
materials

Article

Characterisation of Natural Fibres for Sustainable
Discontinuous Fibre Composite Materials

Ali Kandemir * , Thomas R. Pozegic, Ian Hamerton , Stephen J. Eichhorn
and Marco L. Longana

Bristol Composites Institute (ACCIS), Department of Aerospace Engineering, School of Civil, Aerospace,
and Mechanical Engineering, Queen’s Building, University of Bristol, University Walk, Bristol BS8 1TR, UK;
tpozegic@yahoo.co.uk (T.R.P.); ian.hamerton@bristol.ac.uk (I.H.); s.j.eichhorn@bristol.ac.uk (S.J.E.);
m.l.longana@bristol.ac.uk (M.L.L.)
* Correspondence: ali.kandemir@bristol.ac.uk

Received: 26 March 2020; Accepted: 25 April 2020; Published: 4 May 2020
����������
�������

Abstract: Growing environmental concerns and stringent waste-flow regulations make the
development of sustainable composites a current industrial necessity. Natural fibre reinforcements are
derived from renewable resources and are both cheap and biodegradable. When they are produced
using eco-friendly, low hazard processes, then they can be considered as a sustainable source of
fibrous reinforcement. Furthermore, their specific mechanical properties are comparable to commonly
used, non-environmentally friendly glass-fibres. In this study, four types of abundant natural fibres
(jute, kenaf, curaua, and flax) are investigated as naturally-derived constituents for high performance
composites. Physical, thermal, and mechanical properties of the natural fibres are examined to
evaluate their suitability as discontinuous reinforcements whilst also generating a database for
material selection. Single fibre tensile and microbond tests were performed to obtain stiffness, strength,
elongation, and interfacial shear strength of the fibres with an epoxy resin. Moreover, the critical
fibre lengths of the natural fibres, which are important for defining the mechanical performances of
discontinuous and short fibre composites, were calculated for the purpose of possible processing of
highly aligned discontinuous fibres. This study is informative regarding the selection of the type and
length of natural fibres for the subsequent production of discontinuous fibre composites.

Keywords: discontinuous fibre composites; fibre-matrix interfacial properties; mechanical properties;
natural fibres

1. Introduction

Owing to their light weight, superior specific strength, and stiffness, composite materials play a
vital role in engineering applications and are continually replacing conventional monolithic materials.
However, sustained growth in the composite industry can only be achieved if components and
methodologies are sustainable, with the additional considerations of economic and environmental
factors. Consequently, the composites industry is becoming increasingly aware of the importance
of materials selection, manufacturing, end-of-life waste management strategies, and the life cycle
assessment (LCA), a fundamental tool for the design phase [1,2].

Natural fibre reinforcements have attracted considerable attention in the composite industry
owing to their specific mechanical properties and environmental advantages [3,4]. Natural fibres are
an abundantly available, sustainable, biodegradable, and economically viable alternative to synthetic
fibres, such as carbon, glass, and aramid, which share none of these characteristics [5]. Although natural
fibres have begun to replace synthetic fibres in several applications [6], their use needs to be validated
through comparison of their mechanical properties against those of reinforcements commonly used in
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industry. One of the drawbacks is the low thermal stability of natural fibres. This limits the possibility
to couple them with high temperature processing polymeric matrices [4]. Another limiting factor that
needs to be accounted for during the design and manufacturing is their hydrophilic nature; this is
especially critical for applications wherein these materials are exposed to humid conditions [7].

Discontinuous fibres are easier to procure than continuous fibres, and their composites are able
to exhibit high mechanical performances, comparable with those of continuous fibre counterparts
if high levels of alignment and optimum critical fibre length are attained [8,9]. Moreover, highly
aligned discontinuous fibre composites (ADFRC) have been considered as the best compromise where
processability and performance requirements intersect [10]. The sustainability of composite materials
in terms of manufacturing and recycling can be addressed by discontinuous fibre composite processing
methods, such as the HiPerDiF method [11]. It has been shown that natural fibres can be manufactured
by the HiPerDiF method, and hybrid flax/reclaimed carbon composites have exhibited significant cost
reduction and increase in functional properties, i.e., damping, for the applications wherein a reduction
in mechanical properties is an acceptable trade-off [12]. It is therefore possible to obtain a sustainable
and reliable solution for high performance composites that use natural fibres in a discontinuous fibre
composite processing method.

For obtaining high mechanical performances in discontinuous short fibre composites, one of the
key parameters is the critical fibre length, which is highly dependent on the interfacial bonding between
a matrix and a fibre. The interfacial shear strength (IFSS) is a measure of this interfacial bonding,
and by using values of the IFSS, it is possible to calculate the critical fibre length. There are several
methods with which to obtain IFSS [13]; the most common methods are fibre pull-out [14–16] and fibre
fragmentation tests [17–20]. A third, the discrete approach, is the microbond test, which allows the
direct and reproducible measurement of the single fibre-matrix interface strength, eliminating any
meniscus effects [21,22], and has been widely preferred for evaluating the IFSS for different fibre/resin
systems [23,24].

