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Abstract

The binding of peptide fragments of antigens to class II MHC proteins is a crucial step in initiating a helper T cell immune
response. The discovery of these peptide epitopes is important for understanding the normal immune response and its
misregulation in autoimmunity and allergies and also for vaccine design. In spite of their biomedical importance, the high
diversity of class II MHC proteins combined with the large number of possible peptide sequences make comprehensive
experimental determination of epitopes for all MHC allotypes infeasible. Computational methods can address this need by
predicting epitopes for a particular MHC allotype. We present a structure-based method for predicting class II epitopes that
combines molecular mechanics docking of a fully flexible peptide into the MHC binding cleft followed by binding affinity
prediction using a machine learning classifier trained on interaction energy components calculated from the docking
solution. Although the primary advantage of structure-based prediction methods over the commonly employed sequence-
based methods is their applicability to essentially any MHC allotype, this has not yet been convincingly demonstrated. In
order to test the transferability of the prediction method to different MHC proteins, we trained the scoring method on
binding data for DRB1*0101 and used it to make predictions for multiple MHC allotypes with distinct peptide binding
specificities including representatives from the other human class II MHC loci, HLA-DP and HLA-DQ, as well as for two
murine allotypes. The results showed that the prediction method was able to achieve significant discrimination between
epitope and non-epitope peptides for all MHC allotypes examined, based on AUC values in the range 0.632–0.821. We also
discuss how accounting for peptide binding in multiple registers to class II MHC largely explains the systematically worse
performance of prediction methods for class II MHC compared with those for class I MHC based on quantitative prediction
performance estimates for peptide binding to class II MHC in a fixed register.
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Introduction

The binding of peptide fragments of extracellular proteins to

class II MHC is a critical step in activating a helper T cell-

mediated immune response. The discovery of such peptide

epitopes has several important biomedical applications. For

example, peptide epitopes from pathogen antigens that bind to

multiple MHC allotypes present in a population are needed for

developing vaccines with broad protective immunity. Also, class

II MHC has a role in autoimmune diseases, as specific class II

MHC alleles have been found to be either positively or negatively

associated with many autoimmune diseases including type 1

diabetes [1,2,3], rheumatoid arthritis [4], multiple sclerosis [5,6],

celiac disease [7], and narcolepsy [8,9]. Peptide binding

specificities for risk-associated alleles could help identify new

causative autoantigens or help investigate mechanistic hypotheses

such as competitive capture by alternative binding registers

[10,11]. They can also help find possible mechanisms for the

protective effects of other alleles. In addition, such information

can guide the search for therapeutic inhibitors that block

autoantigen binding by the responsible MHC allotype. Finally,

class II epitopes show promise as an immunotherapy for the

treatment of allergies [12,13,14,15,16,17] so that information on

these epitopes could potentially be used to design effective allergy

therapies.

In spite of these promising potential applications, experimental

information on peptide-MHC binding specificities is limited in

coverage since class II MHC is highly polymorphic and the space

of peptide sequences is enormous. Computational methods can

assist by predicting peptide-MHC binding affinities that can later

be experimentally validated. Such prediction methods broadly fall

into two categories, sequence-based and structure-based, each

with complementary advantages and disadvantages. Sequence-

based methods are fast but require a large quantity of

experimental binding data for the MHC type of interest. Although

slower, structure-based methods are more general and can

potentially be applied to any class II MHC type, including

experimentally uncharacterized ones.

Sequence-based methods use patterns in peptide sequences with

known binding affinities to a particular MHC allotype in order to

predict binding affinities. Such methods have been developed for

peptide binding to class II MHC using a wide variety of fitting

techniques including partial least squares (PLS) [18,19], Gibbs

sampling [20], linear programming [21], Support Vector Ma-

chines (SVMs) [22,23,24], kernel methods [25], non-linear

optimization with a regularization penalty [26], or a combination
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of data fitting techniques [27]. A few methods can even make

predictions for closely related MHC types not used for training

[28,29,30], basically by interpolating between prediction models

for the few experimentally characterized MHC types based on

limited structural information about shared MHC residues or

pockets. However, no sequence-based method can make predic-

tions for an MHC allotype that is significantly different from

experimentally characterized MHC allotypes so that it does not

share most of its specificity-determining residues. A survey of the

available experimental peptide-MHC binding data from the

Immune Epitope Database (IEDB) [31] shows that only a minute

fraction of the hundreds to thousands of MHC allotypes for each

locus have sufficient experimental data to train a sequence-based

model. For example, considering human MHC, only about 14

HLA-DR allotypes, 5 HLA-DP allotypes, and 5 HLA-DQ

allotypes currently have sufficient experimental data. These data

permit the construction of multi-type sequence-based prediction

models that cover of the majority of known HLA-DR allotypes but

only a small fraction of HLA-DP and HLA-DQ allotypes [30].

Structure-based prediction methods, such as the one described

here, can address this shortcoming and potentially make

predictions for any MHC allotype based on the universal physical

principles of intermolecular interactions. Such methods can be

used to suggest novel peptide epitopes for under-characterized or

uncharacterized MHC allotypes for subsequent experimental

testing.

In contrast with sequence-based methods, comparatively little

work has been done to explore structure-based methods for

predicting peptide binding affinities to class II MHC. Davies et al.

2003 [32] built homology models of DRB1*0301, DRB1*0401,

and DRB1*1101 using a DRB1*0101 template structure and

docked peptides into these MHC models using simulated

annealing optimization with the AMBER force field in explicit

water. The resulting peptide-MHC interaction energy of the

complex was then used to discriminate binders from non-binders.

The study reported prediction accuracies comparable with the

contemporaneous SYFPEITHI and TEPITOPE sequence-based

methods, as evaluated for small test sets of 22–30 peptides.

Another study by Schafroth and Floudas [33] docked individual

amino acids into five binding pockets in DRB1*0101 and

compared the predicted qualitative binding preferences of each

pocket with experimental results. In a more recent study by Tong

et al. [34], the authors docked peptides into a DQA1*0301/

DQB1*0302 MHC structure from the Protein Data Bank (PDB)

using a four-step procedure. The docking procedure consisted of

rigid body docking of terminal core fragments, central loop

closure, constrained all-atom refinement of the core segment, and

extension of the core segment. Peptide binding affinities were

predicted using a linear combination of the hydrophobic, entropic,

and electrostatic components of the interaction free energy with

optimized weights. Finally, during the course of this work, a new

study by Zhang et al. [35] appeared, which describes a comparison

of three different structure-based prediction methods using a

common data set of peptides binding to DRB1*0101. The three

methods were (1) complex structure prediction using MODEL-

LER and scoring using a statistical residue pair potential, (2)

molecular dynamics simulation in explicit water of all possible

single residue mutants of a single peptide epitope binding the

MHC followed by derivation of a position specific scoring matrix

(PSSM) based on the average interaction energy with Poisson-

Boltzmann surface area (PBSA) implicit solvation over 100 MD

snapshots, and (3) a PSSM derived from the number of

intermolecular residue contacts in available X-ray structures of

peptide-DRB1*0101 complexes. The three methods yielded

comparable AUC values of 0.682, 0.667, and 0.621, respectively.

