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Shapes of minimal-energy DNA 
ropes condensed in confinement
Antonio Šiber

Shapes of a single, long DNA molecule condensed in a confinement of a virus capsid are described as 
conformations optimizing a model free energy functional accounting for the interplay between the 
bending energy of the DNA and the surface energy of the DNA bundled in a “rope”. The rope is formed 
by bundled DNA brought together by (self-)attractive interactions. The conformations predicted by the 
model depend on the shape of the confinement, the total amount of the packed DNA but also on the 
relative contributions of the bending and surface energies. Some of the conformations found were not 
predicted previously, but many previously proposed DNA conformations, some of which are seemingly 
contradictory, were found as the solutions of the model. The results show that there are many possible 
packing conformations of the DNA and that the one which realizes in a particular virus depends on the 
capsid geometry and the nature of condensing agents.

Organisms have developed mechanisms to physically compress the DNA strand(s) in order to fit in the crowded 
space of the cell - the use of proteins to condense the DNA in chromosomes1 is typical both in the eukaryotic and 
prokaryotic cells, but also in viruses which sometimes use specific proteins to confine their DNA in a capsid (e.g. 
adenoviruses, see refs 2 and 3). The DNA molecule carries a large negative charge, so that its confinement requires 
screening agents4 - that is why the “condensing” proteins typically have a pronounced positive charge.

The role of screening of (double stranded) DNA self-interaction is in some bacteriophages, e.g. T4, played also 
by multivalent counterions, such as polyamines found in bacteria where bacteriophages assemble5. Multivalent 
counterions are known to induce condensation of DNA, i.e. the effective self-attraction of the DNA6. The viral 
DNA is thus expected to be condensed in cases when the virus capsid is impermeable to condensing counterions, 
so that they, once packed in the bacteria/cell, cannot leave the virus once it enters the inter-cellular space. The role 
of the condensing agents may be very different in the process of DNA packing7,8 and in the condensation of the 
DNA once it enters the virus - the later is of primary interest to this work.

Shapes of many virus capsids are experimentally determined to high precision, but the conformation of DNA 
in viruses (bacteriophages in particular) is less well known and many different shapes and orderings of the viral 
DNA have been proposed. Condensation of DNA in free space has been investigated in vitro. The shape of the 
DNA condensate is typically toroidal9. In such a configuration a single, long DNA strand is wound in a toroidal 
“rope” so that it forms locally parallel DNA streamlines (“bundle” of DNA) enabling thus the DNA self-attraction. 
The shapes and sizes of the DNA toroids have been theoretically explained10 in a model of the condensate that 
accounts for the costs of the DNA bending and the formation of the condensate surface. In order to apply the 
model to viruses one needs to consider the DNA condensation in the confinement of the capsid. Such calculations 
have been performed11,12, but the toroidal symmetry of the condensate was assumed from the start. The obtained 
theoretical predictions were found to be adequate for T5 bacteriophages which were experimentally modified so 
to eject about 60% of their DNA with the remaining part condensed using a buffer containing spermidine or PEG. 
A question still unresolved is13 whether the fully packed bacteriophages and other dsDNA viruses (e.g. herpes) 
contain the condensate with toroidal (axial), the so-called inverse spool symmetry, and whether such conforma-
tion is universal. Non-toroidal conformations of bundled DNA have been proposed previously, most notably by 
Hud14, Petrov et al.15 and Earnshaw et al.16 (for the partially disrupted capsid of giant T4 bacteriophage). Hud 
proposed a conformation where the DNA is packaged in a toroid that is “folded” forming thus a highly compact 
structure. Similar conformations may have been detected in numerical simulations15,17,18. However, the energetic, 
dynamic and possibly entropic reasons for the formation of the “folded toroid” configuration are still not obvious 
and additional investigation is warranted. Furthermore, it is not clear whether the folded toroid conformation 
is somehow special or it may be only a member of a set of possible conformations of a circularized DNA bundle, 
favorable energetically or dynamically in given circumstances. In this respect, it is important to investigate the 
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interplay of surface and bending energies and how their competition influences the formation of the confined 
DNA structure - this it the aim of the present paper. Brownian dynamics simulations of the DNA packing15 
revealed that the DNA conformation may depend on the shape of the virus capsid, i.e. whether it is elongated or 
not. The influence of the geometry of the confinement on the shape adopted by the DNA condensate is thus of 
interest and will also be investigated here.