In this study, natural fibres, jute, kenaf, curaua, and flax were characterised to determine their
physical, thermal, and mechanical properties, and these were compared with conventional synthetic
fibres. The thermal stability of the fibres was determined using non-isothermal and isothermal
thermogravimetric analysis (TGA) to ensure the operating temperature limit of the fibres. The tensile
properties of the fibres were determined through single fibre tensile tests and the IFSS of the fibres
with epoxy resin was obtained using the microbond test. The critical fibre length and aspect ratio of
the fibres were calculated. These results are useful in informing the choices for fibre type and lengths
that would be suitable for sustainable, high performance, discontinuous fibre composites.

2. Materials

Four promising natural fibres from different continents and climates—jute, kenaf, curaua, and flax,
were used in this study. The jute fibres, provided from Shams UK Ltd., were Bangla Tossa fibres
collected in Bangladeshi jute cultivation areas. The fibres were processed by the company by batching,
carding, and drawing the filaments. The kenaf fibres, processed by a decorticator, were collected at
Malang, East Java, Indonesia. The curaua fibres were collected at Santarem, Para, Brazil by conventional
methods (hand crafted). The flax fibres, sourced from Eco-Technilin (FlaxtapeTM, Normandy, North of
France) were produced using a proprietary process. All the fibres were off-the-shelf products and used
as received; no sizing was present or applied to the fibres. Prior to testing, all fibres were dried in a
vacuum oven at 70 ◦C, overnight, and samples were then stored in a desiccator to prevent further
moisture uptake. In this study, the usage of the term fibre represents a bundle of ultimate fibres;
i.e., fibrils, [25].

In this study, a commercially available epoxy resin, commonly used in industry to produce high
performance composites, was selected. PRIMETM20LV (ex Gurit) diamine-cured difunctional resin was
used in combination with a PRIMETM20 hardener with a weight ratio of 100:26. With a curing cycle of
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7 h at 65 ◦C recommended by the manufacturer [26], this resin allows sufficient working time at room
temperature to prepare the microbond test specimens.

3. Experimental Work

3.1. Physical Characterisation

3.1.1. Visual Characterisation

Cold mounting was used to prepare the specimens for fibre cross-section examination under
an optical microscope (Zeiss Axio Imager M2). Standard wet grinding and polishing for polymer
matrix composites were used for each specimen. Figure 1 shows the cross-section optical microscopy
images of the natural fibres. As seen in Figure 1, the cross-section of the kenaf fibres was found to be
circular. For jute, the cross-sections were found to be more rectangular, and for flax more elliptical.
Curaua fibres were found to have a circular cross-section with ragged edges. As also seen in Figure 1,
kenaf fibres have considerably larger diameters than the other fibres, whereas the rest are of the same
order of magnitude in terms of size. The diameter of each individual fibre bundle was determined
using an optical microscope, taking an average at three points along the fibre; the measurements
were performed on fifty specimens for each fibre type. For the post-processing of data in mechanical
characterisation, fibres were assumed to be circular in their cross-sections. The diameters of the fibre
bundles used in mechanical tests were measured to be 64.05 ± 5.93, 208.34 ± 12.08, 86.86 ± 2.39,
and 63.76 ± 5.06 µm for jute, kenaf, curaua, and flax fibres, respectively.

Figure 1. Cross-sectional optical microscopy images of jute, kenaf, curaua, and flax fibres.

3.1.2. Density Characterisation

The apparent density, bulk density, apparent porosity, and water absorption of the natural fibres
were obtained by following the principle of Archimedes (the buoyancy method) and recommendations
of ASTM C830-00 using a precision balance (sensitivity 0.1 mg) [27]. Initially, each fibre was dried
in a vacuum oven overnight and the dried fibre mass, D, was weighed immediately after removing
from the oven. Each fibre was then immersed in water in a vacuum chamber, overnight, and the
saturated weight of fibre, W, weighed in air afterwards. As a last step, the suspended weight of fibre,
S, was measured while immersing the fibre in water.
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Apparent (AD) and bulk density (BD) were calculated by using Equations (1) and (2), respectively:

AD (g cm−3) =
D

D − S
× ρmedium (1)

where ρmedium denotes density of displacement medium.

BD (g cm−3) =
D

W − S
(2)

Apparent porosity (AP) that describes open pores in terms of volume were calculated by
Equation (3) as follows:

AP (%) =
W − D
W − S

× 100 (3)

Water absorption (WA), which expresses the percentage of water absorbed by the dry fibre,
was calculated by using Equation (4).