While the first two methods are potentially applicable to other

MHC allotypes, the latter method requires a sufficient number of

experimental peptide-MHC structures for the allotype of interest

in order to derive the PSSM and so is likely limited to DRB1*0101

at present. One novel aspect of our study, not addressed by these

previous studies, is a demonstration of the generality of the

prediction method by applying it to a wide variety of MHC

allotypes with distinct peptide binding specificities. This is

arguably the single most important advantage of structure-based

methods over sequence-based ones and so is crucial to test.

The binding of peptides to class I and class II MHCs differ in

several respects. Class I MHC binds short peptide fragments (,8–

11 residues), generally derived from intracellular proteins, whereas

class II MHC binds longer fragments (,15–25 residues) of

extracellular proteins. The reason for this difference is evident

from available X-ray structures of peptide-MHC complexes. The

class I MHC peptide binding cleft is closed at both ends and binds

the peptide partly through conserved hydrogen bonds to the

peptide backbone at the N- and C-termini. Thus the peptide

backbone assumes a conserved conformation at the termini and

bulges out from the cleft in the center. In contrast, the class II

MHC peptide-binding cleft is open at both ends so that the

peptide binds in an extended polyproline II conformation so that

both termini can extend beyond the cleft. The core 9-mer peptide

segment contacting the MHC assumes a common backbone

conformation due to conserved hydrogen bonds to backbone

atoms along its entire length. For both MHC classes, the

conserved hydrogen bond interactions of the MHC with the

peptide backbone contribute to high affinity binding for a large

number of different peptides while interactions with the peptide

side chains determine the characteristic binding specificity of each

MHC allotype.

In accordance with these differences, the prediction strategies

for class II MHC differ from those for class I MHC. Most

importantly, all possible binding registers of the peptide, defined

by the core 9-mer segment contacting the MHC, must be

considered in a class II MHC prediction method. Furthermore,

the experimental data only provides the overall peptide binding

affinity and not information on the predominant binding register.

Our method accounts for this ambiguity by docking all possible 9-

mer segments and predicting the peptide as a binder if any

segment is predicted to bind strongly, and otherwise as a non-

binder. A machine learning classifier is used to identify whether or

not each 9-mer segment is a binder based on interaction energy

components calculated from the docking solution. Because

experimental data on the binding registers is unavailable, the

classifier is trained on a balanced set of 9-mer binders and non-

binders predicted using a sequence-based prediction method [26].

Also, in order to reduce costly conformational sampling and obtain

a native-like peptide backbone conformation, the peptide

backbone is restrained to be near the native conformation during

the docking simulation.

We first tested and optimized the peptide-MHC docking

procedure by comprehensive self-docking and cross-docking

followed by comparison of the results with all available human

and murine peptide-MHC complex structures in the PDB. Next

we trained the machine learning classifier on binding data for

DRB1*0101 and made predictions for peptide binding to multiple

dissimilar MHC allotypes in order to test the transferability of the

prediction method. We also assessed the accuracy of the prediction

method on the separate task of predicting predominant peptide

binding registers and compared the results with known binding

registers inferred from available X-ray structures of peptide-MHC
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complexes. Based on a few simple assumptions, we derived rough

estimates of the prediction performance for peptides binding class

II MHC in a particular fixed register and found that the calculated

values were similar to that previously obtained for peptide binding

to class I MHC, in which only one binding mode is possible. This

provides an explanation for the previously noted overall lower

accuracy of prediction methods for peptide binding to class II

MHC compared to those for class I MHC. Finally, we discuss the

implications of the results for general prediction of peptide-MHC

binding affinities and possible future improvements.

Methods

Overview of the structure-based prediction procedure
The goal of the prediction procedure is to determine whether a

particular peptide is a binder (IC50 ,500 nM) or a non-binder

(IC50 $500 nM) for the MHC allotype of interest. This is

accomplished by three steps: (1) docking of all possible 9-mer core

segments from the peptide into the MHC protein to predict the

structures of the bound complexes, (2) machine-learning based

scoring to predict the 9-mer binding affinities based on the

structures from step (1), and (3) calculating the final binding score

as the maximum score over all 9-mer segments.

Peptide-MHC docking
The docking method is similar to that previously employed for

class I MHC [36], with the main difference being the use of

modified peptide backbone constraints. First, an all-atom flexible

model of the peptide with neutral N- and C-terminal groups was

docked into a grid potential representation of the MHC peptide-

binding cleft. The MHC structure from the highest resolution

peptide-MHC structure in the PDB was used (see Tables 1 and

2). Grid potentials have the advantage of being dramatically more

computationally efficient than all-atom sampling of MHC side

chains while allowing implicit flexibility through smoothed van der

Waals interactions that allow limited steric clashes. Furthermore,

an alignment of peptide-MHC complex structures for the MHC

allotype with the most structures, HLA-DRB1*0101, shown in

Figure 1, demonstrates that the MHC side chains contacting the

peptides undergo little conformational change upon binding

different peptides. While some conformational differences in the

MHC peptide-binding cleft must occur in order to accommodate

the binding of different peptides, this limited experimental

evidence suggests that these differences are relatively small.

Docking was performed using biased-probability Monte Carlo

global optimization [37] of a physical energy function using the

ICM program (Molsoft LLC). The energy function is a sum of the

intramolecular all-atom energy of the peptide calculated using the

ECEPP/3 force field [38,39,40], the interaction energy of the

peptide and the MHC calculated using grid potentials, and a

harmonic restraint potential on the peptide backbone. Five types

of grid potentials were used for the non-hydrogen atom van der

Waals (ECvw), hydrogen atom van der Waals (EHvw), hydrogen

bond (Ehb), electrostatics (Eel), and hydrophobic (Ehp) components

of the peptide-MHC interaction energy. These potentials were

precomputed on a rectilinear grid with 0.5 Å spacing containing

the peptide and peptide-binding domain of the MHC. Potential

values at arbitrary points were calculated using linear interpolation

of values at the nearest grid points. ECvw and EHvw were calculated

as the smoothed van der Waals (vdW) interaction energy, with a

cutoff value Emax
vw = 3 kcal/mol at zero separation, between

corresponding probe atoms at grid points and the MHC protein

[41]. The smooth vdW potential further reduces the extreme

sensitivity of the vdW energy to small conformational changes.