Previous investigaions indicate that a unique DNA conformation is not likely to be representative for all the 
DNA phages, irrespectively of the capsid geometry (which may be quite elongated in some bacteriophages and 
can have large internal portal structures19) and of the condensing agent (dispersed proteins, proteins bound to 
capsid, or multivalent counterions)20 - the present study aims to clarify all of this factors and their influence on 
the conformation assumed by the condensed DNA.

The DNA conformations are investigated here within a framework of the model used to explain formation of 
DNA toroids in free space10. The shape of the DNA condensate is thus assumed to minimize the free energy but 
the model in ref. 10 is extended suitably to allow for investigation of non-toroidal conformations of condensed 
DNA. Such an approach is advantageous with respect to the simplicity of modeling as it requires only two param-
eters for competing energies: the persistence length (i.e. the bending rigidity) of DNA, Lp, and the surface energy 
per unit area of the DNA rope, σ. The shapes of interest can be most easily visualized as solids generated by 
motion of a planar domain  of area S bounded by curve   (cross-section of the bundle) along a closed 
three-dimensional curve Γ​ of length  so that the geometric centroid of  lies on Γ​. This produces a shape (rope) 
of volume =V S  and area OL=A  where  is the length of . Physically, the rope is realized by DNA wounding 
many times around Γ​, forming locally a bundle of parallel DNA streamlines. The curve Γ​ needs thus to be closed, 
which makes the problem importantly different from and more difficult than those investigated in the previous 
studies of shapes of open strings in confinement17.

The DNA ropes contain the bundled DNA, together with condensing agents. It is easy to conceptualize the 
distribution of small multivalent couterions in a DNA rope, but the model in principle applies to condensing 
proteins also - in this case, the proteins may disturb the DNA streamlines around them, but the notion of the rope 
may still make sense. For example, when the capsid of adenovirus is disrupted, the DNA is detected in a form of a 
thick fiber, most likely containing several DNA strands (“string”) complexed with condensing proteins (“bead”)2, 
so that the notion of a “nucleoprotein filament”21 (the rope) within a capsid may make sense.

Concerning the model, one could allow for the variation of cross-section bounding curve along Γ​, as long as 
its area remains the same - this may simulate rearrangements of DNA strands in a cross-section, depending on 
its position on Γ​. Such rearrangements may be required for tighter packing of DNA in the capsid. In the model 
adopted here, the cross-section of the bundle is assumed to be a circle of radius r, for all points on Γ​. This simpli-
fies the analysis, as for given r, one needs to determine only the optimal path Γ​. Note, however, that for the given 
volume (or length) of packed DNA, the shapes differ depending on r - larger cross-sectional areas imply shorter 
paths Γ​, as V is preserved. DNA ropes dominated by surface energy (σA, where σ is the DNA surface tension) 
are expected to be stout and compact, i.e. their cross-sectional areas should be as large as possible so that their 
exposed surface is minimal. On the other hand, ropes dominated by elastic energy are expected to be slim and 
long so to maximally reduce the curvatures of individual DNA strands - this implies smaller cross-sectional 
areas10.

The total (free) energy of the condensate in the described approach is
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where the first term represents condensation energy of the rope (γ is the condensation energy per unit volume 
and may be positive if the DNA-DNA separation, d, is smaller than the optimal), the second is the surface free 
energy (including also the entropic contribution of the DNA strands at the bundle surface), and the third is the 
bending energy. The model does not include the DNA twist explicitly. As in ref. 10, the surface energy is assumed 
to be proportional to the exposed surface of the bundle, π=A r2 , with the surface tension, σ as the proportion-
ality coefficient i.e. the energy scale. The bending energy is obtained by integrating the squared curvature over the 
whole length of DNA,  . This can be reduced to the single integral once the integration over the circular 
cross-section of the rope/bundle is performed. The remaining integral in Eq. 1 is performed over the centroid 
curve Γ​, where s is the arc-length coordinate of Γ​ (s ∈​ [0, 1]), and Rs is the radius of curvature at the center of the 
circular cross-section. Bulk and surface energy parameters, γ and σ, depend on d and are, in the simplest approx-
imation, proportional22.