WA (%) =
W − D

D
× 100 (4)

Table 1 shows the physical properties of the natural fibres. It was found that kenaf has the highest
density (1.57 g cm−3) among them. The densities of jute, curaua, and flax were calculated to be 1.51,
1.50, and 1.54 g cm−3, respectively. The calculated density value for flax is in agreement with the
literature values (1.54 [28] and 1.40–1.55 g cm−3 [29]), which were obtained from different methods,
such as helium pycnometer (1.54 g cm−3 [30]), gas pycnometer (1.49–1.52 g cm−3 [31]), and immersion
in water (1.54 g cm−3 [32]). The calculated density values for jute and curaua were found to be in
close agreement with literature (1.30–1.50 g cm−3 [28,29] for jute; 1.52–1.56 g cm−3 [29] for curaua),
whereas kenaf fibres (1.22–1.45 g cm−3 [29,33]) were found to be slightly higher. The bulk densities
of the fibres were calculated to be 0.68, 0.78, 0.68, and 0.74 g cm−3 for jute, kenaf, curaua, and flax,
respectively, displaying a correlation between apparent and bulk density. Moreover, it was seen that
all fibres have the same significant amount of porosity within the range 50%–55%. On the contrary,
the calculated water absorption values differ significantly. Curaua (∼82%) and jute (∼81%) fibres tend
to absorb more water content compared to kenaf (∼65%) and flax (∼70%) fibres. It was concluded that
the penetration of water into the natural fibres is considerable.

Table 1. Physical properties of jute, kenaf, curaua, and flax fibres. Errors represent standard errors of
means (SEM).

Fibre Apparent Apparent Water Bulk
Density Porosity Absorption Density
(g cm−3) (%) (%) (g cm−3)

Jute 1.51 ± 0.01 54.86 ± 2.20 81.08 ± 7.75 0.68 ± 0.04
Kenaf 1.57 ± 0.02 50.53 ± 1.20 65.21 ± 3.76 0.78 ± 0.03
Curaua 1.50 ± 0.01 54.58 ± 5.61 81.98 ± 17.57 0.68 ± 0.08
Flax 1.54 ± 0.01 51.72 ± 0.15 69.60 ± 0.19 0.74 ± 0.00

3.1.3. Surface Analysis

Furthermore, Brunauer–Emmett–Teller (BET) surface area analysis of the natural fibre samples
was performed in a static volumetric adsorption system (Micromeritics 3-Flex) using ultra-high pure
N2 (Air Products. 99.9999%) up to 1 bar pressure. Before adsorption measurements, the samples,
∼150 g of chopped loose fibres, were heated up to 373 K under vacuum for 12 h to remove moisture
and pre-adsorbed gases. The BET surface area was obtained within the relative pressure range of
0.05–0.25 at temperature 77 K.
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Table 2 shows BET surface area measurements (SBET) and calculated geometric surface area (Sgeo),
surface roughness (SR), and specific surface area (SSA) values of the fibres. Jute, which is processed
by carding and drawing, showed the highest BET surface area, 2.28 m2g−1. It was found that kenaf
and curaua have similar BET surface areas, 1.17 and 1.32 m2g−1, respectively. On the contrary, flax
showed the lowest BET surface area, which is 0.37 m2g−1, similar to previously reported values
(0.31–0.51 m2g−1 [34]). Additionally, BET surface areas of jute and curaua have been reported as 2.01
and 0.87 m2g−1 [35], which are consistent with the measured values.

Table 2. Surface area properties of jute, kenaf, curaua, and flax fibres. SBET , Sgeo, SR, and SSA denote
BET surface area, geometric surface area, surface roughness, and specific surface area, respectively.
Errors represent SEM. (Sgeo = 4(ρd)−1, SR = SBET/Sgeo, SSA = ρSBET .)

Fibre SBET Sgeo SR SSA
(m2 g−1) 10−2 (m2 g−1) (µm−1)

Jute 2.28 ± 1.07 4.14 ± 0.38 55.11 ± 26.35 3.44 ± 1.61
Kenaf 1.17 ± 0.12 1.22 ± 0.07 96.04 ± 11.36 1.84 ± 0.19
Curaua 1.32 ± 0.61 3.07 ± 0.09 43.02 ± 19.97 1.98 ± 0.92
Flax 0.37 ± 0.18 4.07 ± 0.32 9.05 ± 4.37 0.57 ± 0.27

To obtain better understanding about surface roughness, SR and SSA values (dependent and
independent on diameter, respectively) were calculated. As seen in Table 2, it was found that flax
fibres have higher surface roughness (9.05 ± 4.37) than glass fibres (∼1–1.7) [36]. However, jute, kenaf,
and curaua fibres have nearly one order of magnitude higher surface roughness compared to flax
fibres. The same trend was also observed in SSA values; flax fibres have the lowest SSA, while the
other fibres have higher SSA values.