The hydrogen bond and hydrophobic energies were calculated as

described in Ref. [41] and the electrostatic energy was calculated

using a distance-dependent dielectric e= 4r. Weights multiplying

the grid potentials were optimized to yield the lowest average

RMSD from among the 5 lowest energy docking solutions

accumulated during each Monte Carlo run. All possible

combinations of weight values between 0.0 and 5.0 in 0.5

increments were tried. As expected, the optimal weights were

similar to those we previously obtained for peptide-class I MHC

docking using a different optimization protocol [36]. The

intramolecular peptide energy (Epeptide) was calculated with the

ECEPP/3 force field and included a truncated vdW potential with

Emax
vw = 7 kcal/mol, the distance-dependent dielectric electrostatic

term, hydrogen bond, torsional potentials, and a side chain

entropic term proportional to the fractional SASA [37]. Finally, a

harmonic restraint potential,

Erestraint~w
XN

i~1

Dri{r
template
i D

2
,

between corresponding peptide backbone atoms in the modeled

peptide and those in the template peptide-MHC complex

structure was used to limit the conformational sampling space,

and so speed up convergence, while insuring that the final docking

solution has a backbone conformation similar the conserved

conformation observed in X-ray structures. All peptide backbone

atoms between P-1 to P9 were included in the restraint potential

based on the extent of the conserved backbone structure observed

in X-ray structures. The restraint weight value w = 1.0 kcal/

(mol Å2) was found to yield the best cross-docking results and so

used in all subsequent docking simulations. The final energy

function used for docking was then

Etotal~ECvwzEHvwz0:5Ehbz5:0Eelz2:0EhpzEpeptidezErestraint:

The ICM Monte Carlo simulations were run for a total 56107

function calls using a temperature parameter of 700K. This

required an average simulation time of approximately 10 hours on

a 3 GHz Opteron processor.

All-atom structure optimization and interaction energy
evaluation

The lowest energy docking solutions were then subjected to all-

atom structure optimization using a more accurate physical energy

function and the interaction energy components of the final

structure used as input to the machine learning scoring method.

First the MHC protein was replaced by an all-atom model and the

docking solution structure refined by local optimization of an all-

atom energy function that included ECEPP/3 energy terms (vdW

smoothed with Emax
vw = 7 kcal/mol, hydrogen bond, and torsion

potentials), generalized Born solvation electrostatics with ECEPP/

3 atomic charges and ein = 4, a non-polar solvation term

proportional to the SASA with constant 0.012 kcal/(mol Å2), a

side chain entropy term (described above), and the same peptide

backbone restraint potential used for grid potential docking. The

goal of this procedure was not to improve the docked structure, as

local optimization led to only minor variations in the initial grid

potential docking solution, but rather to reduce steric clashes and

so yield accurate values for the interaction energy components

using a more detailed all-atom model of the MHC protein and a

more realistic implicit solvation model.
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Machine learning based scoring and binding affinity
prediction

The peptide binding affinities were predicted by first predicting

whether or not each 9-mer fragment binds; if at least one was

predicted to bind then the peptide was classified as a binder,

otherwise it was classified as a non-binder. A Random Forest

binary classifier [42] trained on interaction energy components

and 20 residue type counts was used to predict whether or not

each 9-mer fragment bound to the MHC allotype of interest. The

interaction energy components included van der Waals, hydrogen

bond, electrostatics, non-polar solvation, and entropy contribu-

tions calculated from the final refined docking solution as the

difference in these energy terms between the peptide-MHC

complex and the isolated peptide and MHC in their bound

conformations. In principle, the optimized conformation of the

isolated peptide could be used, however this did not improve the

binding affinity predictions (data not shown). Two empirical

residue potentials, the Betancourt-Thirumalai contact potential

[43] and DFIRE-SCM side chain centroid potential [44], were

also included in the input data. Both potentials were included since

their correlation was quite low (Pearson correlation coeffi-

cient = 0.45 for DRB1*0101 data) so that they provided largely

independent information. The DFIRE-SCM potential was refit

using the latest non-redundant structures from the culled PDB

data set [45] with 30% sequence identity, 2.0 Å resolution, and

0.25 R-factor cutoffs. The inclusion of residue type counts can be

Table 1. Peptide – human class II MHC docking results.

Peptide-MHC complex structure Docked peptide sequence
Backbone
RMSD (Å)

All-atom
RMSD (Å)

Core
backbone
RMSD (Å)

Core all-atom
RMSD (Å)

Contacting
peptide residue
numbers

DRB1*0101 (1KLU)

1KLU* ELIGTLNAAKVPAD 0.26 1.21 0.23 0.75 21–1,3,4,6–10

1AQD SDWRFLRGYHQY 0.86 2.34 0.86 2.58 0–5,7–10

2G9H PKYVKQNTLKLA 0.92 1.53 0.98 1.62 21–7,9,10

1KLG ELIGILNAAKVP 0.29 1.67 0.30 0.90 21–1,3,4,6–10

1SJE PEVIPMFSALSE 0.75 2.13 0.61 1.84 21–10

1T5W AAYSDQATPLLL 0.88 1.21 0.94 1.28 21–4,6–10

2FSE AGFKGEQGPKGE 0.86 2.17 0.81 1.91 1,2,4,7,10

DRB1*0301 (1A6A)

1A6A* SKMRMATPLLMQ 0.26 0.97 0.23 0.76 21–10

DRB1*0401 (1J8H)

1J8H* PKYVKQNTLKLA 0.39 0.56 0.28 0.51 21–10

DRB1*1501 (1BX2)

1BX2* PVVHFFKNIVTP 0.24 0.78 0.21 0.83 21–6,9,10

DRB3*0101 (2Q6W)

2Q6W* AWRSDEALPLG 0.20 0.62 0.21 0.63 0–9

DRB3*0301 (3C5J)

3C5J* QVIILNHPGQIS 0.32 1.56 0.22 1.16 21,1–6,8–10

DRB5*0101 (1FV1)

1FV1* HFFKNIVTPRTP 0.34 1.55 0.24 0.94 0–4,6

1H15 GVYHFVKKHVHE 0.32 0.49 0.29 0.50 0–4,6

DQA1*0501/DQB1*0201 (1S9V)

1S9V* LQPFPQPELPY 0.27 0.88 0.22 0.30 21–4,6,7,9

DQA1*0102/DQB1*0602 (1UVQ)

1UVQ* MNLPSTKVSWAA 0.26 0.44 0.26 0.26 21–4,6–10

DQA1*0301/DQB1*0302 (2NNA)

2NNA* SGEGSFQPSQEN 0.30 1.15 0.22 0.64 21,1,3–10

1JK8 LVEALYLVCGER 0.90 1.73 0.56 0.74 0–7,9,10

DPA1*0103/DPB1*0201 (3LQZ)

