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Abstract. Renal cell carcinoma has traditionally been classified based on histological features. Contemporary studies have
identified genomic, transcriptomic, epigenomic, and metabolomic signatures that correspond to or even transcend histological
subtypes. Much remains to be learned about improving the algorithm of pan-omics integration for precision oncology, which
will not only advance our understanding of RCC pathobiology and treatment response but also result in novel therapeutic
opportunities. Accordingly, this review focuses on recent RCC multi-omics literature. Encouragingly, a few reports on omics
integration into routinely employed prognostic risk models have shown early promise that could lay the foundation for future
development of precision kidney cancer therapies. Hence, this article serves as a primer on what we have learned and how
we might better realize the clinical potential of the burgeoning pan-omics data.
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INTRODUCTION

The field of renal cell carcinoma (RCC) has under-
gone rapid transformation in the past few decades,
from the Dark Age (~2004) when <10% of patients
achieved a therapeutic response through the Mod-
ern Age (2005-2014) with a ~30% response rate
to the Golden Age (2015~) when a >50% response
rate and a ~90% disease control rate are anticipated
[1-6]. However, despite such progress, approxi-
mately 14,830 RCC patients are expected to succumb
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to the disease in 2020 in the United States, where RCC
is the 6th most commonly diagnosed cancer in men
and 8th in women [7].

Prior to 2005, RCC was managed with either
surgical resection for localized disease or systemic
immunotherapy using IL-2 or IFN-a for metastatic
RCC (mRCC) [5, 8]. Patients treated with IL-2
or IFN-a commonly experienced severe toxicities
such as hypotensive shock necessitating vasopres-
sors, respiratory distress requiring ventilator support,
dehydration requiring large volume intravenous fluid
support, and/or psychosis needing antipsychotics [2,
4, 9-11]. Only ~10% of patients achieved thera-
peutic response, among whom a small proportion
experienced durable long-term response for >5years.
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Proposed mechanisms underlying the observed treat-
ment response included activation of cytotoxic T
cells [4, 8], natural killer cells, dendritic cells, and
macrophages [12].

Clear cell RCC (ccRCC) is the most common RCC
subtype, and metastatic ccRCC accounts for most
kidney cancer fatalities. Cloning of the VHL gene,
the most commonly mutated gene in ccRCC, and
its subsequent functional characterizations rendered
new therapeutic opportunities. VHL is a key regulator
of the hypoxia-sensing pathway, where the inhibi-
tion of VHL results in the stabilization of HIFla
and HIF2a, which in turn activate hypoxia-inducible
genes including vascular endothelial growth fac-
tor (VEGF), platelet-derived growth factor (PDGF),
and TGF-a, and c-MET [5, 8, 13-18]. Multi-
ple approaches have been undertaken to develop
inhibitors of HIFla, HIF2a, and downstream sig-
naling pathways [19]. The class of small molecule
VEGF Receptor 2 (VEGFR2) inhibitors includes
sorafenib, sunitinib, pazopanib, axitinib, cabozan-
tinib, and lenvatinib [20]. Clinical trials of VEGF
pathway inhibitors demonstrated ~30% response rate
and overall survival benefit over IL-2 and IFN-a.
Following VEGF inhibitors [20-24], small molecule
inhibitors of mMTORC1, everolimus and temsirolimus,
were subsequently approved [25-29]. The develop-
ment of these targeted therapeutic agents initiated the
“Modern Age” era of mRCC treatment starting from
2005. However, like other kinase inhibitors used in
other cancers, VEGF inhibitors alone fail to eradicate
tumor cells and their discontinuation near universally
results in relapse.