3.2. Thermal Analysis

The non-isothermal and isothermal decompositions were carried out in a simultaneous thermal
analysis (STA) instrument (Netzsch STA 449 F1 Jupiter [Netzsch-Gerätebau GmbH, Wolverhampton,
UK] ) under flowing nitrogen. The dynamic TGA data for the fibres were obtained between 40 and
800 ◦C at a heating rate of 10 ◦C min−1 and a nitrogen flow rate of 50 mL min−1. Two different
temperatures, 175 ◦C and 225 ◦C, were maintained for 1 h to study the isothermal decomposition of the
fibres under a nitrogen atmosphere with the same flow rate in the non-isothermal runs. Each sample
weighed between 5 and 12 mg for each run of the decomposition tests and alumina crucibles were
used as sample holders.

The dynamic TGA curves for natural fibres are shown in Figure 2. After initial weight loss
caused by the vaporisation of absorbed moisture in the fibre, the first decomposition started at
∼220–230 ◦C and the onset temperature for the maximum decomposition, which is attributed to
cellulose degradation in the structure [37], was found to be within 320–335 ◦C. Following the maximum
decomposition, there is a gradual weight decrease related to lignin degradation, which requires higher
condensation temperature [38]. Moreover, ∼80% weight loss was observed between the temperatures
150 and 700 ◦C for jute, kenaf, and curaua, whereas flax showed a lower mass loss (72%). Residual
masses were ∼11.5%–13.5% for jute, kenaf, and curaua and ∼21% for flax at 800 ◦C.

The dynamic TGA curves showed that significant decomposition starts at ∼220–230 ◦C for the
fibres and as indicated for natural fibres [4]; they degrade after ∼200 ◦C. Therefore, isothermal TGA
tests were carried out at 175 ◦C and at 225 ◦C; the isothermal TGA curves of the fibres are shown in
Figure 3 (temperature profiles during tests as a function of time are also shown in the Supplementary
Information; see Figure S6). The first mass loss, amounting to ∼7%, corresponding to water release
from the fibres [37], occurring within 10 minutes during an isothermal analysis, was also observed
in the dynamic TGA data (Figure 2). For 175 ◦C isothermal heating, no significant weight loss was
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observed for all fibres; gradual decrease in the weight of the fibres was seen during 225 ◦C isothermal
heating. Thus, it was concluded that the fibres are thermally stable up to 175 ◦C.

Figure 2. TGA curves of jute, kenaf, curaua, and flax fibres as a function of temperature.
Onset temperatures of the fibres are shown as insets.

Figure 3. The isothermal TGA of jute, kenaf, curaua, and flax fibres during isothermal heating at 175 ◦C
(black lines) and 225 ◦C (red dashed lines). Weights (%) after 1 h isothermal TGA run of the fibres are
highlighted inside plots.

3.3. Mechanical Characterisation

3.3.1. Single Fibre Tensile Test

The mechanical properties of the natural fibres were determined by using a single fibre tensile
test method (SFTT) [39]. The fibres were attached to plastic tabs that were arranged in a silicone holder
to maintain a gauge length of 40 mm. Dynamax 3139 adhesive was used to attach the fibres to plastic
tabs, which were subsequently cured under UV light for at least 2 h. Fibres underwent quasi-static
tensile loading using a Dia-stron LEX820 Extensometer machine (Dia-Stron Limited, Andover, UK)
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using a 20 N load cell and with a strain rate of 0.02 mm/sec. For each fibre type, more than ten single
fibres were successfully tested.

Young’s moduli, tensile strength, and elongation at break of the fibres, which were assumed to
have circular cross section, are shown in Figure 4. It was found that flax has the highest Young’s
modulus (∼40 GPa) and curaua is the second highest (∼30 GPa) among the four fibres. Young’s
modulus values for kenaf and jute were found to be ∼11 and 21 GPa, respectively. Moreover, curaua
showed the highest tensile strength (∼660 MPa) and flax showed the second highest value (∼580 MPa).
On the contrary, jute and kenaf showed similar lower tensile strength values, which are ∼300 and
330 MPa, respectively. In terms of stiffness and strength, the mechanical performances of curaua and
flax fibres are better than those of jute and kenaf fibres. As expected, the stiffest fibre, i.e., flax, showed
low elongation at break of 1.52 ± 0.07%; however, the lowest elongation at break was observed in
jute—1.48 ± 0.10%, and could be related to the high content of cellulose compared to lignin in jute’s
structure [40]. Owing to the high lignin content in kenaf fibres [41], their elongation at break was found
to be 3.00 ± 0.11%, which is the highest amongst the other fibres. Curaua fibre has a moderate lignin
content but also moderate hemicellulose and high cellulose contents in its structure [42], which might
result high stiffness and moderate elongation at break (2.30 ± 0.09%).