For known energy parameters σ and Lp, and fixed DNA length (or volume - these are related through d22) of 
DNA, the minimization of F reduces to finding optimal r and Γ​ which are mutually dependent as the total DNA 
volume, π=V r2 , is fixed. The minimization of F with respect to centroid curve Γ​ and radius r needs to account 
for (i) the confinement and (ii) possible self-collisions of the bundle in cases when the curve Γ​ approaches itself. 
Both physical effects are essentially important for the problem in question and both can be treated as penaliza-
tions of the energy functional in Eq. (1). It should be noted that in the limit of a thin bundle the approach enables 
one to follow essentially a single DNA strand - in this limit it is thus complementary to numerical simulations of 
packed DNA8,15 and other models of confined semiflexible polymers23.

For given cross-sectional radius r, infinitely many closed curved Γ​ can be constructed, and finding the one 
which minimizes the free energy is the aim of the numerical procedure described in Methods. The minimization 
is performed somewhat asymmetrically, due to the fact that the surface energy depends only on r and not on Γ​. 
For given volume V, specification of r uniquely determines the surface (free) energy, and the minimization of total 
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free energy reduces to finding Γ​ which, for given r, yields minimal bending energy of the rope. The optimal shape 
of the rope depends on the magnitudes of elastic and surface energy parameters, Lp and σ, respectively. However, 
whatever their magnitudes may be, the rope will eventually have certain cross-sectional radius r and centroid 
curve Γ​. Instead of considering three-parameter space (V, Lp, σ), it suffices to consider two-parameter space (V, r),  
as the rope radius “encodes” the relative importance of surface vs. bending energy of the rope. There is a bonus to 
this representation, because it should enable a simpler comparison between the theory and experiments - whereas 
the bending and surface energy parameters are inaccessible from the experiments, the rope radius should not 
be. The problem is thus reduced to geometry. For given V and r, Γ​ is found such that the bending energy only is  
minimal. The rope radius r (and the corresponding surface free energy) is systematically modified and the  
minimization of bending energy performed separately for each value of r. Note that in this representation the 
results do not depend on the value of persistence length Lp, as it appears only as the scale (multiplying factor) of 
the bending energy. One should remember, however, that small persistence lengths diminish the contribution of 
the bending energy in the total free energy balance, emphasizing importance of the surface energy contribution - 
in such case, one may expect formation of ropes with large values of cross-sectional radius10.

The bacteriophage capsids are either icosahedral or elongated along an axis connecting two opposite icosahe-
dron vertices (prolate), such as e.g. T416,24. In the calculations, the confinement (capsid) is represented by a cylin-
der of base radius rB and height 2rB f, where f is the “elongation factor” - f =​ 1 approximately represents nearly 
isometric virus particles, and f >​ 1 prolate viruses. The two-parameter space (V, r) is appropriately scaled so that 
the two relevant parameters are ratio of radii, p1 =​ r/rB (p1 <​ 0.5), and the volume ratio, π=p V fr/(2 )B2

3 . In a 
wild-type virus, volume ratio is determined by the length of the viral genome. It may be useful to consider it as a 
parameter in the minimization as such calculations may give insight in the structures of DNA condensates in 
partially filled viruses, possibly also during the packaging or ejection process25, although one should always keep 
in mind that the structures obtained here are thermodynamical minima and may not be realized dynamically26. 
For a certain volume of the DNA (fixed p2) there are solutions with different bundle radii (p1). For given σ and Lp, 
only one of these radii minimizes the total free energy. The values of σ and Lp depend on the ionic content of the 
bacteriophage interior and presence of the condensing proteins.

