly, the 50% amplitude increment criteria
achieved relatively high sensitivity and high specificity. It
proves that this criterion is still relevant in most cases if it is
added with additional input and interpretation from the
neuromonitoring technician or specialist. However, it was
observed with different sample sets (test samples in Table 2)
that the sensitivity and the specificity by using this criterion
dropped. Moreover, this threshold method could only be
applied onto one target muscle. If we look further into one
sample that this method predicted wrongly on one NC
sample, the target muscle was set as right tibialis while the
control muscle was set as the APB. .is sample is shown in
Figure 3. .e behaviour of this sample shows that the
baseline readings were influenced by muscle relaxants from
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Figure 3: TcMEP responses of an NC sample. (a) Control muscle APB. (b) Target muscle right tibialis. Series 1 in both figures are baseline
readings, and series 2 in both figures are final readings.

Computational Intelligence and Neuroscience 11



the intubation period since the final response of the APB
muscle (nonsurgical site) increased drastically compared to
the baseline response. By using this technique, the sample
can be mistakenly identified as improved.

Meanwhile, the 200% criterion had a low true positive
rate because the threshold was too high, and most of the MI
and PNR samples were unable to achieve this criterion.
Hence, we suggest that the threshold method is inflexible in
such a way that if the threshold is too high, the rate of true
positive will be lower, and if the threshold is too low, most
samples will be predicted as having improvement, thus
increasing the false positive rate.

We propose for future works that any prediction system
by using the TcMEP signal can incorporate with the input
from the comment history that records the events during the
surgery. .e system should be able to screen through the
comment history to look for certain keywords such as
“baseline,” “after decompression,” or “final TcMEP” so that
the system can locate the best TcMEP signal for the inter-
pretation process automatically.

6. Conclusion

IONM has been used widely to prevent or reduce the risk of
nerve injury in spine surgeries. Alarm criteria to predict
significant nerve injuries have been widely studied and
established. However, the study of the use of IONM to
predict improvement in patient’s symptoms can be im-
proved further. Predicting the positive outcome of the
decompressive surgery on the lower lumbar level intra-
operative via IONM will be valuable information for the
surgeon to make a decision on the depth of decompression
needed. If the decompression is not done enough, patient
might not get the intended result, but if the decompression is
done too deep and too long, the risk of nerve injury in-
creases, and it will prolong the duration of the surgery.

In this paper, we utilized machine learning models to
predict the outcome of the intraoperative TcMEP. .e best
machine learning model that achieved a high percentage of
sensitivity and specificity percentages was Fine KNN with
only peak-to-peak amplitude of the target muscle and three
reference muscles used as the feature parameters. .e Fine
KNN model performance was able to predict a positive
functional outcome from the TcMEP response with high
sensitivity but with low specificity. With the limitations on
the whole TcMEP modality itself, any drop or change to the
signal requires human technical involvement before the
actual interpretation is passed. .us, it is advised that the
proposed system can only act as an assistant to the moni-
toring personnel. On the other hand, we managed to show
that the 50% amplitude increment criterion is relevant as a
predictor of positive functional outcome.
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