Figure 4. Young’s modulus (red /), tensile strength (blue −), and elongation to break (green \) values
of jute, kenaf, curaua, and flax fibres.

Moreover, Weibull analysis was applied to the strength values of the fibres. Weibull analysis
is a probabilistic approach and has been widely used to determine the statistical behaviour of the
strengths of single fibres [43]. The Weibull shape (m) and scale parameter (σ0) represent scatter of
the data and the Weibull strength, respectively. The Weibull parameters for the natural fibres were
calculated and σ0 values of the fibres were found to be 341, 373, 717, and 646 MPa for jute, kenaf,
curaua, and flax, respectively. It was seen that the Weibull strength values of the fibres are slightly
higher than the mean strength values. m for jute, kenaf, curaua, and flax were calculated to be 2.98,
2.81, 5.88, and 3.06, respectively. Higher m means the low dispersion of Weibull strength, or in other
words, fracture stress. It was seen that curaua has the highest m value, ∼6, and the other fibres show
nearly same m value, ∼3.
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3.3.2. Microbond Test

To determine the IFSS of the natural fibres with an epoxy matrix, a microbond method [21] was
used. The microbond methodology followed the same methodology as the fibre tensile test preparation,
initially; the fibres were attached to plastic tabs that were arranged in a silicone holder to maintain a
gauge length of 40 mm. Dynamax 3139 adhesive was used to attach fibres to plastic tabs, which were
subsequently cured at ambient temperature (ca. 20 ◦C) under UV light for at least 2 h. After this point,
the epoxy resin droplets were applied to the fibres and cured in an oven following the manufacturers
recommended procedure. An optical microscope was used to measure the droplet position on the
fibre, the droplet size, and droplet embedded area for each microbond test. A Dia-stron LEX820
Extensometer was used with the microbond module which comprises a thin metallic plate (microvice)
with a narrow cut in the middle to accommodate the fibre but prevent the microdroplet from passing
through. A schematic of the microbond test setup is illustrated in Figure 5. Appropriate microvice
gap separation (gap sizes; 50, 80, 150, 180, 225, 275, and 330 µm) was used depending on the size of
the droplet to achieve a pure shear stress distribution. To determine the failure type, each fibre was
observed using an optical microscope after the test.

Figure 5. A schematic setup of the microbond test.

Figure 6 shows the microbond test results for the fibres as a function of debonding force and fibre
embedded area. Different types of failure mechanisms, successful shear failure (IFSS), fibrillation of
fibres within the droplet (fibrillation), fibre failure in the vicinity of the droplet (FFD), fibre failure (FF),
and broken matrix (MB), were observed during the microbond tests (detail information of these failure
types can be seen in the Supporting Information, see Figures S1–S5).

As seen in Figure 6, fibrillation failure takes place at low forces compared to other failure types for
all fibres due to local weak interaction of ultimate fibres in a fibre bundle. No clear trend was seen for
other failure types for jute and kenaf fibres. On the contrary, for curaua and flax it was seen that IFSS
failure requires more force compared to other failure types, especially FFD and MB. The reason for
this trend is related to the strengths of curaua and flax, which are stronger than jute and kenaf. It was
also noted that mechanically stronger fibres are less likely to show fibre failure. For example, no fibre
failure was observed for flax fibres and fewer fibre failures were observed for curaua fibres. Besides,
it was seen that the shear distribution across the droplet, when it is contacted with the microvice,
dictates the failure type. If the shear distribution is not equal at both sides of the droplet, generally,
the failure tends to be FFD failure.

The IFSS between fibre and matrix is calculated with Equation (5):

IFSS(MPa) =
Fd(N)

Ae(mm2)
=

Fd(N)

πled(mm2)
(5)
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where Fd and Ae (le and d) denote debonding force and embedded area (embedded length and fibre
diameter), respectively. Applying a boundary condition Force(0) = 0, a linear fit was applied to get an
IFSS value for the fibres by considering only the successful shear failure samples, as shown in right
panel of Figure 6. IFSS values obtained from linear fits are 10.37, 5.94, 13.17, and 11.38 MPa for jute,
kenaf, curaua, and flax fibres, respectively. The mean and standard error of IFSS values were calculated
to be 11.64 ± 1.13, 6.41 ± 0.32, 12.93 ± 0.67, and 11.83 ± 0.79 MPa for jute, kenaf, curaua, and flax
fibres, respectively (Figure 7). As seen in Figure 6, IFSS values obtained from linear fits are within the
range of upper and lower bounds of 95% confidence, and in fairly good agreement with the mean
IFSS values.