3LQZ* RKFHYLPFLPST 0.15 1.04 0.12 1.13 0–4,6,7,9,10

Self-docking median RMSDs 0.26 0.97 0.22 0.75

Cross-docking median RMSDs 0.86 1.70 0.71 1.45

Self-docking results are indicated by asterisks. The PDB ID for the MHC structure used in docking is shown in parentheses for each allotype. All-atom RMSDs were
calculated for all non-hydrogen atoms in the peptide residues that contact the MHC in the experimental structure. The core RMSDs include only peptide residues P1–P9
(underlined in the peptide sequence) whereas the other values include all simulated residues from P-1 to P10. The highest resolution MHC structure, in parentheses, was
used for each allotype. The RMSD values were calculated after aligning the MHC structures. Consecutive residue numbers in the last column are denoted by a numeric
range.
doi:10.1371/journal.pone.0014383.t001
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physically justified on the basis of a random coil model of the free

energy for the isolated peptide, in which each residue makes an

additive contribution based on its type. Finally, we note that,

unlike sequence-based models, no properties that depend on the

residue positions (P1–P9) are used. This would be expected to ruin

the transferability of the prediction model to multiple highly

dissimilar MHC types, which is the primary motivation for the

structure-based model.

As mentioned above, one challenge of peptide binding affinity

predictions for class II MHC is that only the binding affinities and

not the binding registers are generally known experimentally. This

was solved by training the Random Forest classifier on sequence-

based predictions for individual 9-mer fragments. Binary predic-

tions (binder/non-binder) were made using our RTA method [26]

for all 9-mers in the set of 1725 DRB1*0101 peptide sequences

using the same 500 nM IC50 cutoff as used for complete peptides.

In order to construct a balanced training data set, input data for all

9-mer fragment binders and an equal number of randomly

selected non-binders were included. A Random Forest with 2000

trees and 5 variables/tree was used since it yielded the best

prediction performance for DRB1*0101, as assessed on out-of-bag

training set data. Because the two Random Forest parameters

were selected using training set data alone, prediction results for

the test sets are expected to accurately estimate the prediction

performance for novel peptides and MHC allotypes. Because

Random Forest performance converges with an increasing

number of trees [42], the minimum number of trees required for

a reasonably converged result was chosen for computational

speed. Also, as previous observed [42], we found that the

prediction accuracy did not change much as the remaining model

parameter, the number of variables per tree, was varied.

Experimental peptide binding affinity data
Experimental peptide-MHC binding affinity data were used for

training the scoring method and evaluating the prediction

performance. Binding data for DRB1*0101, DQA1*0501/

DQB1*0201, H2-IAb, and H2-IAd were downloaded from the

Immune Epitope Database (IEDB) [31]. All quantitative data

obtained by either radioactivity or fluorescence competition

binding assays were included. The DPA1*0103/DPB1*0201

binding data were obtained from Ref. [46] and included known

epitopes as well as a set of overlapping peptides spanning Phleum

pratense antigens. Single residue mutation data, employed in the

SAAS analysis, was excluded due to its limited sequence diversity.

Finally, data for similar peptide sequences with .40% sequence

identity were removed using CD-HIT [47] in order to obtain non-

redundant data sets. Also any sequences in the DRB1*0101

training set with 100% identity to any sequence included in the

other test sets were removed. Even though the binding affinities of

a peptide to two such different MHC allotypes are expected to be

Table 2. Peptide – murine class II MHC docking results.

Peptide-MHC
complex
structure Docked peptide sequence

Backbone
RMSD (Å)

All-atom
RMSD (Å)

Core backbone
RMSD (Å)

Core all-atom
RMSD (Å)

Contacting peptide
residue numbers

H2-IAb (1MUJ)

1MUJ* PVSKMRMATPLLMQA 0.25 0.88 0.26 0.58 21–10

1LNU FEAQKAKANKAVD 0.70 1.83 0.74 1.96 21–10

H2-IAd (2IAD)

2IAD* see footnote

1IAO ISQAVHAAHAE 0.48 1.58 0.42 1.03 1–10

H2-IAg7 (1ES0)

1ES0* YEIAPVFVLLEY 0.20 2.44 0.21 0.29 21–10

1F3J MKRHGLDNYRGY 0.83 1.79 0.75 1.27 21–2,4–8,10

3CUP KKMREIIGWPGG 0.88 2.24 0.87 1.62 21–5,7,8

H2-IAk (1IAK)

1IAK* STDYGILQINSR 0.33 1.18 0.33 1.03 21–2,4–10

H2-IAu (1K2D)

1K2D* SRGGASQYRPSQ 0.17 0.73 0.17 0.60 0,3–10

H2-IEk (1FNG)

1FNG* KVITAFNEGLK 0.44 1.34 0.33 1.24 21–6,8,9

1FNE KVITAFNDGLK 0.51 1.29 0.45 1.20 0–4,6–9

1IEB RMVNHFIAEFK 0.83 1.67 0.83 1.70 0–4,6–9

1R5V DLIAYPKAATKF 0.91 2.27 0.77 0.99 21–7,9,10

1KT2 DLIAYLKQATK 0.72 1.38 0.65 1.17 21–4,6–9

1R5W DLIAYFKAATKF 1.43 2.42 0.93 1.20 21–7,9,10

1KTD DLIAYLKQASAK 1.50 3.06 0.61 1.14 21–10

Self-docking median RMSDs 0.25 1.18 0.26 0.60

Cross-docking median RMSDs 0.83 1.81 0.75 1.20

See the Table 1 caption for details. The correct peptide sequence for PDB entry 2IAD was unknown since it differs between the reference and the PDB file so docking of
this peptide was not performed.
doi:10.1371/journal.pone.0014383.t002
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uncorrelated, this was done to reduce any possible systematic bias

in amino acid composition between the training and test sets. The

total numbers of binding data in each set, corresponding to a

particular MHC allotype, are given in Table 3.

Estimating the prediction performance for individual
MHC-binding segments

The usual prediction performance for complete peptides

binding to class II MHC is assessed by directly comparing the

predictions with experimental binding affinity data. We assessed

prediction performance by calculating the area under the Receiver

Operating Characteristic curve (AUC) for predictions on separate

test set data. It is also informative to carry out a similar

performance analysis for the binding prediction of individual 9-

mer segments of the complete peptides since it is known that only

such short segments actually contact the MHC and so contribute

to the overall binding affinity. Because the experimental data only

provides binding affinities of complete peptides and not informa-

tion on which segments bind the MHC, the prediction

performance for segments must be estimated based on a particular

prediction model. Our model predicts that a peptide is a binder if

and only if at least one 9-mer segment is predicted as a binder by

the Random Forest classifier. In order to find the relation between

the prediction performance for the 9-mer segments and the

complete peptides an additional assumption about the number of

binding 9-mer segments in each binding peptide is required. We

examine two possibilities: (1) exactly one binding segment is always

present or (2) either one or two binding segments are present in

each binding peptide. Previous analyses using sequence-based

prediction models by us [26] and others [34] suggest that multiple

segments often contribute to the overall binding affinity however

case (1) is also a reasonable first approximation. Next, we derive

the AUC for segment predictions in these two cases. It should be

emphasized that because of the necessary approximations, the

segment AUC values should only be considered semi-quantitative

estimates. However, as will be seen below, the observation that

they are uniformly higher than the AUC values for complete

peptides is robust and results from combining multiple 9-mer

segment predictions to arrive at a binding prediction for each

peptide.

