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Abstract: Extracellular vesicles (EVs) have been the focus of great attention over the last decade,
considering their promising application as next-generation therapeutics. EVs have emerged as
relevant mediators of intercellular communication, being associated with multiple physiological
processes, but also in the pathogenesis of several diseases. Given their natural ability to shuttle
messages between cells, EVs have been explored both as inherent therapeutics in regenerative
medicine and as drug delivery vehicles targeting multiple diseases. However, bioengineering
strategies are required to harness the full potential of EVs for therapeutic use. For that purpose, a
good understanding of EV biology, from their biogenesis to the way they are able to shuttle messages
and establish interactions with recipient cells, is needed. Here, we review the current state-of-the-art
on EV biology, complemented by representative examples of EVs roles in several pathophysiological
processes, as well as the intrinsic therapeutic properties of EVs and paradigmatic strategies to produce
and develop engineered EVs as next-generation drug delivery systems.

Keywords: extracellular vesicles; exosomes; drug delivery; biogenesis; uptake; targeting; engineering;
scalable production; bioreactors

1. Introduction

All cells share the ability to secrete extracellular vesicles (EVs), phospholipid bilayer
membrane structures enclosing a portion of their own cytoplasm [1]. These vesicles
are able to transfer their cargo of biomolecules, including proteins, lipids, and nucleic
acids, triggering alterations in recipient cells [2–4]. For this reason, EVs play essential
roles in intercellular communication, being associated with multiple physiological and
pathological processes.

Considering their natural ability to shuttle messages between cells, researchers and
companies have shifted their attention for the promising use of EVs as natural therapeutic
systems. In fact, EVs are able to mediate some of the therapeutic effects from their cells
of origin [5,6]. Therefore, EVs could be used in the substitution of their cell of origin, as a
cell-free therapy triggering an equivalent therapeutic effect, but avoiding the complexity
and safety concerns associated with cellular therapies.

Furthermore, EVs have been explored as drug delivery vehicles for the treatment
of several diseases, through the loading of therapeutic molecules and shuttling them to
target cells and tissues. Their small size and resemblance to the cell membrane makes
EVs ideal candidates to cross biological barriers, while offering high biocompatibility to
target cells [7–9]. Some EVs show inherent targeting ability and display tropism towards
particular cells or tissues [10–12]. Due to their biological origin, EVs present generally
low immunogenicity and toxicity, allowing to overcome safety issues associated with
synthetic nanocarriers [13–16]. Thus, EVs have emerged as promising drug delivery
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systems (DDS), presenting advantageous features that may allow them to outperform
synthetic nanocarriers. In fact, EVs have been recently described to deliver functional RNA
more efficiently than state-of-the-art synthetic RNA nanocarriers [17].

In addition to their ability to pack therapeutic molecules, EVs can be further engineered
to enhance their targeting capacity towards specific tissues. This has been achieved either
by the genetic engineering of parental cells in order to express a targeting moiety fused to
an EV transmembrane protein, or by anchoring targeting ligands to the surface of EVs after
their isolation. Here, we review recent and notable developments in the field, allowing
the engineering of EVs to enhance their therapeutic potential, elucidating the pros and
cons of each strategy. This is preceded by a contextualization of the biology of EVs and
their roles in major pathophysiological processes. We also review the most recent strategies
employed to address the critical issues in upstream and downstream processing of EVs to
their scalable manufacturing. These platforms are expected to support the large numbers
and high purity of EVs needed as the field moves more intensively from pre-clinical to
clinical studies towards the validation of EVs as key players in therapeutic applications.

2. EV Biology

The identification of EVs can be traced back to as early as 1946, when they were
described as pro-coagulant particles in plasma [18], and later in the 1960s described as
“platelet-dust” and as cartilage matrix vesicles associated with bone calcification [19,20].
A major breakthrough occurred in 1983, when a mechanism for the release of transferrin
receptors from maturing red blood cells through vesicles was described [21,22]. These
vesicles were later named “exosomes” in 1987 [23].

For some time, EVs were only considered to be a means to remove unwanted material
from the cell. However, the field of EVs was revolutionized in 1996 when exosomes were
shown to play a role in antigen presentation, opening an entirely new discussion that EVs
might play a role in the transfer of biological information between cells [2]. This was later
consolidated in 2006 and 2007, when EVs were shown to contain RNA (miRNA and mRNA)
that could be delivered to recipient cells, changing their behavior [3,4]. Since then, EVs
have emerged as relevant players in intercellular communication, mainly through their
ability to transfer a cargo of biomolecules, including proteins, lipids, and nucleic acids,
which trigger alterations on recipient cells (Figure 1).

Bioengineering 2022, 9, x FOR PEER REVIEW 2 of 30 
 

cells [7–9]. Some EVs show inherent targeting ability and display tropism towards partic-

ular cells or tissues [10–12]. Due to their biological origin, EVs present generally low im-

munogenicity and toxicity, allowing to overcome safety issues associated with synthetic 

nanocarriers [13–16]. Thus, EVs have emerged as promising drug delivery systems (DDS), 

presenting advantageous features that may allow them to outperform synthetic nanocar-

riers. In fact, EVs have been recently described to deliver functional RNA more efficiently 

than state-of-the-art synthetic RNA nanocarriers [17]. 

In addition to their ability to pack therapeutic molecules, EVs can be further engi-

neered to enhance their targeting capacity towards specific tissues. This has been achieved 

either by the genetic engineering of parental cells in order to express a targeting moiety 

fused to an EV transmembrane protein, or by anchoring targeting ligands to the surface 

of EVs after their isolation. Here, we review recent and notable developments in the field, 

allowing the engineering of EVs to enhance their therapeutic potential, elucidating the 

pros and cons of each strategy. This is preceded by a contextualization of the biology of 

EVs and their roles in major pathophysiological processes. We also review the most recent 

strategies employed to address the critical issues in upstream and downstream processing 

of EVs to their scalable manufacturing. These platforms are expected to support the large 

numbers and high purity of EVs needed as the field moves more intensively from pre-

clinical to clinical studies towards the validation of EVs as key players in therapeutic ap-

plications.  

2. EV Biology 

The identification of EVs can be traced back to as early as 1946, when they were de-

scribed as pro-coagulant particles in plasma [18], and later in the 1960s described as 

“platelet-dust” and as cartilage matrix vesicles associated with bone calcification [19,20]. 

A major breakthrough occurred in 1983, when a mechanism for the release of transferrin 

receptors from maturing red blood cells through vesicles was described [21,22]. These 

vesicles were later named “exosomes” in 1987 [23]. 

For some time, EVs were only considered to be a means to remove unwanted material 

from the cell. However, the field of EVs was revolutionized in 1996 when exosomes were 

shown to play a role in antigen presentation, opening an entirely new discussion that EVs 

might play a role in the transfer of biological information between cells [2]. This was later 

consolidated in 2006 and 2007, when EVs were shown to contain RNA (miRNA and 

mRNA) that could be delivered to recipient cells, changing their behavior [3,4]. Since then, 

EVs have emerged as relevant players in intercellular communication, mainly through 

their ability to transfer a cargo of biomolecules, including proteins, lipids, and nucleic ac-

ids, which trigger alterations on recipient cells (Figure 1). 

 

Figure 1. Schematic representation of an extracellular vesicle (EV) and its biological composition. 

EVs are composed by a phospholipid bilayer membrane enclosing intraluminal fluid with cytoplas-

mic origin. They contain biomolecules from their cell of origin, which include, other than lipids, 

Figure 1. Schematic representation of an extracellular vesicle (EV) and its biological composition. EVs
are composed by a phospholipid bilayer membrane enclosing intraluminal fluid with cytoplasmic
origin. They contain biomolecules from their cell of origin, which include, other than lipids, several
types of proteins (e.g., involved in cell adhesion, as well as other transmembrane and intraluminal
proteins with various functions) and nucleic acids (e.g., mRNA and miRNA). Figure created with
BioRender.com.
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The term EVs was proposed in 2011 to define all the different types of extracellu-
lar membrane structures [1]. However, EVs actually comprise a highly heterogeneous
group. Depending on their biogenesis, EVs are broadly categorized either as exosomes, or
microvesicles [9]. Exosomes are generated through the endosomal pathway [9,24]. Endocy-
tosis at the cell membrane leads to the formation of early endosomes. During endosome
maturation into late endosomes, there is an inward budding of endosomes resulting in the
accumulation of intraluminal vesicles (ILV), which leads to the formation of multivesicular
bodies (MVB), also named multivesicular endosomes (MVE). Upon the fusion of MVE with
cell membrane, ILV are released to the extracellular space originating exosomes, which
generally display 50–150 nm in diameter. Microvesicles are formed by the outward bud-
ding of the plasma membrane, ranging in size from 50 nm to 1 µm in diameter, or even
higher [9]. Exosomes and microvesicles show overlapping properties, such as size, density,
and molecular composition, making it challenging to distinguish different co-isolated EV
subpopulations [25]. Additionally, the composition of EVs may differ among different
secreting cells.