Results
The applicability of the model to viruses depends on the range of parameters examined. If the model is under-
stood in its most restricted sense - to represent the condensed DNA “rope” - the ratio of radii needs to be suffi-
ciently large. This is due to the continuum concepts of bulk and surface DNA in the model, so that the number of 
DNA streamlines in the cross-section  needs to be large enough in order that the two concepts make sense. In 
the condensed DNA medium, the center-to-center distance between the DNA strands/streamlines is about 
3 nm9,12. Assuming a hexagonally packed DNA12, the notion of “bulk” and “surface” may make some sense for at 
least 7 DNA helices, close-packed so that the central helix is surrounded with six equally distanced neighbors. The 
effective radius of such a bundle would be about 4 nm (3 +​ 1.5 nm). The size of the capsid depends on the bacteri-
ophage type, but taking, e.g. φ 2925 with a base radius of about 25 nm, the minimum ratio of radii that could be 
simulated by the model would be about p1 =​ 4.5/25 ~ 0.2. For larger bacteriophages, such as T424, the minimum 
ratio is about p1 =​ 4.5/45 ~ 0.1. In the simulations presented below (Fig. 1), p1 >​ 0.275. As demonstrated, smaller 
values of p1 (~0.1) may also be of interest - these shapes with small cross-sectional radii occur for sufficiently low 
surface tensions. The numerical method adopted here, however, becomes increasingly slower as p1 is diminished. 
This is due to the fact that, for given volume V, slim ropes (small p1) are longer, requiring effectively more degrees 
of freedom for description of centroid curve Γ​ (see Methods). This increases the number of configurations which 
need to be examined by the minimization procedure.

The minimal energy shapes can, of course, be plotted once found, yet a quantitative measure is required to 
classify them. An adequate measure was found to be the writhe of Γ​ (Wr) which quantifies the topological com-
plexness of the rope - in two dimensions, writhe is the total number of self-crossings of Γ​, which, in general, 
contains both positive and negative contributions, depending on whether the curve crosses itself from “above” or 
“below”27. In three dimensions (3D), the writhe can be evaluated by performing a double integral over the closed 
curve27. For our purposes it suffices to consider the absolute value of writhe, |Wr|, as shapes with the same abso-
lute value of Wr have the same free energies. Writhes obtained in 3D are real numbers, yet the shapes are found 
to belong to classes represented by territories in parameter space, in which their writhe is typically within ~0.25 
around the integer value - there are some exceptions, specified below. Writhes of minimal free energy shapes in a 
(p1, p2) parameter space are shown in Fig. 1 for elongation factors f =​ 1, 1.5, 2 (from left to right). The elongation 
factors chosen can be compared to real bacteriophages. Elongation factor f =​ 1 roughly corresponds to bacteri-
ophages with isometric icosahedral capsid, such as T12 and λ phages. T4 phage has an elongated icosahedral 
capsid whose height to width ratio is about 1.3524, similar to φ 29 (1.3525) and T2 (1.4514) bacteriophages. In giant 
vibriophages28, the elongation ratios are between 1.7 and 2.1. Values of f =​ 1.5 and f =​ 2 are thus relevant to real 
bacteriophages. Much larger elongation ratios are found in giant headed T4 phages16 which have a variable head 
morphology (elongation ratios from ~2.5 to ~12) due to a mutated coat protein.

The territories with different writhes have sharply defined borders so that the solutions from the two sides 
of the border differ by |Δ​Wr| =​ 1 or more. The exceptions were found for f =​ 1.5 in neighboring regions having 
Wr =​ 0 and 2, and for f =​ 2 in neighboring regions Wr =​ 0 and 1 and Wr =​ 2 and 0 - there the transitions between 
different conformations are continuous and the borders are fuzzy. A particularly densely packed shapes (large p2 
parameters) with different writhes were selected for graphical representation. These are indicated by circles and 
letters which correspond to panel labels in Fig. 2.

In case of isometric capsids (f =​ 1), a large portion of the parameter space is occupied by shapes with Wr =​ 0. 
These shapes are “squeezed” and folded tori, which become maximally folded for large packing ratios p2, as shown 
in Fig. 2a (f =​ 1). Exactly such shapes were predicted for organization of double-stranded DNA in the 
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bacteriophage heads by Hud14 (see Fig. 2b in ref. 14). The results obtained here show that the folded toroid pro-
posed by Hud is the shape with minimum free energy for sufficiently thick DNA ropes/condensates (  .p 0 331 ). 
The maximum packing fractions that can be obtained with such a shape are about p2 ~ 0.5. As also explained by 
Hud14, further increase in the packing fraction would be possible by allowing for a change in the cross-section of 
the DNA condensate along the centroid curve. Intriguingly, Hud’s shape seems to be quite generic as it appears 
also in different contexts and has been found in simulations of growth of thin, frictionless and non-attracting 
elastic filaments in spherical confinement17,18.

