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Abstract

Background: Although Transmembrane Proteins (TMPs) are highly important in various biological processes and
pharmaceutical developments, general prediction of TMP structures is still far from satisfactory. Because TMPs have
significantly different physicochemical properties from soluble proteins, current protein structure prediction tools for
soluble proteins may not work well for TMPs. With the increasing number of experimental TMP structures available,
template-based methods have the potential to become broadly applicable for TMP structure prediction. However, the
current fold recognition methods for TMPs are not as well developed as they are for soluble proteins.

Methodology: We developed a novel TMP Fold Recognition method, TMFR, to recognize TMP folds based on sequence-to-
structure pairwise alignment. The method utilizes topology-based features in alignment together with sequence profile and
solvent accessibility. It also incorporates a gap penalty that depends on predicted topology structure segments. Given the
difference between a-helical transmembrane protein (aTMP) and b-strands transmembrane protein (bTMP), parameters of
scoring functions are trained respectively for these two protein categories using 58 aTMPs and 17 bTMPs in a non-
redundant training dataset.

Results: We compared our method with HHalign, a leading alignment tool using a non-redundant testing dataset including
72 aTMPs and 30 bTMPs. Our method achieved 10% and 9% better accuracies than HHalign in aTMPs and bTMPs,
respectively. The raw score generated by TMFR is negatively correlated with the structure similarity between the target and
the template, which indicates its effectiveness for fold recognition. The result demonstrates TMFR provides an effective
TMP-specific fold recognition and alignment method.
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Introduction

Transmembrane proteins (TMPs) play crucial roles in cells

serving primarily as transporters and receptors. TMPs are related

to many serious diseases [1], and they are the biological targets for

most drugs currently on market [2]. Although studying TMP

structures is imperative for understanding the central physiological

processes, and has immediate medical relevance [3], high-

resolution structures of TMP remain scarce because they are

hard to be solved experimentally. In fact, TMPs represent only less

than 2% of total structures in the Protein Data Bank (PDB) [4],

even though the number of TMPs has been continuously

increasing in recent years. Meanwhile, with a rapidly growing

amount of protein sequences generated by next-generation

sequencing, the ability to effectively predict TMP structure is in

high demand.

Although substantial efforts have been devoted to predicting the

protein structure from amino acid sequence for decades, major

advances have been made mostly for soluble proteins with little

success in TMP structure prediction [5]. In early studies, de novo (or

ab initio) methods [6–9] were explored without resorting to

homologous proteins of known structures. However, such methods

are mainly effective only on small soluble proteins [10] not on

TMPs, which are often large. As more and more TMP structures

became available, homology-modeling methods were utilized for

prediction. For example, Arnold et al. [11] succeeded in modeling

Human Transmembrane Protease 3 using remote homology

templates. Kelm et al. applied MEDELLER [5] to separately

model transmembrane cores and loops. Because G-protein-

coupled receptors (GPCRs) are a major target for the pharma-

ceutical industry, continuous attention is given to their structure

modeling yielding several successful solutions [12–17]. Notably, a

few methods using residue coevolution analysis became available

for large TMP structures recently [18,19]. However, only a small

fraction of TMPs have a significant sequence similarity to those

solved structures, confirming that homology-modeling methods

have significant limitations for general TMP structure prediction.

Hence, fold recognition becomes a highly promising approach
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because it can utilize templates without significant sequence

similarities to the target.

Fold recognition has been widely applied to structure prediction

for remote homology soluble proteins [20–24], but these methods

often perform poorly on TMPs because the significant biochemical

and biophysical differences between the two types of proteins. Few

methods have been customized for TMPs. However, TMP

structure prediction has been estimated to obtain accuracy as

high as that of soluble proteins if the alignment for TMP achieves

the accuracy as its soluble protein counterpart [25]. Some

alignment methods for TMP have been developed recently [26],

but they generally focus on the cases with significant sequence

similarity between the target and the template. New methods using

more general alignments are needed. With the increasing number

of TMP structures, the features used in fold recognition such as

sequence profile and solvent accessibility become more and more

reliable to describe the properties of TMPs. Notably, the special

spatial conformation of TMPs, which shows much more uniform

secondary structures than typical soluble proteins, has underlying

advantages to improve the alignment.