The complexity of EVs is further increased when we consider other structures, such as
apoptotic bodies released from cells undergoing apoptosis, which can span over a large size
range (from 100 nm to 5 µm in diameter) [25], or the recently identified mitovesicles from
mitochondrial origin [26]. Interestingly, recent studies revealed that EVs could even trans-
port whole organelles inside them, such as mitochondria, thus enabling their functional
trafficking between cells [27,28]. Both the trafficking of mitovesicles, or whole mitochondria
shuttled inside EVs, seem to be associated with the processes of mitochondrial regulation
and dysfunction, namely in neurodegenerative disorders. Moreover, EVs display physical
characteristics (i.e., size and density) similar to other secreted non-vesicular nanoparticles,
such as lipoproteins of various densities [29] and the recently identified exomeres [30].

2.1. EV Biogenesis

Cargo incorporated in exosomes originate from endocytosis at the plasma membrane
or are directly targeted to early endosomes via the biosynthetic pathway, from the trans-
Golgi network [9]. These sorting processes are regulated by various Rab GTPases. The
formation of ILV can be regulated by the endosomal sorting complex required for transport
(ESCRT), a family of proteins that associate in a stepwise manner at the membrane of
MVE [9,25]. Firstly, ESCRT-0 and ESCRT-I subunits cluster membrane-associated cargo in
microdomains of the limiting membrane of MVE. The tumor susceptibility gene 101 protein
(TSG101) is one of the main ESCRT-I components, being used as an EV protein marker.
This is followed by ESCRT-II-mediated recruitment of ESCRT-III that performs budding
and fission of this microdomain into the MVE lumen.

Although ESCRT-III is required for fission of ILVs, cargo clustering and membrane
budding can be either ESCRT-dependent or ESCRT-independent [9]. The latter can rely
on syntenin and the ESCRT accessory protein ALG-2 interacting protein X (ALIX), which
links cargo to ESCRT-III [9,31]. ESCRT-independent biogenesis is aided by lipids such as
ceramide, which allows the generation of membrane subdomains imposing a spontaneous
curvature on the membranes [32,33]. Additionally, proteins of the tetraspanin family (e.g.,
CD63, CD81 and CD9) have been shown to regulate ESCRT-independent cargo sorting to
exosomes [9,34,35]. Some tetraspanins also show the potential to form microdomains and
induce budding.

Mature MVE can follow a degradative route by fusion with lysosomes or autophago-
somes. Alternatively, MVE are transported along microtubules to the plasma membrane.
At this stage, MVE fuse with the plasma membrane leading to exosome release in a
process mediated by Rab GTPases (e.g., Rab27A/B, Rab35), actin and SNARE (soluble
N-ethylmaleimide-sensitive fusion attachment protein receptor) proteins [9,25,36–38].

Microvesicle biogenesis shares several mechanisms common to exosome biogene-
sis. This includes the formation of microdomains (in this case in the plasma membrane)
where specific lipids and cargo are clustered, as well as a similar role of ESCRT machinery
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and ceramide in vesicle formation [9]. However, microdomain formation is followed by
the translocation of lipids between leaflets of the plasma membrane, a process unique
to microvesicle formation. This process is mediated by Ca2+-dependent enzymes (e.g.,
translocases, scramblases and calpain), rearranging the asymmetry of membrane phospho-
lipids in a way that causes the physical bending of the membrane, favoring membrane
budding [25,39]. The most significant examples are the exposition of phosphatidylserine
(PS) and phosphatidylethanolamine (PE) from the inner leaflet to the cell surface.

2.2. EV Interaction with Recipient Cells

After being released into the extracellular space, EVs are able to interact with cells
either close-by or far away, triggering phenotypic changes in these cells. EV binding to
recipient cells can be mediated by tetraspanins, integrins, proteoglycans, lectins, lipids
(e.g., PS) and extracellular matrix components (e.g., fibronectin and laminin) [9]. After
binding to a recipient cell, EVs can follow multiple routes to deliver their message. EVs can
elicit changes in recipient cells by simply binding to specific surface receptors, triggering
signaling pathways (e.g., antigen presentation), but without delivering any EV cargo [9].

EVs can also be internalized through multiple EV uptake pathways [40] (Figure 2).
EVs can undergo clathrin-mediated endocytosis, through the formation of a clathrin coat in
a portion of cell membrane surrounding the EV to be internalized [41]. This clathrin coat
promotes membrane deformation, which results in membrane invagination and formation
of a bud that surrounds the EV that then pinches off, separating itself from the mem-
brane [42]. Once in the cytosol, this internalized vesicle undergoes clathrin un-coating. EVs
can also be internalized by clathrin-independent endocytosis, such as caveolin-mediated
endocytosis, involving the formation of cave-like invaginations in the plasma membrane
named caveolae, which become internalized into the cell (similarly to clathrin-mediated
endocytosis) [40,43]. Caveolin-1 is required for the formation of caveolae, which are also
rich in cholesterol and sphingolipids. Clathrin-independent endocytosis may also occur
via lipid rafts [44]. These plasma membrane microdomains have altered phospholipid
composition, being more tightly packed and consequently less fluid, but float freely in
the plasma membrane. Lipid rafts can be found in invaginations formed by caveolin-1 or
in planar regions of the plasma membrane associated with flotillins [40]. However, lipid
raft-mediated endocytosis of EVs seems to be caveolae-independent [41,44].

Alternatively, EV uptake can happen through non-specific processes such as phagocy-
tosis and macropinocytosis [40,45,46]. Phagocytosis involves the formation of invaginations
surrounding material to be internalized, with or without the formation of enveloping mem-
brane extensions [47]. Although this process is generally used to internalize larger particles,
such as cells, it has been observed to be used to take up EVs. Phosphatidylinositol-3-kinase
(PI3K) plays an important role in this process [48]. In macropinocytosis, membrane ex-
tensions are formed surrounding a portion of extracellular fluid and fuse back with the
plasma membrane internalizing that portion of extracellular content [40,47]. This requires
Na+/H+ exchanger activity and is dependent on actin, cholesterol and the rac 1 GTPase.
Both of these uptake mechanisms seem to be triggered (at least partially) by PS present on
the outer leaflet of EV membranes.

Internalized EVs follow the endosomal pathway, eventually reaching MVE. At this
stage, EVs can follow different fates [9,25]. They can be recycled back to the plasma
membrane and released to the extracellular space. MVE can fuse with the lysosome leading
to the degradation of the contents of internalized EVs, which can still be a relevant source
of metabolites for the host cell. Alternatively, EVs may undergo endosomal escape, through
back fusion with the limiting membrane of MVE, releasing their contents to the cytoplasm
of the recipient cell. EVs may also fuse directly with the plasma membrane, releasing
their cargo directly into the cytosol of the recipient cell. Intraluminal material released
by internalized EVs includes nucleic acids (miRNA, mRNA), proteins and lipids, which
are able to trigger alterations in the recipient cell. However, little is known about how EV
cargo is unpackaged and delivered to the designated site of action, either the cytoplasm or
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the nucleus. Intracellular delivery routes are being investigated and may include direct
transfer into the endoplasmic reticulum [49] or the nucleus [50,51].
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Figure 2. Interaction of extracellular vesicles (EVs) with recipient cells. EVs bind to the surface of
recipient cells in a process that can be mediated by several molecules, being able to elicit functional
changes without entering the cell. EVs may also be internalized by recipient cells through different
uptake routes, which include clathrin- or caveolin-mediated endocytosis, endocytosis mediated by
lipid rafts, phagocytosis or macropinocytosis. Internalized vesicles follow the endosomal pathway,
being sorted into early endosomes and proceeding to MVE. Then, EVs can follow different routes:
they can be recycled back to the plasma membrane and released; EVs can fuse with the limiting
membrane of MVE releasing their contents to the cytoplasm of the recipient cell; or MVE may
fuse with lysosomes leading to EV degradation. In alternative to EV uptake, EVs may also fuse
directly with the plasma membrane of the recipient cell, releasing their cargo directly into the cytosol.
MVE—multivesicular endosomes. Figure created with BioRender.com.