Shapes with Wr =​ 1 in isometric case can be conceptualized as an additional coil turn of the DNA rope sand-
wiched between the folded toroid (Fig. 2b, f =​ 1). For f =​ 1, this packing pattern produces a maximum packing 
fraction of about p2 =​ 0.51, but more efficient packings with the same overall pattern are possible in case of elon-
gated capsids (p2 =​ 0.54), as shown in Fig. 2f for f =​ 1.5. The shapes could also be understood as pieces of tightly 
packed helix found in open tubes17, but in this case their appearance is complicated by the requirement on Γ​ 
curve being closed. A surprising conformation was found in a narrow range of parameters for isometric capsids 
where Wr ≈​ 4 (Fig. 2c, f =​ 1). The conformation of the DNA rope there is knotted, which can be most easily 
detected by removing the confinement once the minimal shape is found and letting it relax - a prototypical trefoil 
knot appears, with three-fold symmetry and maximally extended loops so that their curvature is minimal. The 
writhe of the relaxed shape drops by one, to ≈​3. The knotted shapes cannot thus be unfolded to a toroid once 
the capsid is destroyed - this is a situation quite different from the one discussed by Hud14 and applies also to the 
shape shown in Fig. 2l, representative for the knotted shapes in the large region of parameter space when f =​ 2 
(see below).

In addition to reproducing Hud’s shape, the calculations also reproduce the “supertwisted” shapes proposed 
by Earnshaw et al. for partially disrupted capsids of giant T4 phages16 (the “supertwisting” of a thick DNA rope 
found here should not be mistaken for supercoiling of a single DNA strand - see e.g. ref. 29). The shape which 
Earnshaw et al. describe as “twisted skeins of yarn” is quite similar to the one found here (twice twisted closed 
loop - “double helix”) for minimal energy condensates in f =​ 2 capsids having Wr ≃​ 1 (Fig. 2j). The elongation 
ratio of capsids containing supertwisted DNA in experiments16 is about f ~ 4. A similar shape, but twisted only 
once, has been found by Petrov et al., also in elongated capsids15. The model elaborated here does not explicitly 
include the twisting contribution to elastic energy of the condensed DNA rope. The DNA twist may be important 
for the condensation, especially for its dynamics, as shown e.g. in ref. 30. However, it is interesting to note in this 
context that the DNA twist is not required to obtain some of the rope conformations whose shape might suggest 
otherwise. For example, the appearance of a shape similar to the one shown in Fig. 2j (but twisted only once) has 
been previously proposed to result from the twisting contribution to the DNA elastic energy31. In the model pre-
sented here, such a shape occurs due to a particular interplay of the DNA rope bending energy and the packing 
constraints effected by the rope confinement in the cylinder and its self-collisions.

In many densely packed conformations of bundles in elongated cylinders, DNA strands are mostly parallel to 
the cylinder axis (see Fig. 2f,h,k,l), a feature found also by Earnshaw et al. in their experiments16 which led them 
to propose the model of coiled DNA with the axis of coiling perpendicular to the elongated axis. Some of the 
structures found could also be loosely interpreted as a concentric spool15 (“ball of yarn”), without axial symmetry, 