TMPs usually span the biological membrane by either all

transmembrane alpha-helices (TMH) in aTMP, or all transmem-

brane beta-strands (TMB) in bTMP. The remaining parts of

TMPs are non-TM segments, including inside segment (located in

the cytoplasmic side) and outside segment (located in the

extracellular side). In most cases, the inside segment and outside

segment appear alternatively on a protein sequence, resulting in

TM segments having specific orientations. This significant

topological feature may potentially improve the TMP fold

recognition and has been introduced previously to a few TMP

structure studies [27], or even 3D structure modeling of for

bTMPs [28,29].

For a given TMP, topology structure can be predicted by

topology predictors from amino acid sequence alone. It is observed

that TM segments are highly hydrophobic and regular in sequence

length, TMHs are normally between 17 and 25 residues [30],

while TMBs have 11 residues on average in trimeric porins and

13–14 residues in monomeric beta barrels [31]. Hydrophobicity

scales were widely adopted in early topology predictions [32–34].

Utilization of a ‘‘positive-inside’’ rule [35] improved prediction

accuracy. Further success was made after machine learning

methods were employed for aTMPs, such as Hidden Markov

Model (HMM) based methods [36–42], neural networks (NN)

based methods [43,44], and support vector machines (SVM) based

methods [45,46]. Furthermore, MemBrain [47] combined nu-

merous machine learning methods together to improve prediction

accuracy. However, the prediction accuracy of these methods may

be overestimated in whole-genome studies [48,49]. Comparably,

bTMP predictors [50–53] mainly rely on amino acid composition

and alternating hydrophobicity pattern [54] because fewer

sequence patterns can be found for bTMP than for aTMPs;

therefore, bTMP predictors are often less accurate than aTMP

predictors.

In this study, we developed a TMP Fold Recognition method,

TMFR, based on a sequence-to-structure pairwise alignment

method. Given that TMPs have distinct topology structures, we

first combine the topology-based features, segment type and

segment orientation with sequence profile and solvent accessibility

to build profiles for each sequence position. Then we design a

scoring function to utilize those TMP-specific features where

Figure 1. Topology structures of aTMPs and bTMPs. (a) Sketches of native TMPs located in biological membrane, where the left one represents
an aTMP, and right one is a bTMP. (b) Linear topology of the two TMPs. TM segments are labeled as TMH or TMB respectively according to their TMP
types. Orientations of TM segments are described using arrows.
doi:10.1371/journal.pone.0069744.g001
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fitness scoring is used to measure the compatibility of two position

profiles, and a segment-dependent penalty model is used to further

minimize incorrect alignments. In addition, high-accuracy aTMP

topology prediction generated by our previous work [55] is used to

further improve the alignment accuracy. Tested using a non-

redundant TMP dataset, TMFR can accurately align the target

sequence to the template structure and generate reliable alignment

raw scores to evaluate the structural similarity between target and

template. Overall, our method achieved higher accuracy both in

alignment and fold recognition than existing leading methods

HHalign and HHsearch on the same testing dataset, respectively.

Materials and Methods

Datasets
The Protein Data Bank of Transmembrane Proteins (PDBTM)

[56] is the most comprehensive TMP database currently available.

It uses an automated algorithm (TMDET) [57] to identify TMPs

in PDB and calculate their topology structures. Compared to peer

databases [58,59], PDBTM is convenient for large-scale testing,

and updated weekly by synchronizing with PDB. Hence, we

selected PDBTM as the data source in our study. There were 4447

TMP sequences derived from 1626 TMP entries including 1383

aTMPs and 232 bTMPs at the time of study. We removed the

entries if their lengths were less than 50 amino acids or more than

30% of all heavy atoms did not have atomic coordinates. Bitopic

TM entries were also excluded. Finally, we selected non-

redundant TMPs, in which mutual sequence identity between

any two sequences in the datasets were less than 30%. These

TMPs were divided randomly into the training dataset and testing

dataset. The training dataset contains of 58 polytopic aTMP

sequences and 17 bTMP sequences, while 70 and 30, respectively

are in the testing dataset (see Table S1, S2).