3. EVs in Intercellular Communication
3.1. Physiological Roles of EVs

Given their ability to elicit changes in recipient cells, EVs have been implicated in
numerous physiological processes [52,53]. In fertilization, EVs secreted from the egg
promote sperm-egg fusion in a tetraspanin CD9-dependent process that was observed
in mice [54]. Later, microvesicles released by early embryo cells promote trophoblast
migration and implantation in the uterus through the JNK and FAK pathways, which
are activated by microvesicle cargo proteins laminin and fibronectin [55]. EVs have been
implicated in development by carrying key morphogen molecules, such as Wnt proteins
(e.g., Wingless) and Sonic Hedgehog [56–58]. Mating behavior can also be altered by EVs,
since exosomes secreted by the reproductive glands of male Drosophila melanogaster interact
with female reproductive tract epithelium and inhibit the re-mating of females [59].

EVs are important in the nervous system, being secreted by neurons and glial cells alike
to mediate intercellular communication [60]. Neuron-derived EVs have multiple relevant
roles at synapses, such as promoting synaptic growth at the neuromuscular junction and
regulating postsynaptic retrograde signaling [61–63]. Oligodendrocyte-derived EVs are
able to promote neuronal viability and increase neuron firing rate [64]. EVs also play a role
in the peripheral nervous system, where Schwann cells are able to secrete EVs to promote
axon regeneration [65].

EVs play a relevant part in the regulation of immune responses through exchange
among multiple types of immune cells. EVs play a crucial role in major histocompatibility
complex (MHC) class II antigen presentation, since dendritic cells (DC) secrete exosomes

https://biorender.com/
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carrying peptide-containing MHCII that stimulate naïve CD4+ T cells [66,67]. DC-derived
exosomes were also able to differentiate T helper cells toward a T helper type 1 (Th1)
phenotype and enhance immunogenicity in vivo [68]. In the opposite direction, T cell-
derived exosomes are able to transport miRNA to antigen-presenting cells, modulating
their mRNA expression levels [69]. Exosomes were also found to transfer miRNA between
DC in vivo, modulating gene expression in the recipient cell [70]. Another study revealed
that exosome-mediated miRNA transfer from T regulatory (Treg) cells to Th1 cells was able
to reduce inflammatory responses of recipient Th1 cells [71].

Physiological tissue regeneration processes are also supported by EVs. Endothelial
cell-derived EVs were able to reduce atherosclerotic lesion formation when delivered to
smooth muscle cells [72]. The authors of this study observed that alterations in endothelial
cells, which were previously described to be triggered by blood flow-induced shear stress,
led to the enrichment of endothelial cell-derived EVs in specific miRNA molecules that
had atheroprotective effects after delivery to smooth muscle cells. In a kidney injury
model, injured epithelial cells secreted exosomes that activated fibroblasts to initiate tissue
regenerative responses and fibrosis mediated by exosomal transforming growth factor
(TGF)-β1 mRNA [73].

3.2. EVs in Pathological Processes

In addition to their relevant role under normal physiological conditions, EVs have
been associated with multiple pathological processes [52,53,74]. Numerous studies reveal
tumor-derived EVs as relevant mediators of intercellular communication within the tumor
microenvironment (TME), which is composed of multiple non-tumorigenic cells able to
collectively support tumor growth and progression, such as endothelial cells, fibroblasts,
and immune cells, among others [75].

Under hypoxic conditions (1% O2), glioblastoma multiforme (GBM)-derived exosomes
amplified the activation of ERK1/2 MAPK, PI3K/Akt and FAK pathways in endothelial
cells, compared to normoxic conditions, resulting in increased endothelial cell sprout-
ing [76]. GBM-derived EVs were also found to skew monocyte-to-macrophage differentia-
tion to a tumor-supportive M2-type macrophage phenotype [77]. Conversely, lymph node
macrophages were able to suppress tumor growth by absorbing tumor-derived EVs and
preventing their interaction with pro-tumorigenic B cells [78]. Tumor-derived EVs are also
able to suppress anti-tumor adaptive immunity. Tumor-derived EVs induced apoptosis
of CD8+ T cells and were also able to alter the differentiation of CD4+ T cells into a state
that suppresses cytotoxic T cell activity, contributing to tumor escape from the immune
system [79].

Tumor-derived EVs also promote tumor invasion and metastasis. They help establish-
ing pre-metastatic niches, by interacting with normal cells at the metastatic sites. Melanoma-
derived exosomes recruited bone marrow progenitor cells to future sites of metastasis and
re-educated them toward a vasculogenesis supporting phenotype, enhancing tumor in-
vasion and metastasis in vivo [80]. This re-education effect was mediated by a tyrosine
kinase receptor differentially expressed in exosomes from highly metastatic melanoma cells
compared to less aggressive ones.

In another study, exosomes from pancreatic cancer cells induced the formation of pre-
metastatic niche in the liver of mice [81]. These exosomes transferred migration inhibitory
factor (MIF) to Kupffer cells in the liver that secreted TGF-β, which subsequently increased
fibronectin production by hepatic stellate cells. Fibronectin enhanced the recruitment and
retention of bone marrow-derived macrophages, establishing an environment favorable for
metastasis [81].

Remarkably, the formation of pre-metastatic niches was found to be promoted by
exosomes from different tumor types that targeted specific organs, depending on integrins
displayed on their membrane [82]. Exosomes expressing integrins α6β4 and α6β1 were able
to bind specifically to fibroblasts and epithelial cells in the lung, mediating lung tropism,
while exosomes containing integrin αvβ5 bound to Kupffer cells, leading to liver tropism.
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EVs derived from non-tumorigenic cells can also support tumor growth under specific
circumstances. For instance, exosomes from astrocytes were found to support tumor growth
in brain metastatic breast cancer in vivo. Astrocyte-derived exosomes mediated miRNA
transfer to metastatic tumor cells, reducing the levels of a target mRNA encoding for the
tumor suppressor PTEN [83]. Decreased PTEN levels triggered and increased secretion of
CCL2 chemokine by metastatic tumor cells, resulting in recruitment of IBA1-expressing
myeloid cells that enhanced proliferation and reduced apoptosis of metastatic tumor cells.

In addition to their roles as mediators in tumor progression, tumor-derived EVs
also provide a way to eliminate chemotherapeutic agents from cancer cells, enabling
chemotherapy resistance. The microvesicle-mediated release of gemcitabine was identified
as a key factor for resistance to this drug in human pancreatic cancer cells, both in vitro
and in vivo [84]. Moreover, just as tumor-stromal interactions mediated by EVs play a
relevant role in tumor progression, stromal cell-derived EVs can also mediate resistance
to therapy. Exosomes derived from stromal cells were able to mediate miRNA transfer to
ovarian cancer cells, increasing their chemoresistance to paclitaxel [85].

EVs are also involved in the cell-cell transport of pathogenic proteins associated
with neurodegenerative diseases, such as the prion protein (PrP) abnormal isoform PrPSC

in prion disease, β-amyloid in Alzheimer’s disease and α-synuclein in Parkinson’s dis-
ease [86,87]. However, the relevance of EV-mediated versus EV-independent spread and
propagation of these proteins in disease progression is still unclear. Contrastingly, some
studies have described the natural beneficial effects of EVs in these pathologies, namely in
the clearance of β-amyloid peptides [88,89].

In cardiovascular diseases, EVs have also been found to mediate the cross-talk between
different cell types in the heart, with implications in disease progression. The secretion
of cardiac fibroblast-derived exosomes triggered gene expression alterations in cardiomy-
ocytes, leading to increased pathological cardiac hypertrophy, which contributes to heart
failure [90]. In another study, macrophage-derived exosomes transferred miRNA to cardiac
fibroblasts, suppressing fibroblast proliferation and promoting fibroblast inflammation
during cardiac injury in mice [91].