Figure 6. Microbond test results of jute, kenaf, curaua, and flax fibres in terms of debonding
force versus embedded area. Left panel shows all data obtained from the test consist of different
failure mechanisms. Right panel shows data only from samples that displayed a successful
interfacial failure. Linear fit (blue dashed lines) was applied to the data, and results are shown
in the figure with the upper and lower 95% confidence intervals (red dotted lines).
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To get effective reinforcement from ADFRC, the fibres must be longer than the critical fibre length,
because this allows maximum load transfer amongst fibres and the failure of the composite material to
be initiated by the fibres rather than fibre-matrix debonding. The critical fibre aspect ratio is calculated
from following Equation (6) below.

lc
d
=

σf

2 × IFSS
(6)

where lc, d, and σf denote the critical fibre length, diameter (at the droplet), and tensile strength
of a fibre, respectively. Figure 7 shows the mean IFSS, lc, and lc/d ratio values of the fibres.
Besides, the mechanical properties such as σf and IFSS, lc depend on the fibre diameter, d, as seen in
Equation (6). In our study, lc values of the fibres were found to be 0.84 ± 0.14, 5.37 ± 0.79, 2.22 ± 0.18,
and 1.56 ± 0.23 mm for jute, kenaf, curaua, and flax, respectively. Since the diameters of the different
fibres vary, it is worth reporting the ratio of lc to d, owing to the fact that it allows us to predict lc from
the diameter. As seen in Figure 7, lc/d is similar (∼25) for kenaf, curaua, and flax; conversely, it is half
of the value of those for jute, which shows the lowest lc.

Figure 7. Interfacial shear strengths, IFSS (red /) and the critical fibre lengths, lc (green \), of jute, kenaf,
curaua, and flax fibres; and lc/d (blue −) ratio values.

4. Discussion

For composite manufacturing, the range over which the material is thermally stable defines the
process parameters and the choice of matrix system. Having confirmed the necessity to pre-dry the
fibres prior to processing, it was concluded that the natural fibres are stable up to ∼175 ◦C. This is a
safe processing temperature for natural fibres since no significant decomposition was observed. It is
also worth mentioning the fact that the drying processes are required to be able to process natural
fibres with water-sensitive polymers and methods.

The IFSSs of jute, curaua, and flax fibres, were found to be approximately 11–14 MPa. Seghini et al.,
who used a similar epoxy (Prime 27 resin–Prime 20 hardener), calculated the IFSS with flax fibre
through the single yarn fragmentation test, obtaining values between 16 and 24 MPa [18]. Furthermore,
the IFSSs for flax with different epoxy systems have been reported as 33 MPa (24 MPa with Maleic
anhydride sizing) [19] by using single fibre fragmentation tests, 23 MPa [44], and 13–17 MPa [14] by
pull-out tests. It was noted that the obtained IFSS for flax fibre with our epoxy system is consistent with
the lower bound of IFSS obtained by other research. On the other hand, there has been a large range of
results for jute/epoxy from 4 MPa [45] obtained by using single fibre microbond test to 34–52 MPa [46]
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obtained by using single fibre pull-out tests. It is worth mentioning that the round-robin has also shown
that pull-out tests give a higher IFSS value than the microbond tests [47]. To the best of the authors’
knowledge, there are no valid IFSS data for kenaf and curaua fibres with epoxy matrices available.

While the use of different epoxy systems prevents a direct comparison between the natural fibres
and synthetic fibres, the natural fibres may show comparable IFSS values to those of glass fibres;
however, the IFSS of glass fibres can be enhanced significantly by sizing. For instance, by using
microbond tests, Baley et al. [23] showed that untreated flax/epoxy has an IFSS of 22.7 MPa, whereas
glass with a textiloplastic sizing had a value of 29.3 MPa. Moreover, glass fibres that have different
sizings, as coupling agents have exhibited IFSS values in the range 38–53 MPa with an epoxy matrix by
using the microbond test [48]. Besides, it was found that carbon/epoxy has an IFSS value of 55–58 MPa
with the microbond methodology [49], higher than the obtained IFSS values in this work and most of
the reported values for natural fibres. There is no consensus for the effect of sizing on natural fibres
to enhance or reduce IFSS due to the studies showing either enhancement or diminution [15,16,20].
However, it is also worth noting that natural fibres have a rougher surface, which enhances good
mechanical interlocking with the matrix.

SR and SSA values revealed that jute, curaua, and flax fibres have different surface roughness
characteristics that can be associated with IFSS values. As seen in Table 2, flax fibres have high IFSS
values without significantly high SR and SSA values, whereas jute and curaua fibres have higher
SR and SSA values which result in high IFSS values. SSA values of jute and curaua also show that
jute fibres have more mechanical interlocking with the matrix per unit length compared to curaua.
Since IFSS is a function of surface roughness, it can be concluded that flax has the highest performance
with an epoxy matrix in terms of IFSS; however, jute and curaua fibres display better mechanical
interlocking, which could be an important factor with another resin system.