Profile Generation
The features extracted from each position on a target amino

acid sequence were used to construct a position-dependent profile

for alignment. The selected features describe various properties of

proteins, and they are expected to have minimum dependency on

each other. Hence, we selected a small set of features for TMPs,

including features of segment type, segment orientation, sequence

profile, and solvent accessibility. Sequence profile and solvent

accessibility are widely used in alignment methods, while segment

type and orientation are topology-based features, which utilize the

TMP’s special conformation. All of these features will be further

introduced below.

Topology-based Features
Topology structures of TMP are often divided into three

segment types according to their locations relative to biological

membrane, including TM segment, inside segment (inside the area

surrounded by biomembranes) and outside segment (outside the

area surrounded by biomembranes). Therefore, aligning the target

and template using topology segment types can achieve more

accuracy than only using secondary structures for TMPs.

Meanwhile, the orientation of TM segment, namely from which

side it crosses the membrane, can further identify whether two TM

segments match.

Topology structure is described as a sequence with the same

length of amino acid sequence, where the positions on TM

segments are denoted to ‘H’ (TMH), or ‘B’ (TMB), while the ones

on non-TM segments are ‘O’ (Outside segment) or ‘I’ (Inside

segment), and others are ‘U’ (Unknown). An aTMP is located in

biological membrane as shown in Fig. 1(a) left, and a bTMP is

shown in right. Their topological structures are presented in

Fig. 1(b), where TM segments, non-TM segments and orientations

of TM segments are labeled. To facilitate the calculation, the

segment orientations are denoted 0, 1, and 21, respectively for

Table 1. Average alignment accuracy of TMFR compared to HHalign.

Methods ACC (%) TM-score GDT_TS

TM Non-TM Overall TM Non-TM Overall TM Non-TM Overall

TMFRa 55.3 43.1 54.3 0.417 0.282 0.376 0.382 0.216 0.325

TMFRb 52.3 46.2 50.2 0.411 0.312 0.363 0.393 0.204 0.317

HHaligna 45.9 43.6 44.1 0.267 0.313 0.281 0.223 0.247 0.238

HHalignb 43.3 38.6 41.2 0.253 0.275 0.264 0.208 0.212 0.209

ACC is the alignment accuracy according to TM-align. The comparison is made separately in TM segments, non-TM segments and overall proteins.
doi:10.1371/journal.pone.0069744.t001

Figure 2. Alignment accuracy by using topology structure or
secondary structure. The topology structure improves the alignment
accuracy of TMFRa (TMFR for aTMPs) comparing with secondary
structure, where CNTOP, TMHMM, MEMSAT3 and MEMSAT-SVM were
used to general topology structure features, and PSIPRED was for
secondary structure feature. TMFRa derived the best alignment
accuracy by using CNTOP, which produced more accurate topology
structure prediction than other predictors.
doi:10.1371/journal.pone.0069744.g002
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non-TM segments, TM segments that span membrane from

outside to inside, and other TM segments pointing toward the

opposite direction.

The alignment accuracy strongly depends on the reliability of

predicted topology structures. We used predicted topological

structures to derive features for both the target and the template,

since the features used between the target and the template are

more likely to be consistent than using those derived from

predicted topological structure of the target but the known

topological structure of the template. Furthermore, we used our

consensus topology predictor CNTOP [55] to generate highly

accurate topology structures for aTMP, in which contact of TMH

residues is utilized to improve the topology prediction accuracy

based on four top-leading individual predictors. By using the same

training and testing sets as the one used in the current study,

CNTOP achieved 87% prediction accuracy and located TMHs

more accurately than any individual predictor. Although the

topology prediction for bTMP is not as accurate as aTMP because

they often have shorter TM segments and less sequence pattern,

these barrel TMPs have more regular and simple global topology

structures than their TMH counterparts; in particular, bTMPs in

the same fold have mostly the same number of TM segments and

similar sequence lengths. Therefore, the current topology predic-

tion accuracy of bTMP is still very useful to generate a reliable

alignment. TMBETAPRED-RBF [53] was used as bTMP

topology predictor for its higher prediction accuracy.