In multiple infectious diseases, viruses are able to take advantage of EVs to transfer
their genetic material between infected and non-infected cells in the substitution of direct
interaction between viruses and target cells [92]. For example, exosomes derived from
human hepatoma cells infected with hepatitis C virus were able to transmit the infection to
naïve hepatoma cells [93]. Moreover, this exosome-mediated transmission was partially
resistant to antibody neutralization.

Considering the numerous roles of EVs in disease progression, EVs have been exten-
sively studied as novel biomarkers for disease [94–96], as well as targets for new therapeutic
strategies [97,98].

4. EVs as Reconfigurable Natural Therapeutic Systems
4.1. EVs as Intrinsically Therapeutic Agents

Given their ability to participate in intercellular communication, conveying messages
from their cells of origin to target recipient cells, EVs have innate therapeutic potential,
particularly interesting for tissue regeneration. EVs are able to mediate some of the thera-
peutic effects from their cells of origin by carrying lipids, proteins, and genetic material
(mRNA and miRNA), and transferring this cargo to target cells, or by triggering signaling
pathways through cell surface interactions.

EVs derived from stem and progenitor cells have gained particular interest due to
numerous therapeutic properties attributed to them, which include: immunomodulatory
capacity (mainly by reducing inflammation) [99–102]; suppressing apoptosis and stimu-
lating cell proliferation [103,104]; promoting angiogenesis [105,106]; stimulating wound
repair [107,108]; and recruiting and reprograming cells for tissue regeneration [3]. Among
the most studied EV-secreting cells with therapeutic properties we can find mesenchymal



Bioengineering 2022, 9, 675 8 of 29

stromal cells (MSC), embryonic stem cells, induced pluripotent stem cells (iPSC), cardiac
progenitor cells, and DC [109].

In particular, a growing body of evidence indicates that many of the therapeutic
features of MSC, currently under study in numerous clinical trials, are exerted in a paracrine
manner and mediated by EVs. The paracrine activity of MSC was initially observed in mice
and pig models of myocardial infarction, where conditioned medium from MSC cultures
limited infarct size and improved heart function [110–113]. This was followed by similar
evidence supporting the paracrine activity of MSC in other organs [114]. In subsequent
studies, EVs secreted by MSC were described as the mediators of these paracrine trophic
activities, reducing myocardial ischemia/reperfusion injury [5] and also allowing improved
recovery from acute kidney injury [6,115] in mice.

Numerous studies followed, reporting the different therapeutic activities of EVs
derived from MSC and other cells. MSC-derived EVs (MSC-EVs) allowed improved
recovery from stroke in mice, by promoting neuronal survival and angioneurogenesis [116].
Human bone marrow MSC-EVs allowed a better recovery from traumatic brain injury in
mice [117] and improved the recovery from acute spinal cord injury in rats [100]. Attenuated
inflammation upon EV treatment supported a better recovery in both studies.

In the context of MSC-EVs, vesicles obtained from different tissue sources showed
therapeutic potential against hepatic indications. Human umbilical cord matrix MSC-EVs
ameliorated liver fibrosis in mice by inactivating the TGF-β1/Smad signaling pathway, and
inhibiting epithelial-to-mesenchymal transition (EMT) in hepatocytes [118]. Bone marrow
MSC-EVs reduced hepatic injury in mice, improving their survival [119]. Reduction in
hepatocyte apoptosis was proposed to be mediated by the lncRNA Y-RNA-1 carried by
EVs. Human umbilical cord matrix MSC-EVs also inhibited pulmonary infiltration of
macrophages and suppressed the production of pro-inflammatory and pro-proliferative
factors in a murine model of pulmonary hypertension [99].

The large number of preclinical studies using EVs has already been translated into
a few clinical trials. The safety and efficacy of MSC-EVs have been evaluated in clinical
trials for the treatment of type 1 diabetes (NCT02138331), macular holes (NCT03437759)
and chronic kidney disease, with positive safety and efficacy results in the latter [120].

More recently, MSC-EVs have been proposed for the treatment of coronavirus disease-
19 (COVID-19), aiming to reduce dysregulated immune responses and the cytokine storm
associated with respiratory pathological states of this disease [121]. The rationale for using
MSC-EVs is based on previously mentioned observations of inflammatory attenuation in
several pathological conditions, and supported by studies in relevant lung disease models,
including lung injury [122,123]. However, the mechanisms behind the beneficial effects
of EVs are not fully elucidated yet. Some phase I/II and even phase III clinical trials
have already been registered in different countries for the use of EVs for the treatment of
COVID-19, most of them using EVs derived from MSC either administered intravenously
(e.g., NCT04798716, NCT05354141) or by inhalation (e.g., NCT04602442, NCT04276987)
(clinicaltrials.gov, accessed on 15 September 2022 using the search term “(extracellular
vesicles OR exosomes) AND COVID-19”).

4.2. EVs as Drug Delivery Systems

In addition to their use as innate therapeutic products mainly in the context of re-
generative medicine, EVs are also promising vehicles for drug delivery to treat numerous
conditions. Given their small size and the ability to shuttle messages to other cells in
virtually any site in the organism eliciting a functional response, EVs can be regarded as
nature’s nanocarriers. In fact, EVs comprise numerous features that make them appealing
for the development of novel DDS, even outperforming synthetic nanocarriers (e.g., lipid
nanoparticles [17]) or viral delivery platforms (e.g., adeno-associated virus (AAVs) [124])
in certain aspects.

By using EVs, we can take advantage of endogenous cellular machinery to produce
the desired therapeutic cargo and sorting it inside EVs. Additionally, EVs have the ability

https://clinicaltrials.gov/
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to overcome biological barriers, namely tissue barriers (e.g., blood-brain barrier (BBB)),
cellular barriers (by different EV uptake mechanisms) and intracellular barriers, exerting
functional effects on target cells [7,125,126]. Due to their biological origin, EVs are generally
low immunogenic and are not toxic, contrarily to some synthetic nanocarriers, with differ-
ent studies revealing minimal hepatoxicity and overall toxicity of human-derived EVs both
in vitro and in mouse models [13,15,127,128]. On the other hand, EVs are non-replicative
and non-mutagenic, relieving some of the safety concerns associated with cell therapies.
Therefore, EVs lie in a sweet spot between synthetic nanocarriers and cell therapies, pre-
senting exciting opportunities for developing next-generation DDS with increased efficacy
and lower side-effects.

EVs are able to carry different cargos, including small molecules such as the natu-
ral compound curcumin or chemotherapeutic drugs (e.g., doxorubicin and paclitaxel),
as well as delivering proteins and different RNA molecules (e.g., siRNA, miRNA, and
mRNA) [7,129–133]. In this way, EVs can deliver therapeutic molecules in a more efficient
and selective manner to target diseased cells and tissues, while minimizing their side effects,
as well as protecting cargo from degradation (particularly relevant for RNA molecules).
For example, doxorubicin-loaded EVs showed similar cytotoxicity to the free drug in both
in vitro and in vivo models of breast cancer, but with reduced cardiotoxicity [130].

Therapeutic cargo can be loaded into EVs by two different strategies, either exoge-
nously, by inserting cargo directly into EVs after EV production and isolation, or endoge-
nously, where therapeutic cargo is loaded into EVs at the moment of EV biogenesis [126,134].
Several techniques have been applied in order to accomplish the exogenous loading of EVs
including direct incubation, electroporation, sonication, saponin, freeze/thaw cycles, or
extrusion [134]. For example, curcumin was loaded into EVs through direct incubation
(e.g., mixing at 22 ◦C for 5 min) in several studies, yielding diverse positive therapeutic
outcomes such as improved bioavailability and anti-inflammatory effect of this drug in a
mouse model of inflammation [129], as well as enhanced tumor growth inhibition both
in vitro and in vivo, compared to free curcumin [135]. Electroporation has been applied
in numerous studies, for example to load EVs with therapeutic siRNA with positive out-
comes in mouse models of Alzheimer’s disease [7] and pancreatic ductal adenocarcinoma
(PDAC) [14], or for loading small molecules such as doxorubicin, with improved outcomes
in different in vivo cancer models [130,136,137].