Since some of the most important advantages of natural fibres are their specific mechanical
properties, specific stiffnesses and strengths of the fibres were calculated by using measured density
values. In addition to that, specific mechanical properties of the fibres are compared with conventional
glass, carbon fibres, and other work in the literature, as shown in Table 3. The mechanical properties of
natural fibres vary over a wide range; nevertheless, most of the obtained specific mechanical properties
of the fibres are consistent with the literature. As seen in Table 3, the properties of flax fibres obtained
in this work and the literature values of curaua and flax fibres are comparable with glass fibres.

Table 3. Specific mechanical properties of jute, kenaf, curaua, and flax fibres compared with literature
values of natural and synthetic fibres. Errors represent SEMs.

Specific Young’s Modulus Specific Strength Failure
This Study (GPa cm3 g−1) (MPa cm3 g−1) Strain (%)

Jute 14.04 ± 1.00 201.36 ± 21.52 1.48 ± 0.10
Kenaf 6.93 ± 0.71 210.52 ± 26.45 3.00 ± 0.11
Curaua 19.96 ± 0.77 441.53 ± 24.07 2.30 ± 0.09
Flax 25.64 ± 2.01 375.36 ± 39.72 1.52 ± 0.07

Glass [50] 28–30 940–1350 2.5–3.4
Jute [50] 7–39 270–650 1.2–2.0
Kenaf [50] 12–42 538 3.0
Curaua [50] 8.4–36 360–1000 3.0–4.3
Flax [50] 26–76 240–1070 1.2–3.3
Carbon [51] 128–130 1900–2700 1.5–2.1

In addition to that, some composite structural applications require high buckling performance,
which is mainly related to the thickness of structures, and natural fibres have the advantage of
being low density materials. Instead of using over-dimensioned conventional composite structures,
natural fibre reinforced composite structures can provide high buckling performance without weight
penalty. Additionally, it has been concluded that natural fibre reinforcements are preferable to glass
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reinforcements due to both the specific mechanical properties [52] and the environmental friendliness,
as evidenced by LCA [53]. Furthermore, it is worth mentioning that the research performed by five
different laboratories about the stiffness values of natural fibres has reported that Young’s modulus at
low strain is 30% higher than the values obtained by SFTT [54]. Therefore, it can be concluded that
natural fibres show higher Young’s moduli, and methods (such as SFTT) underestimate it.

Natural Fibres as Alternatives to Glass Fibres in ADFRCs

By using the obtained data, it is possible to evaluate, in a hypothetical scenario, the effect of
substituting glass with natural fibre in discontinuous fibre composites. A modified rule of mixtures,
Equation (7), is used to compare the specific Young’s moduli of natural and glass fibre based ADFRCs:

Ec

ρc
= η0η1Vf

E f

ρ f
+ Vm

Em

ρm
(7)

where Ec is the highly aligned discontinuous fibre composite Young’s modulus in the fibre direction, ρc

is the density of the composite material, η0 is a modulus reduction factor dependent on fibre orientation,
η1 is the fibre length efficiency factor, E f and Em are Young’s moduli of the fibre and matrix, and ρ f
and ρm are the densities of the fibre and matrix, respectively. For ADFRCs with high levels of fibre
alignment, η0 can be assumed to be ∼0.9, as shown by Yu et al. in [11]. η1 can be calculated from the
shear lag theory [55] with Equation (8),

η1 = 1 − tanh(al/d)
al/d

where a =

√
−3Em

2E f lnVf
(8)

where l is the fibre length.
Owing to the superior mechanical properties compared to the natural fibres tested, flax and

curaua fibres were selected for the case studies based on the hypothetical scenario of substituting
glass with natural fibre in ADFRCs. Table 4 introduces the properties of fibres and matrices used in
Equations (7) and (8) to obtain the mechanical properties of resultant ADFRCs. The properties of flax
and curaua fibres are the ones obtained in this study corrected for SFTT underestimation [54].

Table 4. Material properties used in the case studies.

Parameters Natural Fibres Glass Fibre Matrix
Flax Curaua C100, Vetrotex PRIMETM20LV

[56] [26]

E (GPa) 52 39 73 3.50
ρ (g cm−3) 1.54 1.50 2.60 1.15
d (mm) 64 87 7 -

Figure 8 shows the contour plot of the increase in specific Young’s modulus (IiSYM) when flax
fibre substitutes glass fibre in ADFRCs as a function of fibre length, l, and fibre volume fraction, v f .
In Figure 8, IiSYM increases from the dark blue to dark red regions and white lines evince the transition
lines, which reveal the influence of l clearly.