The success of the immune checkpoint inhibitor
(ICY) ipilimumab, an anti-CTLA-4 monoclonal anti-
body, in treating metastatic melanoma who failed
standard care, led to its approval in 2011 [30],
and the subsequent approval of additional ICIs that
target PD-1 and PD-L1 quickly revolutionized the
modern therapeutic landscape of other metastatic
solid tumors including renal cell carcinoma [31].
Nivolumab, a PD-1 antibody, was approved as a sec-
ond line treatment for mRCC in 2015, inaugurating
the “Golden Age” era. The combination of ipili-
mumab and nivolumab resulted in ~10% complete
and ~30% overall response rates in mRCC, which
led to its approval as a front-line treatment in 2018.
This represents the watershed moment where the best
therapeutic outcome shifted from temporary contain-
ment to long-enduring remission. Furthermore, the
use of anti-VEGF small molecular tyrosine kinase
inhibitors with ICIs showed that a combinatorial

approach further improved response rate and pro-
longed survival. For example, the combination of
axitinib plus pembrolizumab, an anti-PD-1 antibody,
induced a 59% response rate with overall survival
benefit over sunitinib [24]. Since PD-1 or PD-L1
status does not predict outcome, there is a serious
lack of predictive biomarkers the guide the use of
ICIs [24]. Of note, ICIs typically induce response
in people whose tumors have a high tumor muta-
tional burden (TMB), whereas ccRCC tumors do not
typically exhibit high TMB [18, 24, 32].

Traditional risk stratification models do not take
into account the modern molecular features iden-
tified in individual RCC tumors. The University
of California Los Angeles Integrated Staging Sys-
tem Model (UISS Model), the Mayo Clinic Stage,
Size, Grade and Necrosis Model (SSIGN Model),
and the Leibovich Score, a modified SSIGN model,
are commonly used for localized RCC prognostica-
tion, relying on performance status, tumor histology,
nephrectomy type, TNM stage, and tumor char-
acteristics including size, grade and presence of
necrosis[33]. For mRCC, commonly employed prog-
nostication models include the Memorial Sloan
Kettering Cancer Center (MSKCC) and the Inter-
national Metastatic Renal Cell Carcinoma Database
Consortium (IMDC) [34, 35], relying on perfor-
mance status, time to systemic treatment, levels of
hemoglobin, neutrophil, platelet, calcium and lactate
dehydrogenase. Although recent studies have demon-
strated that the correlation between certain molecular
features of RCC and treatment/survival outcomes, the
incorporation of these molecular characteristics into
current prognostic models is at its infancy [8, 33, 36,
371.

This review pays special attention to papers pub-
lished between January 2017 and October 2019
onRCC in the context of multi-omics and its impli-
cations on risk stratification, treatment response
prediction, and clinical decision-making.

METHODS

Search was performed using PubMed with
results restricted to English language journal arti-
cles published between January 2017 and October
2019. Search terms combined renal cell carci-
noma with genomics, epigenetics, transcriptomics,
metabolomics, multi-omics, pan-omics, and preci-
sion medicine.
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Table 1
Genomics have enabled us to identify alterations at both the gene and chromosome level and how these influence survival or treatment
response
Gene alterations Pathways Chromosome Outcome influences
alterations
ccRCC  VHL (>80%) PI3K-AKT-mTOR  Chromosome 3 translocation with: Worse cancer-specific
PBRMI1 (29-46%) (>25%) e Chromosome 2 (11%) survival: BAP1, SETD2,
BAP1 (6-19%) o Chromosome 5 (20-43%) TP53, TERT alterations
SETD2 (8-30%) e Chromosome 8 (7%) Better treatment response:
TP53 (<10%) e Other chromosomes (33%) PBRM1 alterations, PI3K
PTEN (<10%) Chromosome 3p loss (>90%) pathway dysregulation
CDKN2A (<10%)
CD163L
DNMT1
KDM5C
pRCC Type 1 and 2: HIPPO Type 1 and 2: Worse survival: TP53,
e TP53, PTEN, CDKN2A e Chromosome 7 and 17 gain PBRM1 alterations
(type 1 and type 2)
Type 1 Type 2:
e MET, PBRM1 o Chromosome 12 and 16 gain
Type 2
e CDKN2A, SETD2, NF2,
CUL3, TERT, FH
chRCC  TP53 n/a Set of losses: Increased risk of metastasis:
PTEN o Chromosome 1, 2, 6, 10, 13, 17 TP53, PTEN and >3
CDKN2A (85%) chromosomal alterations
o Other chromosomal losses: 3, 5,
8,9, 11, 18, or 21 (12-58%)
RESULTS PTEN and CDKNZ2A can be identified across all 3
major RCC subtypes [39]. However, the relative low
Subtype classification mutation rate (<10%) of these genes favors their role