AUC estimate for predicting 9-mer segments assuming
exactly one binding segment

The AUC is the area under the Receiver Operating

Characteristic (ROC) curve. This curve plots the true positive

rate, tpr, versus the false positive rate, fpr, as the score cutoff is

varied. Our goal then is to express tprseg and fprseg for individual

9-mer segments in terms of tprpep and fprpep for complete peptides

at a common Random Forest score cutoff value. The AUC for 9-

mer segments can then be calculated from these values as the area

under the curve.

We first define the conditional probabilities that a peptide or

fragment is predicted to be a binder (Ppred) or non-binder (Npred),

given that it actually is a binder (Pexp) or non-binder (Nexp). The

fpr is then an estimate of p(Ppred|Nexp) and the tpr is an estimate of

p(Ppred|Pexp). Given that even a single predicted binding fragment

Table 3. Prediction performance for different MHC types using a Random Forest classifier trained on DRB1*0101 peptide binding
data.

AUC

MHC type
Number of
peptides

Number of unique 9-mer
segments Peptide Estimated Core 1 Estimated Core 1–2

DRB1*0101 1725 12858 0.707 0.876 0.854

DQA1*0501/DQB1*0201 236 1783 0.683 0.909 0.900

DPA1*0103/DPB1*0201 219 1602 0.821 0.939 0.925

H2-IAb 361 2572 0.671 0.875 0.858

H2-IAd 106 898 0.632 0.707 0.681

The estimated core AUC values assume either exactly one strongly binding 9-mer segment per binding peptide (‘‘Estimated Core 1’’) or either 1 or 2 strongly binding 9-
mer segments with a 70% and 30% probability of occurrence for each strongly binding peptide (‘‘Estimated Core 1–2’’).
doi:10.1371/journal.pone.0014383.t003

Figure 1. Similar HLA-DRB1*0101 peptide-contacting residue
conformations observed in X-ray structures. All HLA-DRB1*0101
peptide-MHC complexes were superimposed by aligning the back-
bones of the MHC peptide binding domains (chain A residues 1–82 and
chain B residues 1–92). MHC chains A and B are shown in red and blue
ribbon representation, respectively. The MHC residues contacting the
bound peptides, shown in stick representation, generally adopt similar
conformations despite contacting different peptides. Much of the small
side chain deviations are due to imperfect alignment of the MHC
backbone atoms. This observation motivates the use of a rigid potential
map representation of the MHC binding cleft in the docking procedure
for efficiency rather than computationally expensive sampling of the
contacting portion of the MHC.
doi:10.1371/journal.pone.0014383.g001
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in a non-binding peptide results in an incorrect prediction that the

peptide is a binder we have

fpr 1ð Þ
pep~p PpredDNexp

� �
pep

~1{p NpredDNexp

� �
pep

~1{p NpredDNexp

� �m

frag

~1{ 1{fprfrag

� �m
,

in which m is the number of 9-mer fragments per peptide. The

average peptide length in the data sets is �LL&15 so that

m~�LL{8~7. Likewise the peptide true positive rate is

tpr 1ð Þ
pep~p PpredDPexp

� �
pep

~1{p NpredDPexp

� �
pep

~1{p NpredDPexp

� �
frag

p NpredDNexp

� �m{1

frag

~1{ 1{tprfrag

� �
1{fprfrag

� �m{1
h i

Finally, solving for the fragment fpr and tpr gives

fprfrag~1{ 1{fpr 1ð Þ
pep

� �1
m

tprfrag~1{ 1{tpr 1ð Þ
pep

� �
1{fpr 1ð Þ

pep

� �1
m{1

:

These equations are then used to obtain fprfrag and tprfrag at each

cutoff value and so calculate the AUC for predicting individual 9-

mer fragments.

AUC estimate for predicting 9-mer segments assuming
up to two binding segments

A similar argument gives the tpr if exactly two binding segments

are present in binding peptides

tpr 2ð Þ
pep~1{ 1{tprfrag

� �2
1{fprfrag

� �m{2
h i

so that the total peptide tpr for either one or two binding segments

in a binder is

tprpep~f1
:tpr 1ð Þ

pepzf2
:tpr 2ð Þ

pep,

in which f1 and f2 are the fractions of binding peptides with exactly

one or two binding segments, respectively. We obtained a rough

estimate of these fractions by counting the number of binding 9-

mer fragments per binding peptide using the sequence-based RTA

model applied to HLA-DRB1*0101 data. This gave the values

f1&0:7 and f2&0:3, which were used in subsequent calculations.

The fpr is the same as in the previous case, i.e. fpr
1ð Þ

pep~fpr
2ð Þ

pep. The

quadratic relation between {fprpep, tprpep} and {fprfrag, tprfrag}

may then be solved to obtain expressions for the latter quantities in

term of the former ones. As in the previous case, these relations are

then used to calculate the AUC for predicting individual 9-mer

fragments.

Results

Peptide-MHC docking accuracy
The accuracy of the peptide-MHC docking procedure was

determined by docking peptides from all peptide-MHC complex

structures in the PDB into the representative bound MHC

structure from the highest resolution complex starting with the

peptide in a fully extended conformation. In other words, no a

priori information on the peptide conformation beyond the

backbone restraints described above was used for docking. The

resulting RMSDs of the backbone and all contacting residue atoms

are shown in Table 1 for human MHCs and Table 2 for murine

MHCs. The cross-docking results, in which a peptide is docked

into an MHC structure with a different peptide bound, best reflect

the expected accuracy for docking novel peptides. Self-docking, or

redocking, is considerably easier since the MHC residues in the

peptide-binding cleft are already in the exact bound conformation

and so it does not account for any structural rearrangements of the

MHC peptide-binding cleft. In addition to prediction results for

the full-length peptide, results are also given for the 9-mer core

segment since they are most relevant to the binding affinity

prediction method in which all 9-mer segments are docked.