A few studies compared the efficiency of the exogenous loading of EVs using different
techniques. The hydrophobicity of small molecules can influence their loading into EVs,
since hydrophobic porphyrins were loaded in EVs from different cells simply by direct incu-
bation, while hydrophilic porphyrins benefited significantly from active loading techniques
such as electroporation, extrusion, and especially saponin treatment [138]. In another
study, exosomes were loaded with catalase and tested in in vitro and in vivo models of
Parkinson’s disease [139]. Different loading techniques were tested (incubation, saponin
treatment, freeze/thaw cycles, sonication, and extrusion), revealing improved loading
efficiency, sustained release, and catalase preservation upon active loading, especially using
sonication, extrusion, or saponin treatment. Sonication also improved exosome loading
with paclitaxel and yielded positive therapeutic outcome in multidrug resistant (MDR)
cancer cells [131]. However, active loading techniques induce the temporary disruption of
the EV membrane that can lead to a loss of EV content, or altered morphology, and may
also induce the aggregation of EVs or their cargo, as previously reported [140,141].

Additionally, EVs can be fused with liposomes previously synthesized to carry ther-
apeutic cargo, thereby creating EV-liposome hybrids carrying this cargo [142]. MSC-EVs
fused with liposomes loaded with a chemotherapeutic compound increased the drug
delivery efficiency when compared with the free drug or the drug-loaded liposome in
cancer in vitro models [143]. EVs may even be combined with biomaterials to improve
their functional delivery to target tissues. For example, the injection of hydrogels of mul-
tiple formulations carrying EVs allowed sustained EV release over time, enhanced local
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EV retention and improved therapeutic outcomes in different pathological models, both
in vitro and in vivo [144].

The endogenous loading of EVs can be achieved by taking advantage of the natural
sorting machinery of cells for the production and/or loading of cargo into EVs. Cells can be
loaded with a cargo by direct incubation, which is then sorted and released inside EVs. MSC
incubated with paclitaxel incorporated this chemotherapeutic agent and released it inside
EVs [145]. These paclitaxel-loaded MSC-EVs were able to inhibit tumor cell proliferation
in vitro.

Alternatively, endogenous loading of EVs can be achieved by the genetic modification
of parental cells to express desired RNA molecules or proteins, which will then be loaded
into EVs. For example, adipose tissue-derived MSC were genetically modified to express
miR-122, previously reported to reduce drug resistance in hepatocellular carcinoma [146].
Modified MSC secreted EVs packaging miR-122, which increased antitumor efficacy of
chemotherapy on hepatocellular carcinoma in vivo.

A new system was developed to achieve protein loading into EVs using an optically
reversible protein-protein interaction module [147]. The authors used a photoreceptor
cryptochrome 2 (CRY2) and the CRY-interacting protein (CIBN), which bind under blue
light illumination. CRY2 was fused with a cargo protein and CIBN was conjugated with
the EV transmembrane protein CD9. As a result, the transient docking of CRY2-conjugated
cargo proteins with CD9-conjugated CIBN was observed in the generated exosomes in the
presence of blue light. When the blue light was removed, the proteins detached and the
cargos were released into the intraluminal space of exosomes, allowing cargo proteins to be
delivered to recipient cells both in vitro and in vivo. This strategy was used for the delivery
of super-repressor IκBα to relieve sepsis-associated organ damage and reducing mortality
in mice [148].

In addition to their unique drug loading abilities, EVs also exhibit intrinsic targeting
properties that can be valuable for drug delivery, since the protein and lipid composition
of EVs can influence cell/organ tropism [12]. As previously mentioned, depending on
the integrins displayed on their membrane, EVs can show tropism towards lung or liver
in pre-metastatic niche formation [10]. Another example is the involvement of PS in EV
recognition and uptake by macrophages [11].

Still, EVs can be engineered in order to improve specificity to target cells. Akin to the
techniques used for endogenous drug loading, parental cells can be genetically modified
to express a targeting moiety fused to an EV transmembrane protein. The first example
relied on the fusion of lysosome-associated membrane protein 2 (Lamp2b), abundant
on the surface of EVs, with the rabies viral glycoprotein (RVG) peptide that binds to
the acetylcholine receptor [7,149]. In the context of Alzheimer’s disease, this strategy
allowed EVs to target neurons, oligodendrocytes, and microglia, and functionally deliver
electroporated siRNA to the brain in mice. The fusion of targeting moieties with Lamp2b
has been used to endow EVs with targeting capacity in several studies, including an
αv integrin-targeting iRGD peptide to target tumor cells and tumor-associated vascular
endothelium for doxorubicin delivery [150], and a fragment of interleukin 3 (IL3) to target
IL3 receptors on chronic myeloid leukemia (CML) cells for delivery of a chemotherapeutic
agent or siRNA [151].

Different types of targeting moieties and transmembrane proteins have been used
(Table 1). For example, EV-producing cells have been modified to express recombinant anti-
epidermal growth factor receptor (EGFR) nanobodies fused to glycosylphosphatidylinositol
(GPI)-anchoring peptides [152]. Since EVs are enriched in GPI, EVs were enriched in GPI
linked nanobodies displayed on their surface. This allowed EVs to target specifically
EGFR-expressing tumor cells.
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Table 1. Overview of strategies to engineer targeting of extracellular vesicles (EVs) through genetic
modification of producing cells to express a targeting moiety fused to an EV transmembrane protein.

EV Transmembrane Protein Targeting Moiety Target Purpose Refs.

Lamp2b

RVG peptide Acetylcholine receptor in
neurons

Deliver BACE1 siRNA for
Alzheimer’s disease

treatment
[7,149]

RVG peptide Acetylcholine receptor in
neurons

Deliver miR-124 to
promote neurogenesis after

stroke
[153]

iRGD peptide αv integrin-positive
breast cancer cells Deliver doxorubicin [136]

IL3 fragment IL3 receptor in CML cells Deliver Imatinib or
BCR-ABL siRNA [151]

Cardiomyocyte specific
peptide Cardiomyocytes Target cardiomyocytes [154]

PDGFR GE11 peptide EGFR-expressing cancer
cells Deliver let-7a miRNA [155]

GPI-anchoring peptide Anti-EGFR nanobody EGFR-expressing cancer
cells Target cancer cells [152]

Lamp2b—lysosome-associated membrane protein 2; RVG—rabies viral glycoprotein; BACE1—beta secretase
1; IL3—interleukin 3; CML—chronic myeloid leukemia; PDGFR—platelet-derived growth factor receptor;
EGFR—epidermal growth factor receptor; GPI—glycosylphosphatidylinositol.

Alternatively, targeting ligands can be exposed on the surface of EVs after EV isolation,
avoiding the challenging genetic engineering of producer cells. Several different strate-
gies have been applied in this context (Table 2). A recombinant protein was developed,
consisting of an anti-EGFR nanobody fused to the C1C2 domain of lactadherin, which
binds to PS present on the surface of EVs, directing these modified EVs to EGFR-positive
cancer cells [156]. In another study, EVs were modified in order to target neuropilin-1
(NRP-1), which is a transmembrane glycoprotein overexpressed in glioma cells and the
tumor vascular endothelium [157]. For this purpose, an NRP-1-targeting peptide was
conjugated with the surface of EVs by click chemistry.

Table 2. Overview of strategies to engineer extracellular vesicles (EVs) targeting by anchoring a
targeting moiety to EVs after its production and isolation.

Linkage Method Targeting Moiety Target Purpose Refs.

Post-insertion of phospholipid
(DMPE)-PEG fusion molecules

in EV membranes

Anti-EGFR nanobody
(conj. with DMPE-PEG)

EGFR-expressing cancer
cells Target cancer cells [158]

Membrane anchoring
cholesterol

AS1411 DNA aptamer
(conj. with cholesterol)

Nucleolin on breast
cancer cells

Deliver let-7 miRNA or
VEGF siRNA [159]

Electrostatic interaction
between cationized pullulan

and EVs

Cationized pullulan (a
polysaccharide polymer)

Hepatocyte
asialoglycoprotein

receptors
Target injured liver [160]

C1C2 domain of lactadherin
binding to PS present on EV

membrane

Anti-EGFR nanobody
(conj. with C1C2)

EGFR-expressing cancer
cells Target cancer cells [156]

Membrane anchoring
cholesterol

RNA aptamers or folate
(conj. with cholesterol)

PSMA, EGFR or folate
receptor on prostate,
breast, or colorectal
cancers, respectively

Deliver
survivin-targeting siRNA [161]
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Table 2. Cont.