RCC is comprised of multiple subtypes that are
histologically distinct and carry different genetic
signatures. Clear cell RCC (ccRCC) is the most
prevalent RCC subtype (~75%). Papillary RCC
(pRCC) and chromophobe RCC (chRCC) comprise
approximately 15% and 5%, respectively. Other less
common subtypes include medullary RCC, collect-
ing duct RCC, TFE-translocation RCC, FH-loss
HLRCC, RSC-loss RCC angiomyolipoma, and SDH-
loss RCC. Each of these classifications is associated
with specific histological, molecular and pathologi-
cal profiles, and RCC tumors that do not fit any of the
above categorization or are heavily heterogenous are
placed in the unclassified RCC (uRCC) category [5,
38, 39].

Genetics

DNA sequencing has been commonly applied to
study RCC. Individual RCC subtypes exhibit distinct
histologic and genomic or copy number alterations
that contribute to cancer initiation and progression
(Table 1). Mutations of tumor suppressor genes TP53,

as secondary, tertiary or progressing mutations in
RCC.

c¢cRCC: More than 80% of ccRCC carry mutation
or promoter methylation of the VHL gene [19]. The
loss of chromosome 3p where VHL resides occurs
in >90% of ccRCC. Other common tumor suppres-
sors include PBRM1 (29-46%), BAP1 (6—-19%), and
SETD?2 (8-30%) that all locate on 3p [14]. Genetic
studies position VHL loss as the initial truncal driver
event, followed by PBRM I mutation, and completed
with mTORCI1 activation [40].

BAPI, SETD2, and TP53 mutations were asso-
ciated with a worse survival outcome [39, 41, 42],
whereas PBRM 1 mutations associated with a better
response to all treatment modalities [6, 43] includ-
ing anti-PD1/anti-PD-L1 immunotherapy, possibly
secondary to an aberrant JAK-STAT immune signal-
ing activity [40]. Mutations in the promoter region
of TERT are associated with worse cancer-specific
survival (CSS) but had no impact on recurrence-free
survival or overall survival [44]. Pathway mutations
involving the PI3K-AKT-mTOR signaling cascade
were also identified in more than a quarter of
ccRCC tumors but did not correlate with worse sur-
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vival [15, 39, 43, 45, 46]. However, low PTEN
protein expression in ccRCC demonstrated better
response to everolimus treatment as a single agent
[47]. Gene expression signatures from the JAVELIN
Renal 101 trial suggested that mutations in CD1631L,
PTEN and DNMTT also influenced progression-free
survival and response to avelumab plus axitinib.
Overall, an angiogenesis enriched signature cor-
related with improved progression-free survival in
the sunitinib treatment group though did not influ-
ence survival in the avelumab plus axinitib group.
Enrichment for immune gene expression signature
increased progression-free survival in the avelumab
plus axitinib group compared to sunitinib alone
[48].

In addition to alterations of specific genes, chro-
mosomal rearrangement was also a common event in
ccRCC, occurring in over 60% of tumors. Chromo-
some 3p, where VHL is located, is the predominantly
involved chromosome and is most commonly trans
located with chromosome 5 (20—43%), chromosome
2 (11%), and chromosome 8 (7%). Another 33% of
tumors harbor chromosome 3 translocations with one
of the other chromosomes [49, 50].

ccRCC is known for high intratumoral hetero-
geneity (ITH) [51, 52]. Rapidly progressive ccRCC
was characterized by less ITH, BAPI mutation, and
more somatic events detected in the primary kid-
ney. Those with attenuated progression had higher
ITH and PBRM1 loss followed by SETD?2 loss or
PI3K pathway dysregulation. Overall, tumors from
metastatic sites exhibited less tumor heterogeneity
[53, 54]. However, high tumor mutational burden may
not impact progression-free survival with respect to
specific treatment regimens such as avelumab plus
axitinib versus sunitinib alone [48].