Figure 2 shows an example of a successful cross-docking solution

Figure 2. Example of a successful peptide-MHC cross-docking solution. This structure was obtained by docking the peptide from PDB entry
1T5W (AAYSDQATPLLL) into a grid potential model of the HLA-DRB1*0101 MHC structure from PDB entry 1KLU, which has a different peptide bound.
The RMSD of the peptide backbone is 0.88 Å and the RMSD of the contacting residues is only 1.21 Å compared with the X-ray structure. The peptide
docking solution is shown in red and the experimental peptide structure is shown in green.
doi:10.1371/journal.pone.0014383.g002
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in which the RMSD of peptide residues contacting the MHC is

only 1.21 Å despite the fact that the original MHC structure had a

different peptide bound.

It is apparent from Tables 1 and 2 that almost all peptide side

chains contact the MHC protein (non-hydrogen atom separation

#4 Å) and so determine binding specificity to varying degrees. In

fact, each peptide residue between P-1 and P10 contacts the MHC in

multiple structures. This implies that prediction methods which only

account for peptide residues that bind into canonical MHC pockets,

e.g. peptide residues P1, P4, P6, and P9 for HLA-DRB1*0101, may

be missing some peptide-MHC interactions that contribute to

binding. The method described here only includes core residues P1–

P9. This was done because variations in the peptide backbone of

flanking residues makes their prediction more difficult, as reflected in

the generally higher RMSDs for the longer segments from P-1 to

P10 compared with the 9-mer core segments shown in Tables 1
and 2. Because most peptides have side chain contacts to the MHC

outside of the 9-mer core, a promising area of future study is to

attempt to improve the docking accuracy for full length peptides and

so possibly improve the binding affinity prediction accuracy.

We examined in detail the solution from docking the 1AQD

peptide into the 1KLU MHC structure since it stands out with

significantly higher RMSD than any of the other docking

solutions. The high RMSD was predominantly due to two

misplaced arginine residues at P2 (RMSD = 4.1 Å) and P5

(RMSD = 3.5 Å) whose side chains have only minimal interactions

with the MHC in the native structure, with one hydrogen bond

each between the guanidinium group and the MHC backbone,

making it difficult to predict their conformations correctly.

Likewise, the errors in the other docking solutions with high core

RMSDs, namely the 1LNU-1MUJ, 2FSE-1KLU, and 1SJE-

1KLU peptide-MHC complexes, are mainly due to misplaced

large residues at non-pocket positions with minimal MHC

interactions in the native structure: lysine at P8 (3.4 Å), lysine at

P2 (3.3 Å), and phenylalanine at P5 (3.9 Å), respectively. Such

residues at positions outside of the usual pockets are able to make

energetically favorable contacts because of their large size.

Presumably such peptide residues with few intermolecular

interactions contribute relative little to the overall peptide-MHC

binding affinity so that such docking errors do not dramatically

reduce binding affinity prediction performance.

Peptide-MHC binding affinity predictions
For all allotypes except DRB1*0101, predictions were made for

all peptides in the respective data sets using the Random Forest

classifier trained on DRB1*0101 binding data. Because it was used

for training, the prediction performance for DRB1*0101 was

assessed by 10-fold cross-validation. The prediction performance

results, as measured by the AUC values, for three human allotypes

(DRB1*0101, DQA1*0501/DQB1*0201, and DPA1*0103/

DPB1*0201) and two murine allotypes (H2-IAb and H2-IAd) are

shown in Table 3. The corresponding ROC curves for the

relevant low false positive rate range, 0# fpr #0.2, is shown in

Figure 3. The particular allotypes used for testing were chosen for

two reasons: (1) adequate peptide binding data was available for

evaluating the prediction results and (2) they have very different

peptide binding specificities so that the results reflect the generality

of the prediction method for multiple MHC allotypes. As

expected, the prediction performance for DRB1*0101 was quite

high since data for this allotype were used for training. Although

those particular results do not measure the method’s generality,

the results are encouraging since the cross-validation procedure

insured separate training and test data sets. Interestingly, an even

higher accuracy was achieved for DPA1*0103/DPB1*0201,

demonstrating the excellent transferability to a distinct HLA-DP

locus. The high accuracy for this allotype may be related to our

observations that both the RTA (data not shown) and MultiRTA

[30] sequence-based prediction methods yielded generally higher

accuracy for HLA-DP allotypes compared with HLA-DR

allotypes. However, we find no obvious explanation for the higher

HLA-DP prediction accuracy.

Relative contributions of input variables
Although the Random Forest classifier is not readily interpret-

able as is, for example, a linear model, the relative importance of

each input variable to the overall prediction accuracy can be

estimated. This is accomplished by calculating the reduction in the

prediction accuracy for so-called out-of-bag data, not included in

the bootstrap training sample, upon permuting the values for the

variable of interest [42]. The results of this analysis using the

balanced DRB1*0101 data set are shown in Figure 4. This shows

that the empirical and physical interaction energy components

make larger contributions than any of the residue type counts.

This is reasonable on physical grounds since the free energies of

the isolated peptides are partially accounted for by the interaction

energy components in addition to the residue type counts. The

analysis also shows that the van der Waals interactions, which

favor close packing between the peptide and MHC protein, is the

most important energy component. The high importance of the

empirical potentials, which are dominated by hydrophobic van der

Waals interactions, also supports this interpretation.

We also fit a type of generalized linear model, a logistic

regression classifier, to the DRB1*0101 training data using only

the five physical energy components. This was done to obtain an

easily interpretable prediction model in order to examine it in

terms of physical interactions. The optimal weights are shown in

Table 4. One important result is that all weights have the same

correct sign so that favorable interactions for each energy

component contribute to an overall favorable peptide-MHC

binding affinity. Furthermore, all weights were shown to be

statistically significant (at a 5% level), i.e. are expected to be non-

zero and so contribute to the overall prediction.

Peptide binding register predictions
We also compared the predicted predominant peptide binding

register, for which the core peptide had the strongest binding

Figure 3. ROC curves for peptide binding affinity predictions
using the data sets described in Table 3. Only the region with low
false positive rate, which is most relevant in practice, is shown.
doi:10.1371/journal.pone.0014383.g003
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affinity, with the one observed in available X-ray structures of

peptide-MHC complexes. This provides an independent test of the

prediction method. The results for individual complexes are shown

in Table 5. Overall, binding registers were correctly predicted for

14/19 (74%) of the human complexes and 12/15 (80%) of the

murine complexes. If restricted only to the cross-docking results

then 6/9 (67%) of the human complexes and 7/10 (70%) of the

murine complexes were correctly predicted.

An analysis of the peptide-MHC complexes with incorrectly

predicted binding registers showed that generally the predicted

binding affinity for the correct register was close to that in the

predicted predominant register (i.e. with highest binding affinity).