Sequence Profile
To get sequence profile for a given protein sequence, we used

the Position Specific Scoring Matrix (PSSM) derived from the

search of PSI-BLAST (Position Specific Iterative BLAST) [60]

against NCBI’s non-redundant (NR) database. A PSSM profile

P½i,j� is a n|20 log-odds matrix, where thenrepresents the

sequence length. Each element in P½i,j� indicates the frequency of

the residue type j appearing at positioni.

Solvent/Lipid Accessibility
Accessible surface area (ASA) describes a residue’s exposure to

the environment, and it has been applied to structural studies of

soluble proteins [20,61–63]. A number of ASA predictors have

been developed [24,64]. In contrast, TMPs interact with not only

a hydrophilic solvent environment (non-TM segments), but also a

hydrophobic lipid environment (TM segments). The average ASA

of 20 amino acids in TMPs are significantly different from that of

soluble proteins, even in non-TM segments [65]; hence, ASA

predictors of soluble proteins are not applicable to TMPs.

However, some studies on predicting ASA specifically for TMPs

[65–67] have been developed, which showed significantly

improved accuracy of ASA prediction in TM segments. We used

one of these methods MPRAP [67] to predict ASA for both targets

and templates, which separates different segments of TMP and

predicts the entire TMP sequence without using its topology

structures as input. To reduce the impact of prediction errors in

Figure 3. Examples showing the correlation of raw score and structure similarity between target and template. The example of aTMP
1NEK_D is shown in (a), and that of bTMP in (b). Each point on the diagram represents an aligned template. The horizontal axis represents aligned raw
score, and the vertical axis shows the corresponding TM-Score. The curve on the diagram is the trend line of data points. The Pearson Correlation
Coefficient of 1NEK_D is 20.8120, and that of 1E54_A is 20.8350. Structure similarity is represented using TM-Score. The raw scores generated by
TMFR were observed negatively correlating to structure similarities of templates aligned to corresponding target. The templates that have the most
similar structures with target are labeled using the PDB classification.
doi:10.1371/journal.pone.0069744.g003

Figure 4. Correlation of raw score and structure similarity in
complete testing dataset. The Pearson’s correlation coefficients of
aTMP and bTMP samples are separately counted in the boxplot above.
doi:10.1371/journal.pone.0069744.g004
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the alignment, both the target and template used predicted ASA to

construct profiles.

Scoring Function
We employed a scoring function consisting of fitness score with

gap penalty, where the fitness score was used to measure the

compatibility of the profiles between the target and the template,

while the gap penalty minimized gap insertions in alignment.

Scoring function applied to our method was tailored for TMPs

based on their special topology structures as shown in the

following.

(1) Fitness scoring. Fitness scoring used in our method

compares the compatibility of profiles constructed by the four

integrated features. The fitness scoring between positionion the

target and position j on the template is given as follows:

Fitness(i,j)~w1Eprofile(i,j){w2Esegment(i,j){w3Eorientation(i,j)

{w4Eaccessibility(i,j)zwshift:
ð1Þ

The first term of Eqn. (1) describes the compatibility of sequence

profiles between the target position i and the template position j,

which is calculated as follows:

Eprofile(i,j)~
P20

k~1

Ft arg et(i,k)Ptemplate½j,k�, ð2Þ

where Ft arg et(i,k) is the sequence-derived frequency of residue k at

position i on the target sequence, and Ptemplate(j,k) is the PSSM

value of residue k at position j on the template sequence.