Studies that incorporated individual mutated genes
into current risk stratification models have demon-
strated that their inclusion could improve prognostic
values. One model incorporated 6 commonly altered
genes in ccRCC — BAP1, PBRMI1, TP53, TERT,
KDMS5C, and SETD2 - into the MSKCC prog-
nostic model. The addition of genomic information
improved the prognostic accuracy in both progression
free and overall survival [55].

pRCC: Papillary RCC consists of two subtypes,
types 1 and 2, based on histological features.
CpG island methylator phenotype-associated pRCC
(CIMP-pRCC) has been described, exhibiting a
unique epigenetic signature and foretelling a worse
clinical outcome [39]. MET and PBRM1 mutations
[38, 39] as well as chromosome gains of 7 and 17

[39] were more commonly seen with type 1 pRCC.
In contrast, alterations in CDKN2A, SETD2, NF2,
CUL3 and TERT, and copy number gains of chro-
mosomes 7, 12, 16, and 17 were associated with type
2 pRCC [38]. HIPPO pathway mutations and loss
of the SWI/NSF complex components were more
frequently detected in type 2 pRCC [39]. Interest-
ingly, MET alterations associate with hereditary type
1pRCC; where as fumarate hydratase (FH) mutations
associate with hereditary type 2 pRCC syndrome
(hereditary leiomyoma RCC; HLRCC) [38]. TP53
mutations correlated with worse survival in both type
1 and type 2 pRCC whereas PBRM mutations only
correlated with type 1pRCC [39].

chRCC: chRCC carries pathognomonic losses
of a set of chromosomes rather than mutations of
specific genes [38, 56, 57]. The concurrent loss
of a 6-chromosome set, i.e., 1, 2, 6, 10, 13, and
17, was detected in >85% of chRCC. Additional
chromosomal losses of 3, 5, 8, 9, 11, 18, or 21
were detected in 12-58%. Interestingly, only half of
the eosinophilic chRCC variants exhibited classical
chromosome losses. Although only 5-10% chRCC
eventually metastasized, TP53 and PTEN mutations
and duplication of more than 3 chromosomes were
risk factors for developing metastasis [39, 57].

Epigenetics

Among RCC subtypes, somatic mutations of
epigenetic genes are common. These modify
the expression of genes through meythylation,
demeythylation, acetylation or his tone modifica-
tion without changing the sequence of the gene.
Mutations of SWI/SNF chromatin remodeling com-
plex genes including PBRM1, ARIDIA, SMARCA4
and SMARCBI are detected in ~50% of ccRCC,
~25% of pRCC, and ~4% of chRCC. Mutations
of histone methyltransferases including SETD2 and
KMT2C/2D occurred in ~25% of ccRCC, ~25% of
pRCC, and ~8% of chRCC. Mutations of acetyl-
transferase mutations are less common at ~5% of
ccRCC and ~7% of pRCC. Mutations of demethy-
lases including KDM4C, KDMS5C, and KDMG6A are
detected in ~13% of ccRCC, ~17% of pRCC, and
~5% of chRCC. Mutations of BAPI and ASXLI,
members of the polycomb repressive deubiquitinase
complex, were altered in ~12% of ccRCC, ~7% of
pRCC, and ~1% of chRCC [39]. Furthermore, DNA
hypermethylation was detected in ~35% ccRCC,
~12% pRCC, and ~20% of chRCC tumors, which
is associated with a worse survival [39]. DNA hyper-
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Influent on disease progression
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IMDC incorporation
MSKCC incorporation

Treatment response
Progression-free survival
Overall survival

Enhanced understanding of RCC
pathology and carcinogenesis

Incorporation into
current risk models
for better prognostic
risk stratification

Pan-omics-guided decision-
making for best therapeutic
treatment option to improve
clinical outcome

Fig. 1. The integration of pan-omics data alongside information about the immune microenvironment can lead to enhanced understanding
of RCC biology, better prognostication models and enhanced decision-making for best therapeutic treatment options to improve clinical

outcome.

methylation concentrated at the WNT pathway genes,
SFRPI and DKK1, was observed, and CDKN2A pro-
moter methylation occurred in 4.2% of TCGA RCC
tumors across all studied subtypes [39].