Linkage Method Targeting Moiety Target Purpose Refs.

Click chemistry reaction c(RGDyK) peptide

Integrin αvβ3 in reactive
cerebral vascular

endothelial cells after
ischemia

Deliver curcumin to
stroke lesions [162]

ApoA-I mimetic peptide
interaction with phospholipids

on EV membrane
LDL peptide LDL receptor on GBM

cells
Delivery of KLA peptide

and methotrexate [163]

CP05 peptide binding to CD63
present on EV membrane

Muscle targeting peptide
M12 (conj. with CP05) Muscle

Deliver PMO to muscle
for Duchenne muscular

dystrophy treatment
[164]

Click chemistry reaction NRP-1 targeting peptide
(RGE)

NRP-1 in glioma cells
and tumor vascular

endothelium

Deliver SPIONs and
curcumin for imaging
and therapy of glioma

[157]

Covalent bond by protein
ligating enzymes Sortase A or

OaAEP1 ligase

EGFR-targeting peptide
or nanobodies targeting

EGFR or HER2

Cancer cells expressing
EGFR or HER2

Deliver paclitaxel or
mRNA [165]

DMPE—1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine; PEG—polyethylene glycol; EGFR—epidermal growth
factor receptor; VEGF—vascular endothelial growth factor; PS—phosphatidylserine; PSMA—Prostate-specific
membrane antigen; LDL—low-density lipoprotein; GBM—glioblastoma multiforme; PMO—phosphorodiamidate
morpholino oligomer; NRP-1—neuropilin-1; SPION—superparamagnetic iron oxide nanoparticles; HER2—human
epidermal growth factor receptor 2.

The promising results obtained in preclinical studies using EV-based DDS for numer-
ous clinical indications, prompted their use in pioneering clinical trials over the past few
years [109]. Plant-derived EVs loaded with curcumin have been used for the treatment of
colon cancer (NCT01294072). Tumor-derived EVs loaded with chemotherapeutic agents
(NCT01854866) and EVs derived from malignant pleural effusion loaded with methotrexate
(NCT02657460) are being studied for the treatment of malignant ascites and pleural effusion.
Other clinical trials are testing the use of allogeneic MSC-EVs enriched in miR-124 for the
treatment of acute ischemic stroke (NCT03384433), or loaded with KRASG12D siRNA for
the treatment of metastatic pancreatic cancer (NCT03608631).

5. Production and Isolation of EVs
5.1. Upstream Processing

One of the main challenges faced in the field of EVs is the low yield obtained during
manufacturing [166]. This renders basic scientific research, pre-clinical studies, and clinical
trials more challenging, leading to a significant delay in the progress of the field in order to
harness the full potential of EVs in clinical settings [167]. The whole bioprocessing pipeline,
from upstream to downstream processing, needs to be considered for EV manufacturing
optimization. Upstream processing comprises cell culture leading to EV production, thus
requiring the appropriate choice of both the cell culture medium used and the culture vessel,
which can range from small vessels such as T-flasks up to 500 L bioreactors, depending
on the chosen approach. This step influences the characteristics of the final product and
therefore should be carefully selected, while having in mind a specific application.

Progress is already being made towards optimizing the upstream conditions of EV
production through the adaptation of already well-established technologies in other fields
to produce functional and safe EVs in a cost-effective way. The scaling-up or scaling-out of
such platforms is expected to decrease the costs associated with EV manufacturing [168].
The simplest scaling option is to adopt the use of multi-layer flasks (e.g., hyperflasks,
Cellstacks, Cell Factories) instead of the use of conventional T-flasks [168]. These systems
present several layers for cell growth, decreasing the manipulation time needed, in com-
parison to conventional T-flasks and reducing lab footprint. For example, hyperflasks
were used for the cultivation of bone marrow-derived MSC and the EVs isolated from
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the conditioned medium (i.e., containing EVs) were shown to significantly suppress the
symptoms of graft vs. host disease (GvHD) in a murine model [169]. However, culture
monitoring is challenging when using these planar systems, which do not lead to cost
savings in the whole process, namely in what concerns the quantity of cell culture medium
used [170].

Bioreactors represent promising scale-up or scale-out options for EV manufactur-
ing, which, under optimized conditions, can generate higher cell and EV yields in a
more cost-effective way (e.g., lower need for consumables such as culture medium), com-
pared to static systems [168]. In fact, some bioreactor systems were already explored for
EV production.

Hollow-fiber bioreactors allow adherent cells to grow attached to the fibers composed
of a permeable membrane, while the cell culture medium flows across the membrane. In a
recent study, it was observed that umbilical cord matrix MSC-EVs produced in a hollow-
fiber system displayed enhanced osteochondral regeneration activity when compared
to 2D culture flasks, leading to superior repair activity of cartilage defects in vivo [170].
Another study revealed that umbilical cord matrix-derived MSC expanded in hollow-fiber
bioreactors produced EVs with enhanced renoprotective effects in comparison to EVs
produced by cells grown in conventional 2D cultures [171].

Stirred-tank bioreactors can be used as a scalable option that provides homogenization
of the cell culture medium through mechanical stirring. Microcarrier technology can be
used in combination with these bioreactors for expanding adherent cells and providing a
high surface-area-to-volume ratio [166]. Similar to hollow-fibers, stirred-tank bioreactors
can enhance EV productivity as high as 100-fold in comparison to conventional 2D culture
flasks [172].

In the context of scalable platforms available for EV production, our group recently
employed a single-use Vertical-WheelTM bioreactor for the production of human MSC-
EVs [173]. This system provides a gentler and more homogenous mixing in comparison
to the stirred-tank configuration, while also making use of microcarriers for adherent cell
culture [174]. Our work revealed an average yield improvement of 6-fold referred to the
final EV concentration in the culture medium, in comparison to culture flasks [173].

The use of different culture media during conditioning periods for EV obtention
also impacts EV productivity and can potentially render the process more efficient. For
instance, the use of non-supplemented OptiMEM (i.e., optimized formulation of Eagle’s
Minimal Essential Medium (MEM)) led to an increase in the production of HEK293T-
derived EVs, in comparison to OptiMEM supplemented with 10% fetal bovine serum (FBS),
DMEM (i.e., Dulbecco’s Modified Eagle’s Medium) supplemented with 10% FBS, or DMEM
supplemented with 10% EV-depleted FBS, among others [175].

In order to circumvent the low yields associated with EV production from cell culture
supernatants (i.e., conditioned media), the production of EV-like particles has also been
employed. This is achieved through the complete disruption of the cellular membrane
leading to the release of self-assembled particles, reaching production yields that can be
as high as 100-fold compared to normal EV release [176]. The most common approach to
achieve this is extrusion, whereby cells are filtered through sequentially smaller pores [168].

Growing adherent cells as 3D cell aggregates instead of monolayers is another viable
option to increase EV production yields. The formation of 3D MSC aggregates provides
a microenvironment that better mimics in vivo conditions leading to the maintenance of
MSC phenotype and innate MSC properties, which could explain the higher yields attained
with this strategy. Moreover, 3D scaffolds into which cells can adhere and proliferate can
also be used to promote the production of EVs and even to enhance their functional activity.
This was demonstrated using bone marrow-derived MSC seeded into collagen scaffolds,
which produced 2-fold more EVs compared to 2D culture conditions and enhanced the
regenerative capacity of these EVs in traumatic brain injury mouse models [177].

Importantly, clinical trials employing bioreactors for EV production are already ongo-
ing. Recently, Codiak Biosciences developed exoSTING, a therapeutic EV-based product



Bioengineering 2022, 9, 675 14 of 29

in which EVs are loaded with stimulators of the interferon gene for the treatment of mul-
tiple cancers [178]. This strategy is currently under clinical testing in a phase 1/2 trial
(NCT04592484).