The second term presents the match score of segment type

between two positions, i.e.

Esegment(i,j)~
1, segment(i)~segment(j)

{1, segment(i)=segment(j)

�
, ð3Þ

where segment() represents the segment type of the residue at the

corresponding position. Both the target and template use segment

type derived from predicted topology structures.

The third term is used to further distinguish the TM segments

by segment orientation, which is given as,

Eorientation(i,j)~

1, orin(i)~orin(j)=0

{1, orin(i)~{orin(j)=0

0, else

8><
>: , ð4Þ

where orin() is the segment orientation of the residue at the

corresponding position. The TM segments that have the same

orientation obtain 1, while the opposite orientation results in 21.

The score between TM segment and non-TM segment is assigned

to 0, because such a comparison is not taken into consideration.

Similarity of accessibility between positions i and j is measured

as,

Eaccessibility(i,j)~Daccess(i){access(j)D, ð5Þ

where access() is the real value of predicted accessibility of the

residue at the corresponding position. w1,w2,w3,w4 are the weights

of four features, and wshift is a to-be-determinate constant shift

[68], which was trained with other parameters.

(2) Gap penalty. Gap penalty is used to evaluate the cost of

an insertion (or deletion) in the alignment. We employed a

segment-dependent gap penalty model, which is composed of open

gap penalties optm,opnon{tm, and extended gap penalties

eptm,epnon{tm for TM segments and non-TM segments, respec-

tively. Differing from an early study [69] which simply forbade the

Figure 5. Topological arrangements of top-ranked templates for target 1NEK_D. 1YQ3_D and 1KF6_D are the top-2 templates ranked by
raw score.
doi:10.1371/journal.pone.0069744.g005

Table 2. Comparison of fold recognition performances
between OMPs and HHsearch.

Methods Top 1 Top 3

ACC. (%) TM-Score ACC. (%) TM-Score

TMFRa 56.3 0.581 66.7 0.523

TMFRb 93.1 0.738 93.6 0.684

HHsearcha 49.2 0.553 57.2 0.467

HHsearchb 82.8 0.692 84.5 0.603

Average accuracy (ACC) is the percentage of correctly recognized templates for
all tested targets, where, a template has been correctly recognized when its
structure similarity and raw score have both ranked in the top-1 (or top-3), and
‘‘TM-Score’’ is for top-1 template or the average of top-3 templates.
doi:10.1371/journal.pone.0069744.t002
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gaps opening inside alpha-helices and beta-strands, we still allow

gaps to open in TM segments because topological structure

prediction may have prediction errors. On the other hand, open

gap penalty for TM segments is significantly larger than that of

non-TM segment.

(3) Alignment score adjustment. The raw score generated

by alignment, which is the score of optimized dynamic program-

ming path, is used to rank the templates for a given target from

which best matching folds are selected, the lower raw score is, and

the better alignment was made. However, raw score is sensitive to

the sequence lengths of the target and the template. Hence, we

adjust the raw scores according to the sequence length difference

between target and template as follows:

rawscore~rawscoreorignal|(1{DLent arg et

{LentemplateD=Lent arg et),
ð6Þ

where rawscoreorignal is the original alignment score, and Len is

the sequence length of target or template. This score favors the

alignment between a target and a template of similar lengths.

Dynamic Programming
We used a local-global dynamic programming (DP) algorithm

[70] to optimize the alignment path, together with the OMP-

specific scoring function introduced above. The segments with the

same type are favored in the alignment, while different segment

types are hard to match unless they are highly compatible with the

sequence profiles.

Training of Parameters
All parameters,w1,w2,w3,w4,wshift,optm,opnon{tm,eptm,epnon{tm

used in the scoring function were trained using the method in [69]

on our training dataset for aTMP and bTMP separately. All the

parameters were randomly assigned the initial values, and then

optimized by a grid search. Here, the TM-Score [71] was used to

guide the searching. The higher TM-Score derived from the

alignment is considered achieving a higher accuracy. The

iterations exit when the average TM-Score stopped increasing.