Figure 1.  Regions of (p1, p2) space with different absolute values of writhe as indicated. In white regions 
the shapes are not influenced by the confinement - the (non-selfintersecting) solutions there are tori. In cross-
hatched regions, the solutions were not found - all the shapes in these regions either penetrate the confinement 
or self-intersect. Shapes denoted by circles (squares) are represented in Fig. 2 (Fig. 3).
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see e.g. Fig. 2c - there the DNA strands spool along different axes, leaving a hole in the middle of the capsid. When 
viewed from a fixed perspective many of the shapes would appear as seemingly “random” configurations of short, 
liquid-crystalline like segments of DNA - this is due to complicated connectivity of the shapes (see e.g. Fig. 2c,h) 
and the large part of their volume being obscured from view. In that respect, some of the shapes obtained are 
consistent with the “liquid crystalline drop” model13,32 and the cross-sectional size of the hexagonally crystallized 
domains of DNA in that model corresponds to the rope diameter 2r. The message here is that different models of 
DNA packing in bacteriophages proposed previously can be reproduced in the present model for different values 
of p2 and p1, i.e. depending on the total length of the DNA and relative importance of surface vs. bending energy 
of the DNA condensate - this depends on the chemical environment in a capsid which determines the bulk and 
surface energy of the DNA bundle but also influences the persistence length of DNA. The predictions of model 
are, however, not consistent with the previously proposed conformations which require sharp bends of the DNA, 
such as the so-called spiral fold model proposed by Black et al.33.

Figure 3 illustrates how the conformations of the minimal energy ropes vary throughout the (p1, p2) space. The 
shapes chosen for representation are denoted by squares in Fig. 1 for f =​ 1.5. The figure illustrates how the shapes 
with the same volume ratio (p2 =​ 0.35) change as the rope radius is increased (from left to right; first, second, third 
and sixth shape). Note how the conformation of the rope changes as the border between the two writhe region is 
crossed (between the second and the third shape, the writhe changes from ~1 to ~0). The two additional shapes 
displayed (for p2 =​ 0.47 and 0.50) enable one to visualize how the shapes vary in the Wr =​ 1 and Wr =​ 0 regions, 
all until the shapes denoted by f and e in Fig. 1 are reached, as indicated by arrows in Figs 1 and 3.

A specific motif can be detected in both knotted and unknotted shapes, such as those shown in Fig. 2d,f,g. 
Roughly, the motif consist of three half-tori, two of them lying in parallel planes and placed one above the other, 
and the third one situated in the void created by such an arrangement, lying in a plane perpendicular to those of 
the two parallel half-tori - an efficient packing of such sort is possible when the major radii of the tori are about 

Figure 2.  Minimum free energy shapes for f = 1, f = 1.5, and f = 2 (left, middle, and right columns). Below 
each of the shapes displayed, the corresponding p1, p2 parameters and the writhe are indicated as (p1, p2; Wr). To 
better represent the three-dimensional nature of the shape, in panels a,b,f,j, the centroid curves of the shapes, 
Γ’s, are shown. In panels c,d,g,h,k,l cylindrical slab is cut out, so that the cross-sections of the shapes, parallel to 
the confinement cylinder bases can be seen.
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two times larger than the tube radius r (p1 ~ 0.3). Often, the two parallel half-tori are found to be slightly folded, 
upwards and downwards for a better packing (see left parts of the shapes in Fig. 2d,g, and right part of the shape in 
Fig. 2l). Some of the shapes with large packing fractions can be understood different closures of the three-toroid 
motif, as illustrated in Fig. 4. A closure of the motif shown in Fig. 4a corresponds to minimal energy shapes in 
Fig. 2c,l - this case of closure is particularly interesting as the conformation of the closing shape is the same as the 
motif it closes, only rotated by ~60 degrees around the cylinder axis. Closures in Fig. 4b–d correspond to minimal 
energy shapes in Fig. 2d,f,g, respectively. All of the shapes with the characteristic motif shown have large packing 
fractions, p2 >​ 0.5.

A finite thickness of the confined DNA rope is what makes the appearance of certain conformations possible 
only in some regions of parameter space. For example, the minimal length of the rope required to tie a trefoil (31) 
knot depends on the rope radius, so that ≈ .r/ 32 74min 34 - the trefoil knots formed by ropes with ratios r/  
larger than this (loose knots) can be tied, while those with smaller can not. Combining parameters, one finds that 
=r f p p/ 2 /2 1