Furthermore, although experimental binding affinities are not

available for each individual binding register, they can be

estimated using the RTA sequence-based method [26] for the

allotypes with sufficient available binding data. Two incorrectly

predicted human complexes are covered by the RTA method, the

1AQD peptide binding to DRB1*0101 (1KLU) and the 1FV1

peptide binding to DRB5*0101 (1FV1). Interestingly, RTA

predicts that the binding affinity of the 1AQD peptide in the

incorrectly predicted register (FLRGYHQYA), 10.4 kcal/mol, is

only slightly lower than that in the correct register observed in the

X-ray structure (WRFLRGYHQ), 10.9 kcal/mol. This is a

possible explanation of why the structure-based prediction method

has difficulty determining which of these two registers is the most

stable, particularly since the scoring method was trained on RTA

predictions for this allotype. It also suggests that the 1AQD peptide

may in fact have two alternative binding registers for DRB1*0101,

with the observed register favored by the crystallization environ-

ment. Such multiple binding registers have been computationally

predicted to be fairly prevalent in strong binders [26,34] and have

also been experimentally observed [48,49,50]. The RTA results

for the 1FV1 peptide binding to DRB5*0101 shows a similar

trend, with the binding affinity of the incorrectly predicted register

(VHFFKNIVT), 8.76 kcal/mol, the second highest just after the

correct register (FKNIVTPRT), 10.5 kcal/mol, although the

affinity difference is greater than for 1AQD. Interestingly, the

prediction accuracy for the peptide binding register did not seem

to be significantly correlated with the docking accuracy. This is

consistent with the above observation that the largest docking

errors can be attributed to residues with large side chains that have

few contacts with the MHC protein and so are unlikely to have a

significant effect on the binding affinity prediction accuracy.

Comparison to sequence-based approaches
The recent study by Zhang et al. [35] evaluated three different

structure-based epitope prediction methods on a set of peptides

binding to DRB1*0101 and arrived at a rather pessimistic view of

such ab initio methods, which do not make use of any experimental

peptide-MHC binding data. This conclusion was based on the

observation that all three methods achieved results that were

significantly better than random but still were substantially lower

than the best performing sequence-based methods. Our prediction

method would not be considered as ab initio by the definition used

in that study, since the scoring method is parameterized using

experimental binding data, albeit for an MHC allotype with

completely different peptide binding preferences. We were able to

perform a similar comparison to prediction results from our

MultiRTA sequence-based method [30] for the two MHC

allotypes covered by the HLA-DR and HLA-DP models. In order

to avoid overfitting, binding data for the MHC allotype of interest

was omitted from the training data used to fit the MultiRTA

prediction model. The results for the DRB1*0101 and

DPA1*0103/DPB1*0201 data sets are presented in Table 6. As

expected, the AUC values for the MultiRTA sequence-based

method, shown in Table 6, are higher than the corresponding

values for the structure-based method, shown in Table 3,

indicating its higher accuracy for these three allotypes. We next

discuss the implications of these results for the structure-based and

sequence-based approaches to epitope prediction.

Discussion

The prediction results for a diverse set of representative class II

MHC allotypes demonstrate that our method can discriminate

binders from non-binders and supports the generality of the

structure-based approach to epitope prediction. As in the recent

Figure 4. Relative importance of the Random Forest input
properties to the overall binding affinity prediction accuracy.
These results show that the interaction energy terms contribute the
most to the prediction performance.
doi:10.1371/journal.pone.0014383.g004

Table 4. Logistic regression coefficients for a model trained
only on DRB1*0101 binding energy components.

Variable Coefficient value (standard error) Significance

DEvw 20.112 (0.00838) ,2.0610216

DEhb 20.108 (0.0143) 3.7610214

DEel 20.0203 (0.0102) 4.761022

DEen 20.643 (0.0482) ,2.0610216

DEsf 20.339 (0.0546) 5.0610210

Intercept 210.1 (0.844) ,2.0610216

All coefficients are statistically significant (p,5%) and are negative, as expected
from physical considerations.
doi:10.1371/journal.pone.0014383.t004
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study by Zhang et al. [35], we also found that the prediction

performance of the structure-based approach is generally lower

than that of sequence-based approaches. This should be expected

considering that sequence-based methods generally rely on far

more input parameters than structure-based methods in order

make binding predictions and also are directly fit to experimental

binding data for a similar or identical MHC allotype. For example,

the structure-based method presented here uses 27 input

parameters for scoring whereas a PSSM sequence-based approach

potentially has up to 180 parameters and multi-allotype models,

such as NetMHCIIpan and MultiRTA, have even more

parameters. Furthermore, the sequence-based results were ob-

tained using prediction models that were trained on binding data

for MHC types whose peptide binding preferences are similar

enough that even a prediction model trained only on data for the

Table 5. Peptide binding register predictions compared with all human and mouse peptide-MHC X-ray structures.