There also has been recent work on sub-typing
RCCs based only on genomic signatures rather than
histological appearance or cell of origin to better char-
acterize the implications on survival of alterations of
specific genomic pathways and improve risk stratifi-
cation [42, 58].

Transcriptomics

Transcriptome analysis, which studied RNA signa-
tures, was performed across all subtypes of RCC and
found distinct mRNA, miRNA and IncRNA signa-
tures for each subtype. Transcriptome analysis have
found increased angiogenesis signatures in ccRCC
as expected since VHL mutation leads to HIF sta-
bilization and the induction of vasculogenic and
angiogenic growth factors. Immune system activation
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and an increase in cellular metabolism and mito-
sis genes were also appreciated. Meanwhile, pRCC
tumors were enriched with a cilium signature. NRF2-
antioxidant response pathway activation was also
seen in type 2 but not type 1 pRCC. Increased expres-
sion of ion membrane transport pathway genes was
seen in chRCC [39]. Transcriptome signatures have
also been used to predict survival in RCC [15].

One of the first multi-gene studies used to clas-
sify ccRCC into good and poor prognosis sub-groups
defined by disease-specific survival employed 110
genes in its signature set and was able to successfully
classify tumors based on these transcriptomic signa-
tures [36]. ClearCode34 was another RNA signature
setthat was developed for risk stratification in patients
with localized ccRCC. It comprised of 34 genes that
further sub-classified ccRCC into a ccA good prog-
nosis sub-type or a ccB poor prognosis sub-type. Use
of this gene signature set was able to successfully
stratify patients who experienced longer recurrence-
free survival and overall survival. Moreover, use of
this gene set more accurately risk-stratified patients
than both the commonly used UISS and SSIGN risk
stratification models [59]. Additionally, integration
of the ClearCode34 predictive model with the IMDC
risk stratification model allowed for better prediction
of survival than each alone [60]. Analysis of gene
expression data from the Phase 3 ccRCC COMPARZ
trial identified 4 distinct clusters, of which cluster 4 is
associated with an increase in inflammatory makers,
PD-L1+ expression, and macrophage infiltration and
a worse clinical outcome [61].

Proteomics

Proteomics has also been used to study differ-
ences in protein expression in RCC. Alterations in
protein signatures were seen in ccRCC tumors that
were not appreciated in normal adjacent tissue. Inter-
estingly, these alterations in protein level were not
reflected by transcriptome analysis and occurred pri-
marily in tumor tissue and not normal adjacent tissue.
This dysregulation of protein expression seemed to
be mainly driven by chromosomal copy number
variation or translation. Chromosome 3p loss was
associated with an increase in hypoxia, glycolysis
and cell cycle protein expression but a decrease in
fatty acid metabolism, Krebs cycle, and oxidative
phosphorylation protein expression. Alterations of
other chromosomes including chromosome 5q gain,
7p gain, 9p loss, or 14qloss led to increased mTORC1
and myc pathway proteins, epithelial-mesenchymal

transition proteins and interferon gamma responses
and decreased chromatin organization [49]. Further
investigation of phosphorylation status in cell cycle
signaling showed increase in phosphorylation of pro-
teins associated with progression through S-phase
and G2/M checkpoints, especially in tumors with
increased aggression. Moreover, phosphoproteomic
analysis identified a subset of signatures involving
cell cycle control and angiogenesis that correlated to
genomic instability and tumor grade. Interestingly,
the phosphorylation status of these proteins did not
correlate with transcriptome or proteome expression
[49].