Of note, there is still a gap in our knowledge concerning how the upstream conditions
influence the characteristics and the quantity of produced EVs. For instance, in the context
of the manufacturing of monoclonal antibodies, the optimization of upstream conditions
was able to lead to improvements of 10–100-fold in product titers over the years [166].
Therefore, by adjusting operational parameters in the process such as the composition of
culture media, oxygen concentration, materials used, as well as the cell passage, level of
confluency, and viability, one can expect substantial improvements in EV yields.

5.2. Downstream Processing

The downstream processing of EVs, which comprises all the steps following upstream
processing to recover and isolate EVs from cell culture conditioned medium and eventu-
ally purify them, also deserves special attention considering the particular characteristics
of EVs. Over the last years, the emergence of EVs as promising tools for the develop-
ment of new therapeutic options, as well as valuable structures to understand organismal
pathophysiological mechanisms, has prompted the development of EV isolation methods.

However, currently available isolation methods still present considerable limitations,
including poor standardization, the alteration of physicochemical properties of the isolated
EV population, and the modification of EV cargo profiles. For instance, the miRNA
profile in exosomes obtained from blood serum was reported to be different depending
on the isolation method used, when comparing a precipitation-based isolation method
with ultracentrifugation [179]. Likewise, the purity of EV samples largely depends on the
isolation method used, and a compromise between the purity of a given sample and the
amount of recovered EVs has to be made [180,181].

Isolation methods available can be categorized based on the principle used for the
isolation of EVs from other particles present in a body fluid or cell culture conditioned
medium. These methods can be generally divided into ultracentrifugation-based methods,
precipitation, size-based, and microfluidics, among others.

5.2.1. Ultracentrifugation-Based Methods

Ultracentrifugation methods can be divided into two distinct techniques: differential
ultracentrifugation, and density gradient centrifugation. Differential ultracentrifugation
is based on differences in the size and density of particles. It subjects the samples to
multiple low-speed centrifugations to remove dead cells and debris, which correspond
to the larger biological particles present in the sample. The low centrifugation speed
periods are followed by high-speed centrifugations of 100,000× g (or more) in order to
pellet the smaller EVs and allow the collection of these particles [182,183]. Differential
ultracentrifugation is the most employed primary method of EV isolation, with more than
75% of participants reporting its use in a worldwide survey performed by the International
Society for Extracellular Vesicles (ISEV) in 2020 [184]. It can be considered a method with
intermediate recovery and specificity [185] and is capable of processing large volumes of
fluid [186]. However, it is highly laborious and time-consuming, presenting the possibility
of causing damage to EV structure, which can affect their performance for a specific
application [183]. This method also presents low reproducibility and may lead to protein
aggregation [182,183]. Nonetheless, numerous pathological conditions were already shown
to benefit from interventions based on the administration of MSC-EVs isolated through
differential ultracentrifugation. These include bone disorders [187], skeletal muscle [188]
and spinal cord injuries [189,190], as well as cardiac [191] and liver [192] pathologies.

Density gradient ultracentrifugation is a low recovery, high specificity method [185]
that consists in the ultracentrifugation of particles in a biocompatible medium, sucrose,
or iodixanol, with a gradient of concentrations that allows the isolation of EVs based
on their density [182]. Although this method provides higher purities than differential
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ultracentrifugation [182,183], it is also time-consuming and the duration and force of the
centrifugation can affect the quality of EVs. In addition, the media used may negatively
impact the therapeutic activity of the isolated EVs [193]. Furthermore, this method is largely
instrument-dependent, and residual contaminants are often co-isolated with EVs, requiring
highly trained technicians to be performed well [182,183].

5.2.2. Precipitation-Based Methods

Precipitation-based methods aim to lower the hydration levels of EVs using polymers,
such as polyethylene glycol (PEG), or other synthetic hydrophilic polymers prone to
interact with water molecules [183]. This is a high recovery and cost-effective method that
is instrument-independent and can be used for large samples [182]. This method uses
lower-speed centrifugation cycles in comparison to differential ultracentrifugation [183],
thus not being as mechanically harsh. In fact, precipitation-based methods, in opposition to
ultracentrifugation techniques, may preserve the proteins naturally bound to the surface of
EVs, which is important for the downstream analysis of EV function [194]. However, this
approach lacks specificity, providing a high contamination of the sample and leading to the
precipitation of non-vesicular components, such as lipids, nucleic acids, and proteins [183].
Additionally, the precipitation reagents also influence the biological activity of the isolated
EVs [195].

5.2.3. Size-Based Methods

Size-based methods consist mainly of filtration-based separation methods and size
exclusion chromatography (SEC). Ultrafiltration uses a filter membrane with a defined size
exclusion limit to filtrate the particles present in a sample. It is less costly and faster than
ultracentrifugation, and it is easy to operate presenting good portability, and providing
high purity of isolated particles [183]. MSC-EVs isolated through this method have shown
angiogenic stimulatory activity [196], a property that can be harnessed for the treatment
of a wide spectrum of conditions, as well as therapeutic activity in other diseases such as
osteoarthritis [197]. However, low recovery, membrane clogging and EV trapping are disad-
vantages usually associated to this method [182]. Tangential flow filtration (TFF) is another
filtration-based technique that attenuates the membrane clogging faced in ultrafiltration
due to the tangential flow of fluid across the membrane surface instead of cross-flow. TFF is
more efficient and gentler than differential centrifugation, providing a higher recovery and
the isolation of fewer single macromolecules and aggregates [198]. Additionally, it allows
the processing of large volumes of fluid and is a time-efficient, scalable, reproducible, and
robust technique [198]. This method has already been used to isolate human adipose tissue
MSC-EVs, that upon intra-articular injection attenuated osteoarthritis progression and
prevented cartilage degeneration in mouse models [199]. Additionally, MSC-EVs isolated
through TFF displayed the ability to improve alveolarization and vascularization in animal
models of bronchopulmonary dysplasia, reducing the damage induced by hypoxia [200].
This further demonstrates that EVs isolated through TFF can maintain their biological
therapeutic activity.

Size exclusion chromatography (SEC) allows the separation of particles based on
their interaction with the pores present in the stationary phase. Sample particles with
higher dimensions will not be retained within such pores and, as a result, will be eluted
first (i.e., before smaller particles). This represents a gentle separation method of EVs
that maintains the structural integrity and biological activity of the vesicles, which can be
illustrated by the fact that SEC isolated MSC-EVs, but not ultracentrifugation isolated MSC-
EVs, maintained their immunomodulatory activity, impairing T cell proliferation [201].
Moreover, this technique is easy to operate and provides a higher purity than differential
ultracentrifugation [183]. Despite these advantages, SEC may suffer from pore blockage,
it is a time-consuming method, and presents high equipment costs. Additionally, SEC
involves sample dilution, thus usually requiring a concentration step afterward, which can
further impose yield losses on the process.
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5.2.4. Microfluidic-Based Methods

Microfluidic-based methods utilize microscale devices to isolate EVs. These methods
can be based on EV-specific surface markers, such as microfluidic-based immunoaffinity,
which rely on surfaces coated with antibodies for isolation. For example, a microfluidic
device functionalized with antibodies against the tetraspanin protein, CD63, was able to
efficiently isolate circulating EVs, being well suited for exosome-based diagnostics [202].
Beads coated with capture antibodies can also be employed, allowing to obtain higher EV
yields [203]. In the future, this methodology may even allow isolating MSC-EV subpopula-
tions showing increased therapeutic effects; however, the identification of such subsets is
still challenging [193]. Microfluidic devices for EV isolation can also be based on EV size
and density, including approaches such as membrane filtration, nano-wire-based traps,
nano-sized deterministic lateral displacement, and acoustic isolations [204]. Overall, these
methods are simple and efficient, as well as easy to automate, and they provide higher
sensitivity than differential centrifugation.

5.2.5. Other Methods

Other relevant methods based on different EV properties are available. For instance,
anion exchange chromatography is a method that takes advantage of the negative surface
charge of EVs for their isolation. This method presents a similar yield, morphology, and
size in comparison to differential ultracentrifugation [205]. MSC-EVs purified through this
technique demonstrated the ability to prevent the onset of type 1 diabetes and uveore-
tinitis [206], showing the maintenance of the biological activity of the isolated MSC-EVs.
Nevertheless, anion exchange chromatography may co-isolate particles with a negative
net charge such as proteins. Thus, combining it with another technique such as SEC may
provide greater specificity.