3 . The trefoil knot is the simplest of all the knots and the  r/  ratio (rope length) required to tie it is 
the smallest34. The next shortest length knot is 41 knot, requiring ≈ .r/ 42 09min , but as the rope length increases, 
the space of knots that can be tied rapidly expands. All of these knots are candidates for the solutions of the prob-
lem, and are interesting in particular when stiffly tied (densely packed), i.e. as soon as the rope length  r/  becomes 
larger than a critical value (32.74 and 42.09 for 31 and 41 knots, respectively). The trefoil knots were found by the 
SA procedure starting from random and torus conformations, so no specific initial configurations were required, 
yet one may wonder whether more complicated knots may evade detection. To investigate this, knots whose coor-
dinates were taken from ref. 34, with simply scaled centroid curves so to account for ratios  r/  larger than the 
minimal, were used as initial conformations in the SA procedure with different initial temperatures. More compli-
cated knots were not found to be the minimal energy solutions for the f factors investigated when p1 >​ 0.275. One 
should also note that the knotted conformation when f =​ 1 appears for rope lengths significantly larger ( r/  ~ 50) 
than in the case of tight knot, so that the centroid curve of the observed conformation is significantly deformed 
with respect to the centroid curve of the tight knot in order to fit in the cylinder (see Fig. 2c).

Discussion
All the findings indicate that there may not be a unique model of the DNA conformation appropriate for all bac-
teriophages. The conformation with minimal free energy depends sensitively on the total amount of the DNA, the 
nature of the condensing agents, and the shape of the bacteriophage capsid. The phase space of conformations is 
divided in territories of different writhe, separated mostly by sharp borders, which do not allow for a continuous 
change of the conformation. Some of the conformations proposed previously were also found in the present work, 
in different positions in the parameter space, further corroborating the idea of the non-uniqueness of the DNA 

Figure 3.  Minimum free energy shapes for f =​ 1.5 denoted by squares in Fig. 1. Below each of the shapes 
displayed, the corresponding p1, p2 parameters and the writhe are indicated as (p1, p2; Wr). The arrows suggest 
the path through the (p1, p2) space, all up to shapes denoted by f and e in Fig. 1 in Wr =​ 1 and Wr =​ 0 regions, 
respectively.

Figure 4.  Four different closures of the three-toroids motif resulting in shapes having a single, closed 
centroid curve. 
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packing in bacteriophages. The results indicate that various conformations proposed previously may be under-
stood within the same theoretical framework, as minimal-free-energy states of the DNA condensate, obtained 
in particular condensation conditions, for given amount of the DNA and in a geometrical confinement provided 
by the shape of the capsid. They thus interlink the previous studies (e.g. Hud’s folded toroid14, Earnshaw’s et al. 
twisted skeins of yarn16 and Lepault’s et al. liquid crystalline drop13,32), showing that different shapes of confined 
DNA condensates may be understood in a unifying model.

Methods
The DNA rope was represented by a string of intersecting spheres, all with the same radius r, with centers dis-
tributed on centroid curve Γ​ and separated by a fixed amount qr, q ~ 135. The total volume of such a system is 
proportional to the number of spheres, N. The degrees of freedom of the rope are related to the positions of sphere 
centers on Γ​. The self-collisions of such a shape are easily checked for by calculating the distances between all the 
spheres. Once detected, the energy functional are penalized to essentially forbid the sphere-sphere penetration for 
spheres that are not nearest neighbors along Γ​. Collisions of the shape with the container (capsid) are detected by 
calculating the distances between all the spheres and the cylinder surface (including cylinder bases) and by penal-
izing the functional to forbid the penetration of the rope outside the container. The closedness of Γ​ is imposed 
by penalizing the energy functional when the distances between the first and the last (N-th) sphere are larger or 
smaller than qr. The elastic energy is calculated from the positions of all the spheres by interpolating a cubic spline 
through all the points and integrating its curvature along Γ​, as specified in Eq. (1). The minima of free energy 
functional, penalized as explained, are found by the simulating annealing procedure. The numerical procedure 
was run many times, with different initial conditions (i.e. initial shapes at high temperatures of the algorithm) for 
Γ​, including random curves, circles, spirals/coils, (trefoil) knots, and appropriately modified curves found by the 
algorithm for values of p1 and p2 parameters different from the one considered in the minimization. The solutions 
were carefully manually sifted, some of them reselected for repeated minimization, all until no better solutions 
could be found.
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