As seen in Figure 8, there is more than 15% and up to 20% IiSYM in ADFRCs when glass fibres are
substituted for flax fibres for every l and v f higher than 0.3. The effect of v f on IiSYM is constant and it
leads to increase in IiSYM. On the contrary, l has two different effects on the IiSYM. From micron level
to 1–10 mm, l leads to a dramatic decrease for IiSYM. After that, there is a gradual rise for IiSYM and
for higher v f ; these trends get more clear. As an example, the black star in Figure 8 shows the condition
of v f = 0.7 and l = 3 mm, which is higher than the lc of flax fibre, and it is the point at which 18%
performance enhancement is seen. At that point, the effect of increasing l clearly shows two different
trends, a significant decrease or a gradual increase.
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Moreover, the same hypothetical scenario was repeated for another promising fibre, curaua
fibre, and Figure 9 shows the contour plot of the IiSYM when curaua fibre substitutes glass fibre
in ADFRCs as a function of fibre length, and fibre volume fraction. It was seen that there is a
∼4.5%–6.5% decrease in specific Young’s modulus when v f is between 0.3 and 0.7 in the curaua fibre
case. The same trend mentioned in the first case study about the IiSYM function of l was also seen
clearly, especially at the bottom right corner of the plot; (i) first, IiSYM decreases when l increases from
micron level to 1–2 mm; (ii) then IiSYM increases gradually. Even though curaua fibres in ADFRCs
cause a decrease in mechanical properties when replacing glass fibres, advantages in environmental
friendliness and sustainability remain and make the 5%–6% reduction in specific Young’s modulus an
acceptable trade-off.

Figure 8. Contour plot of the increase in specific Young’s modulus, when highly aligned discontinuous
glass fibre composites switched to highly aligned discontinuous flax fibre composites, in terms of fibre
volume fraction and fibre length. White isolines are scaled by the right hand colour axis.

Figure 9. Contour plot of the increase in specific Young’s modulus, when highly aligned discontinuous
glass fibre composites are switched to highly aligned discontinuous curaua fibre composites, in terms
of fibre volume fraction and fibre length. White isolines are scaled by the right hand colour axis.



Materials 2020, 13, 2129 14 of 17

As expected, the stiffer flax fibre shows positive and better performance than curaua fibre in the
hypothetical scenario of substituting glass with natural fibre in ADFRCs. However, curaua fibre shows
agreeable reduction and may become more favourable than glass fibre if the sustainability aspects are
taken into account through LCA as well.

5. Conclusions

In conclusion, considering the obtained physical, mechanical, interfacial, and thermal properties,
jute, kenaf, curaua, and flax fibres were investigated as reinforcement candidates for sustainable
discontinuous fibre composites. By using the mechanical, physical, and interfacial properties,
the critical fibre lengths were also calculated to determine their reinforcement capabilities when
used in the aligned discontinuous format. In addition, jute has the lowest critical fibre length value
and the lowest critical aspect ratio among those tested. However, jute shows moderate mechanical
properties compared to curaua and flax. In terms of mechanical and interfacial properties, curaua and
flax were found to be promising natural fibre reinforcements to obtain high performance. It is foreseen
that it will be possible to obtain more sustainable composites with specific mechanical properties
comparable with those of glass fibre reinforced plastic.

Furthermore, thermogravimetric analysis based on the isothermal and non-isothermal TGA
curves of the fibres revealed that the ideal processing temperature, where no significant degradation
was observed, is ∼175 ◦C for the fibres. It was seen that the pre-dried fibres have moisture uptake
approximately 6.5–7 wt% from the environment, and during the heating period, the fibres lose all of
the moisture uptake before the targeted temperature is reached.

From an experimental point of view, a better estimation of the embedded area by using a validated
surface area with complementary high resolution microscope images would provide more information
about the interfacial shear strengths of the natural fibres and the importance of mechanical interlocking
at interface. Further steps include considering the interfacial properties between natural fibres and
sustainable matrices (i.e., thermoplastics, bio-based resins, or covalently adaptable networks) to
improve the sustainability of natural fibre reinforced composites. Thereafter, the complete set of data
should be mapped and allow one to find the junction point of high performance and sustainable
composites for ADFRCs.

This study allows sustainable material selection as reinforcement for ADFRC, and the prime
candidates were determined to be curaua and flax fibres. It was also demonstrated that flax
fibres perform better mechanically compared to glass fibres in ADFRCs. The potential applications
would be the replacement of unsustainable composites with sustainable ADFRCs in engineering
applications, such as sporting goods, transport, and automobile industries in which weight reduction
and sustainability are of paramount importance.
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