Tumor Immune Microenvironment

The immune system plays a critical role in can-
cer progression and response to therapy. Immune
cell infiltration of kidney tumors have been inves-
tigated by assessing gene expression contribution
from individual immune cell types. ccRCC tumors
have higher immune infiltration than pRCC and
chRCC [39]. ccRCC tumors have increased regu-
latory T cells, cytotoxic T cells, Tg2 helper cells,
Ty17 cells, B cells and dendritic cells [13, 39].
pRCC have increased NK cell infiltration and IL-8
activation. chRCC is associated with Ty17 activa-
tion. Presence of an enriched Ty2 signature was
a poor prognostic indicator for ccRCC, pRCC and
chRCC [39]. In a study that integrated transcrip-
tome and proteome data, four tumor subtypes were
defined. The CD8+ inflamed subset was character-
ized by increased CD8+ T-cell infiltration; increased
expression of PD-1, PD-L1/2, and CTLA4; increased
interferon-y signaling, which can lead to T-cell
exhaustion; and immune invasion. The CD8-inflamed
tumors and the VEGF immune desert tumors were
enriched for stromal components and for endothe-
lial cells with increased angiogenesis, respectively.
The metabolic immune desert tumors demonstrated
increased mTORC1 signaling and increased mito-
chondrial, oxidative phosphorylation and glycolysis
profiles but suppressed immune and stromal signaling
[62].

Up to a third of RCC samples have enhanced
PD-L1 expression while more than half of tumor-
infiltrating cells expressed PD-1 [63, 64]. Addition-
ally, the expression of PD-1 and CTLA correlated
with worse survival [65]. The JAVELIN Renal
101 trial demonstrated that patients with PD-L1-
expressing tumors responded particularly well to
avelumab and axitinib compared to sunitinib only
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with longer progression-free survival and higher
objective response rates. High PD-L1 expression
was also associated with poor progression-free sur-
vival in the sunitinib group, suggesting that patients
with high PD-L1 expression may have better out-
comes when treated with avelumab and axinitinib
[48, 66]. Patients with PD-LI1-expressing tumors
had an increased progression-free survival in the
atezolizumab plus bevacizumab treatment group
compared to sunitinib alone or atezolizumab alone
groups in the IM motion trials [62, 67]. However,
PD-L1 expression did not correlate with treatment
response in the KEYNOTE-426 trial comparing pem-
brolizumab plus axitinib with sunitinib [24].

DISCUSSION

Renal cell carcinoma is composed of diverse
sub-types of diseases with each exhibiting unique
genomic, transcriptomic, epigenomic, metabolomic
and immune signatures that in turn impact metastatic
progression and therapeutic outcome. This is particu-
larly exciting in the “Golden Age” era of both targeted
therapies and immune checkpoint inhibitors, with
multiple options within each class. Learning more
about the mutational landscape of RCC and integrat-
ing this with the wealth of information gained from
pan-omics will help us enter the “Diamond Age” to
improve our risk stratification of patients and deliver
precision medicine-based treatments where a spe-
cific treatment option is tailored to each individual
patient’s disease.

We have just begun to include molecular pro-
files into risk stratification models, and these early
efforts have demonstrated how their inclusion might
improve predictive power. Like the ClearCode34
model which integrated transcriptomic signatures
into the IMDC risk stratification model, we can
continue to develop more comprehensive mod-
els that incorporate our newfound transcriptomic,
metabolomic, and immune microenvironment knowl-
edge to our expanding genomic and histologic
knowledge to better risk-stratify patients with RCC,
improve our prognostic capabilities, and better cap-
ture the complex biological dynamics of RCC This
can help not only predict disease aggression and
prognostic risk but also help determine best treat-
ment options. Additional studies can continue to use
molecular profiling to predict response to therapy
and overall survival benefit with VEGF or mTORC1
inhibitors or immune checkpoint inhibitors. Many

questions still remain about RCC characteristics that
are predictors of response, especially in the era
of ICIs. Recent studies recognized the discordance
among -omic platforms, especially in transcriptome
and metabolome data, pointing to the importance of
integrating multiple omics data. Hence, our future
precision oncology success relies on a successful
integration of genomic, epigenomic, transcriptomic
and immune signatures from boththe tumor and its
microenvironment to develop a better therapeutic
response prediction model (Fig. 1). This knowledge
can then in turn better inform us about RCC carcino-
genesis, which may then lead to the development of
further therapeutic options and lead to more rigorous
clinical trial design that will be able to better stratify
patients according to their disease risk and prognosis.
Much work remains to be done to better understand
the biology and pathology of RCC and its response to
therapies. Our hope is that this personalized medicine
approach through integration of our pan-omic knowl-
edge will influence our clinical practice and improve
survival and clinical outcomes for patients with renal
cell carcinoma.
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