The parameters trained for aTMP are (1.6, 8.4, 6.7, 3.2, 4, 12.1,

1.6, 8.6, 1.1), and those of bTMP are (1.5, 9.2, 4.3, 3.6, 5, 9.2,

11.8, 1.6, 8.3, 1.1).

Benchmarks
The alignment accuracy can be evaluated by two approaches:

(1) calculating the percentage of correctly aligned positions [72];

(2) scoring the structural similarity between the aligned pairs [73].

A ‘ground truth’ benchmark is required for both approaches. For

the first one, reliable native 3D structure alignment is used to

identify the correct aligned positions and the alignment accuracy

(ACC) is recorded. While there is no unique solution that solves

the problem of finding the optimal structure alignment [74], we

chose TM-align [75] for such a golden standard given its good

performance. For the second approach, GDT_TS [76,77] and

TM-score [71] are commonly used for alignment purposes, and

we used both of them to fully assess the alignment accuracy of

TMFR. Notably, TM-score is designed to be independent of

protein lengths, and the structures with a score higher than 0.5

assume the same fold, while the proteins are assumed unrelated

when the score is below 0.20 [78]. Since there is no comprehensive

fold classification database that involves all the TMPs, we used

TM-scores to determine whether two TMPs are the same fold

using a threshold of 0.5.

Results

Performance of Alignment
Since there is no existing alignment method specifically for

TMP to make comparison, we used HHalign [79], which is a

leading alignment method for general proteins, to compare the

performance of alignment. HHalign uses profile hidden Markov

model (HMM) to make pairwise HMM-HMM (profile-HMM)

alignments, where confidence values and a full seven-state

secondary structure prediction are employed to improve the

alignment quality.

To arrange the comparison, the profile-HMMs of all TMPs in

the testing dataset were generated with default parameters and

then applied to an all-vs-all pairwise alignment using HHalign.

Self-alignment of the same protein, and alignments between

aTMPs and bTMPs were removed. In total, 5700 pairs

(70|69z30|29) were used in the final comparison. Corre-

spondingly, the same pairwise alignment was made using TMFR

alignment on the same dataset.

Average alignment accuracies obtained from TMFR and

HHalign are shown in Table 1, where aTMPs and bTMPs are

separately compared. TMFR achieved better alignment accuracy

for both aTMP and bTMP, especially in TM segments. TMFR

achieved above 10% improvement on overall ACC over HHalign

for aTMP, and 9% for bTMP. Similar improvement was shown

using TM-score and GDT_TS, where overall accuracies improved

by almost 10% for both categories of TMPs. Notably, TMFR

aligned TM segments much better than non-TM segments, and

the difference is more significant for aTMPs, while HHalign has a

similar pattern, but to a much lesser degree. The better

performance in TM segments for both methods may be due to

topology-based features and stronger sequence profiles in the

regions. We also compared the performance of TMFR between

using topology structure and using secondary structure as shown in

Fig. 2. Five aTMP topology predictors [37,38,44,46,55] and one

secondary structure predictor [80] were applied to generate

corresponding features. The results obviously prove that topology

structure was more effective as features than secondary structure

for the alignment, and the alignment accuracy increased with the

rising topology prediction accuracy. HHalign uses secondary

structures as a feature, while TMFR uses richer features of

segment type and orientation to represent the conformation of

TMPs. This may be the main reason why TMFR achieves

significantly better alignment accuracy than HHalign.

Raw Score and Structure Similarity
As introduced, TMFR recognizes TMP folds using the ranking

of alignment raw scores; hence, how raw score correlates with the

structure similarity is the basis of fold recognition. Figure 3 shows

two examples where the raw score negatively correlates the

structure similarity between the template and the target. Figure 3(a)

presents an example of aTMP Succinate Dehydrogenase

(PDB_ID: 1NEK:D) [81], and Fig. 3(b ) shows bTMP Omp32

(PDB_ID: 1E54:A) [82]. Both target proteins are selected

randomly from the testing dataset and represent typical cases of

tested targets, and the distributions of Pearson’ correlation

coefficients of aTMP and bTMP are shown together in Fig. 4,

which indicts how the raw score produced by TMFR is relative to

structure similarity.