MHC allotype
MHC PDB
entry

Peptide PDB
entry Peptide sequence

Rank of core segment/
Number of core segments

DRB1*0101 1KLU 1KLU* GELIGTLNAAKVPAD 1/7

DRB1*0101 1KLU 1AQD VGSDWRFLRGYHQYA 2/7

DRB1*0101 1KLU 1DLH, 2G9H PKYVKQNTLKLAT 1/5

DRB1*0101 1KLU 1KLG GELIGILNAAKVPAD 1/7

DRB1*0101 1KLU 1SJE PEVIPMFSALSEGATP 1/8

DRB1*0101 1KLU 1T5W AAYSDQATPLLLSPR 1/7

DRB1*0101 1KLU 2FSE AGFKGEQGPKGEPG 1/6

DRB1*0301 1A6A 1A6A* KPKPPKPCSKMRMATPLLMQALPM 1/16

DRB1*0401 1J8H 1J8H* PKYVKQNTLKLAT 1/5

DRB1*0401 1J8H 2SEB QYMRADQAAGGLR 2/5

DRB1*1501 1BX2 1BX2* ENPVVHFFKNIVTPR 1/7

DRB3*0101 2Q6W 2Q6W* AWRSDEALPLGS 1/4

DRB5*0101 1FV1 1FV1* NPVVHFFKNIVTPRTPPPSQ 3/12

DRB5*0101 1FV1 1H15 GGVYHFVKKHVHES 1/6

DQA1*0501/DQB1*0201 1S9V 1S9V* QLQPFPQPELPY 1/4

DQA1*0102/DQB1*0602 1UVQ 1UVQ* MNLPSTKVSWAAV 1/5

DQA1*0301/DQB1*0302 2NNA 2NNA* QQYPSGEGSFQPSQENPQ 2/10

DQA1*0301/DQB1*0302 2NNA 1JK8 SHLVEALYLVCGERG 5/7

DPA1*0103/DPB1*0201 3LQZ 3LQZ* RKFHYLPFLPST 1/4

H2-IAb 1MUJ 1MUJ* PVSKMRMATPLLMQA 1/7

H2-IAb 1MUJ 1LNU FEAQKAKANKAVD 1/5

H2-IAd 2IAD 1IAO ISQAVHAAHAEI 1/4

H2-IAg7 1ES0 1ES0* YEIAPVFVLLEYVT 1/6

H2-IAg7 1ES0 1F3J AMKRHGLDNYRGYSL 1/7

H2-IAg7 1ES0 3CUP KKMREIIGWPGGSGG 1/7

H2-IAk 1IAK 1IAK* TDGSTDYGILQINSRW 1/8

H2-IAu 1K2D 1K2D* SRGGASQYRPSQR 1/5

H2-IEk 1FNG 1FNG* GKKVITAFNEGLK 1/5

H2-IEk 1FNG 1FNE GKKVITAFNDGLK 1/5

H2-IEk 1FNG 1IEB RDRMVNHFIAEFK 1/5

H2-IEk 1FNG 1KT2 RDLIAYLKQATK 2/4

H2-IEk 1FNG 1KTD RDLIAYLKQASAK 2/5

H2-IEk 1FNG 1R5V ADLIAYPKAATKF 1/5

H2-IEk 1FNG 1R5W ADLIAYFKAATKF 2/5

Asterisks indicate self-docking results. The core segment is underlined in the peptide sequence.
doi:10.1371/journal.pone.0014383.t005

Table 6. MultiRTA sequence-based prediction results for the
same data sets used to obtain the structure-based prediction
results in Table 3.

AUC

MHC allotype Peptide
Estimated
Core 1

Estimated Core
1–2

DRB1*0101 0.782 0.931 0.910

DPA1*0103/DPB1*0201 0.929 0.988 0.985

The estimated core AUC values were obtained as described in the Table 3
caption and the Methods section.
doi:10.1371/journal.pone.0014383.t006
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single closest allotype attains relatively high accuracy [29,30].

Most importantly, although the structure-based approach cannot

attain the level of accuracy of the best sequence-based methods,

they are able to predict epitopes for MHC allotypes remotely

related to allotypes with experimental binding data. Even in

principle, this is impossible for a purely sequence-based method.

Furthermore, the sequence-based methods that make limited use

of structural information, such as peptide-contacting polymorphic

MHC residues for NetMHCIIpan [29] and MultiRTA [30] or

MHC pockets for TEPITOPE [28], can only interpolate to MHC

allotypes that largely share the same MHC polymorphic residues

or pockets as experimentally characterized MHC allotypes but in

different combinations. For example, the 14 HLA-DR allotypes

with sufficient experimental binding data allow fitting a sequence-

based model that covers most of the HLA-DR allotypes [29,30],

however these data cannot be used to make predictions for any

HLA-DQ allotype, for which little experimental data is available.

In summary, each class of prediction method has its optimal

domain of applicability. Sequence-based methods should be used

for MHC allotypes similar to those that have been experimentally

characterized, such as most HLA-DR allotypes. On the other

hand, only structure-based methods can currently be used for the

large number of remaining allotypes, including almost all of those

for HLA-DP, HLA-DQ, and non-human allotypes.

We also derived a rough quantitative estimate of the epitope

prediction accuracy for individual 9-mer core segments. Unlike for

class I MHC, in which a peptide has only a single binding mode, a

peptide can generally bind to class II MHC in multiple binding

registers, each defined by which 9-mer segment of the complete

peptide contacts the central portion of the binding cleft in the

MHC protein. This additional degree of freedom, which cannot

be directly ascertained from experimental peptide binding data,

makes epitope prediction for class II MHC more difficult than for

class I MHC. This is reflected in the generally lower performance

of class II MHC prediction methods compared with those for class

I MHC, regardless of whether they are sequence-based or

structure-based. Using a similar structure-based approach for

class I MHC epitope prediction, we previously obtained an AUC

of 0.85 for epitope prediction for a H2-Kb murine MHC allotype

that is highly dissimilar to the human HLA-A*0201 allotype used

for training [36]. This AUC value is comparable to the estimated

core AUCs in the last column of Table 3. In other words, the

accuracy for predicting whether or not a peptide binds in a single

particular conformation is roughly similar for both class I and class

II MHC so that the lower accuracy for class II MHC is

predominantly due to an accumulation of errors resulting from

the multiple possible peptide binding registers. This suggests a

promising application of the structure-based method, discovering

strongly binding 9-mer core fragments for uncharacterized MHC

allotypes. Presumably the prediction performance would be higher

for these fragments because they can only bind in one register. The

predicted 9-mer epitopes could then be extended by additional N-

and C-terminal residues and experimentally validated.

There are many possible directions for future work. One of the

most important is to investigate epitope prediction using homology

models of class II MHC allotypes without available X-ray

structures in the PDB. Currently, X-ray structures are only

available for the human and murine allotypes listed in Tables 1
and 2. Different class II allotypes share close sequence identities

and relatively conserved backbone structures so that this should be

straightforward. The main challenge will be to accurately predict

the conformations of the MHC residues that contact the peptide,

particularly if a rigid model of the MHC is employed for docking.

Several previous studies have investigated class II MHC homology

models and their use in docking [32,51,52]. Also it is important to

attempt to speed up the epitope prediction method. Because we

did not attempt to minimize the docking simulation length, it may

be possible to significantly reduce it without sacrificing accuracy.

Another possible approach is to fit a PSSM to structure-base

prediction results for a series of all possible single residue mutants

of a strong binding peptide. One other possible improvement is to

incorporate MHC flexibility by sampling peptide-contacting

MHC residue rotamer conformations or utilizing multiple

alternative rigid models of the binding cleft in the docking

procedure. Additionally, explicitly accounting for water molecules

that have been observed in the peptide-MHC interface [53,54,55]

may further increase modeling accuracy. Furthermore, as

mentioned above, incorporating additional flanking peptide

residues in the docking and scoring may improve prediction

accuracy. This is supported by observed atomic contacts between

flanking residues and the MHC in peptide-MHC complex X-ray

structures and improvements in sequence-based epitope prediction

methods upon incorporating information on these residues

[27,56]. Adding flanking residues in the docking procedure is

straightforward but will increase the simulation convergence time.

Also the higher variability in the peptide backbone outside of the

central 9-mer core observed in X-ray structures of peptide-MHC

complexes implies that these residues will be more difficult to

model correctly. It is also worthwhile exploring methods to directly

fit the scoring method to experimental peptide-MHC binding

affinities rather than relying on error-prone sequence-based

prediction results. Finally, one potentially useful application that

is well suited to a structure-based approach is to predict peptide

epitopes with posttranslational modifications. Experimental evi-

dence indicates that such peptides bind to class II MHC and may

have a role in autoimmunity [57,58].
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