Apart from the microfluidic approach to the immunoaffinity isolation principle, other
approaches based on chromatography are available. This method is based on the interaction
of the EV surface proteins, such as CD9 or CD63 with antibodies present in the chromatog-
raphy column. This provides a high sensitivity and high specificity towards specific EV
subpopulations. Additionally, it is a gentle approach that conserves EV morphology [183].
Nevertheless, this is associated with low EV recovery and high costs, not being suitable for
processing large volumes [183].

5.2.6. Combination of EV Isolation Methods

More than 45% of researchers included in a worldwide ISEV survey in 2020 reported
the use of not a single method for the isolation of EVs, but a combination of techniques [184].
This approach is particularly beneficial because it allows obtaining higher purities than
single isolation methods, and certain combinations of methods were already applied in
studies with different applications for EVs.

TFF combined with SEC is becoming the preferred approach, in comparison to the
typically used ultracentrifugation. TFF and SEC, which feature easy scalability and are able
to comply with good manufacturing practices (GMP), were already studied in the context
of an EV-based strategy that intends to utilize HEK293-derived engineered EVs carrying
an immunostimulatory cytokine fusion protein, the heterodimeric IL-15/lactadherin, for
a targeted cancer immunotherapy approach [207]. Importantly, such a strategy can be
combined with bioreactor cultivation at upstream as a scalable and efficient method to
produce purified bioactive EVs, which has the potential to be translated into industrial EV
production, allowing the processing of large volumes (in the scale of liters of conditioned
medium), without significant changes in size and morphology. A combined TFF and
SEC approach was already employed in the isolation of MDA-MB-231-derived EVs to
demonstrate the function of an innovative platform that permits the study of EV-mediated
RNA delivery, the CRISPR-operated stoplight system for functional intercellular RNA
exchange [208]. Additionally, SEC may also be combined with ultracentrifugation to
improve the separation of EVs from lipoproteins, providing an increased purity [209].
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Currently, in the field of EVs, there is still no isolation method that can provide a high
recovery of EVs combined with a high specificity [185]. As such, a compromise is always
required between these two variables when choosing a suitable downstream strategy. This
factor, combined with overall unsatisfactory efficiencies and high associated costs, are still
the main bottlenecks that undermine large-scale EV production [183]. Other factors, such
as the type of biological raw materials from where EVs are isolated, the starting volume
to be processed, as well as the quantity of EVs desired and their attributes, must also be
considered when choosing an isolation method or a combination thereof, which should
aim to be highly efficient, scalable, and GMP compliant.

6. Future Perspectives

In spite of significant advances made in the field of EVs over the last decade, the
translation of EV-based therapies into clinical settings still faces several challenges ahead
(Figure 3). Some of these are common to the challenges faced by cell therapies (previously
reviewed by our group) [210] due to the cellular origin of EVs, while others are specific to
the nature of EVs.
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Establishing efficient but safe and reproducible methods for EV drug loading, and
to engineer EV targeting, is still challenging and will certainly continue to be the focus of
further research. The methods used for exogenous EV loading show low efficiencies, while
genetic modification of EV-secreting cells for vesicle modification (either for drug loading
or targeting purposes) is still troublesome and difficult in primary cells. Additionally, novel
strategies have been developed over the last few years aiming to modify the surface of
EVs after their isolation with significant progresses, a trend expected to continue in the
following years.

The selection of appropriate EV-secreting cells and the tissue of origin of the cells
needs to be carefully considered since each cell type will originate EVs with different
properties (e.g., proteins and RNA packaged inside them). In addition, each cell source
presents different features, including the availability and easiness to isolate from human
tissue sources, cell expansion ability, and EV secretion capacity.

Appropriate cell culture conditions need to be implemented in order to assure re-
producibility and compliance with GMP guidelines. Scalable processes need to be imple-
mented for EV production in order to achieve the production of high numbers of EVs
required for clinical application. Bioreactors of different geometries and configurations
offer several options in order to achieve this goal, as reviewed in Section 5.1. The use of
serum-/xeno(geneic)-free (S/XF) culture conditions, will also be advantageous for clinical
translation. Several cell culture platforms have been tested in pioneering studies aiming

https://biorender.com/
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to achieve a scalable production of EVs, including hollow-fiber bioreactors [211,212] and
spinner systems [172], among others.

In the last 10 years, our group established different platforms for the scalable expansion
of human MSC from different sources under S/XF conditions [213–216]. Recently, we
further developed this work and established a platform for the scalable production of
human MSC-EVs under S/XF conditions by combining the Vertical-WheelTM bioreactor
system with a human platelet lysate culture supplement [173]. All of these studies allowed a
significant improvement of EV production yields. Still, further work needs to be developed
in order establish platforms able to reproducibly manufacture EVs at even larger scales
and at a competitive cost, amenable to clinical translation. The optimization of bioreactor
operation parameters, such as agitation, oxygen concentration, temperature, pH, and
culture medium formulation, will be essential to maximize EV productivity. Thus, further
work addressing the impact of these parameters on EV production is deemed necessary.

Similarly, EV isolation processes will need to assure reproducibility, GMP compliance,
and scalability, whilst balancing suitable EV purity and yields, as reviewed in Section 5.2.
Novel strategies with promising application for scalable EV isolation include combining
SEC with bind-elute chromatography, whereby smaller contaminants penetrate beads and
bind to its core, allowing EVs to flow through at high recovery yields [217]. Alternatively,
asymmetric depth-filtration allows the immobilization of EVs at the surface and within the
depth of a porous medium, while smaller particles are eluted, followed by EV recovery
upon reversion of the carrier flow through the filter [218]. In the future, EV manufacturing
could even benefit from integrated production and isolation processes under continuous
operation in order to improve productivity and reduce costs, similar to other biopharma-
ceutical products (e.g., monoclonal antibodies) [219–222].

Envisaging their use as off-the-shelf products, appropriate storage conditions for EV
products must be clearly defined and their stability must be assured. Strategies may be
implemented in order to prolong the stability and shelf-life of EVs, such as the addition
of trehalose and human albumin to EV suspensions. Trehalose, in particular, is a natural
sugar that stabilizes proteins, cell membranes, and liposomes, decreases intracellular ice
formation during freezing and prevents protein aggregation, being widely used in the
food and drug industry, which recently revealed the capacity to prevent aggregation and
cryodamage of EVs [223,224], as well as improving the short-term and long-term storage of
EVs when combined with human albumin [225]. Nevertheless, only a few studies to date
have addressed the storage of EV products. Further work will be required, studying EV
stability and potency after storage, in conditions mimicking potentially subsequent clinical
trials, in order to appropriately translate pre-clinical studies into the clinical scenario.

The translation of EV products to clinical practice will require establishing standard-
ized identity criteria and potency assays for EVs, allowing cross comparison between
different laboratories, thereby supporting the development and validation of EV-based
therapies and their progression to clinical testing. Motivated by this need, a consortium of
researchers recently established identity criteria including quantifiable metrics for MSC-
EVs [226], and also presented requirements for the development of standardized potency
tests for the therapeutic application of these EVs [227]. It is important to clearly define
the mechanisms of action of EV-based therapeutics for clinical translation, and these
should be reflected in suitable potency assays. However, a full elucidation of the thera-
peutic mechanism of EVs is challenging, since it will be multifaceted and vary between
disease models.

Afterwards, appropriate preclinical models must be selected to characterize the safety
and toxicology of therapeutic EVs, as well as their pharmacokinetic and pharmacody-
namic profiles [109]. Information from these studies will be relevant to determine proper
doses for clinical studies, which will be challenging given the current heterogeneity of EV
preparations and their different therapeutic potency, depending on the targeted disease.
Importantly, pre-clinical studies and current clinical trials indicate that EVs are generally
safe and well tolerated [13–16,128].
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To conclude, there is a long road ahead for the application of EV therapeutics in the
clinical setting, as the field of EVs is still at its infancy. Nevertheless, it is already clear that
EVs will likely give rise to relevant new therapeutic solutions, given their unique set of
characteristics compared with synthetic nanocarriers, as well as chemical and biological
products, including cell therapies.
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