As expected, the targets yielded the best raw scores (smallest)

when they aligned to themselves as shown by the data points in the

graph’s left-top area. In the case of 1NEK_D, templates with

structural similarity less than 0.4 of TM-Score cluster in the

graph’s right-bottom area, while a few templates fall in the middle

Transmembrane Protein Alignment & Fold Recognition
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area, e.g., mitochondrial respiratory Complex II (1YQ3_D) [83]

and Escherichia coli quinol-fumarate reductase (1KF6_D) [84].

These protein domains having high raw scores also have the

similar topological arrangement as shown in Fig. 5. The trend line

clearly indicates that the distribution of templates reflects the

tendency that raw scores are negatively correlated with their

structural similarities to the target protein. Although the ranking of

raw scores does not always follow the structure similarities,

especially for the templates with low TM-Scores, the templates in

the same fold with target (TM-Scores.0.5) have more significant

correlation, which is more relevant for fold recognition.

In contrast, the trend line of bTMP target 1E54_A demon-

strates more correlation than 1NEK_D between raw scores of

templates and their structure similarities to the target as shown in

Fig. 3(b). The three templates, namely, OmpC (PDB_ID:2XE1:A)

[85], engineered porins (PDB_ID:1H6S:A) [86] and porin

(PDB_ID:2OPR:A), have the most similar structures with target,

and they all have 16 TMBs same as 1E54_A. As bTMPs are often

homologous to each other [87], bTMPs having the same number

of TMBs are more likely to result in similar spatial structures. This

may be why bTMP templates derive much higher TM-Scores with

the target than 0.4, while most aTMP templates have less than 0.4

TM-Scores to their target. It is noted that good correlation shown

in Fig. 3(b) does not cover all bTMPs even when having the same

number of TMBs between the target and templates.

Performance of Fold Recognition
Given the absence of available method for TMP fold

recognition, HHsearch [79], a leading fold recognition program

based on the profile-HMM pairwise alignment method, HHalign,

was used to compare with TMFR. On the same testing dataset,

templates were ranked using the raw scores generated previously

in the above subsection in aTMP and bTMP separately. The

performance of both methods is shown in Table 2. TMFR

achieved better accuracy of fold recognition in all aspects

compared to HHsearch. TMFR improved the top-1 bTMP fold

recognition nearly 11% more than HHsearch in average accuracy,

and improved over 7% in top-1 aTMP fold recognition. When

both methods recognized the top-1 template correctly at the fold

level (TM-Score.0.5), the top-1 templates ranked by TMFR

usually have closer structures to the target than HHsearch.

Meanwhile, TMFR performed even better in recognition of top-3

templates, where the average accuracy gap between the two

methods was ,9% for both aTMP and bTMP, as indicated by the

average TM-Score.

Discussion and Conclusion

In this study, we developed a TMP fold recognition method,

TMFR, which employs topology-based features to improve the

pairwise alignment using the distinct physicochemical properties of

TMPs compared to soluble proteins. We further introduced the

TM segment orientation to distinguish the TMPs with similar

topology structures. Compared with a leading general protein fold

recognition method, HHsearch, TMFR achieved significant

improvements both in pairwise alignment and fold recognition.

Our study shows that TMP-specific features can benefit the

sequence-to-structure alignment significantly, which provides

some insight for future structure prediction and function

annotation for TMPs.

Our current study has some limitations and future work will

address them. The performance of TMFR heavily relies on

topology structure prediction whose advance will help TMP fold

recognition and alignment. In addition, topology structure does

not include the secondary structures within non-TM segments.

Integrating secondary structures of non-TM segments with

topology structures of TM segments may improve our method

in the future. We will also develop a web server for the broad

research community.
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