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• SARS-CoV-2 RNA has been detected in a
wide range of facilities and surfaces;

• 17.7% of samples inhospital settings and
10.1% in non-hospital settingswere pos-
itive for SARS-CoV-2 RNA, using various
molecular methods;

• 6 out of the 37 studies have evaluated
the viability/infectivity of SARS-CoV-2
from 242 positive surface samples;

• No viable virus could be isolated from
the 242 samples with SARS-CoV-2 RNA
detected by RT-qPCR;

• COVID-19 fomite transmission has not
been demonstrated.
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Little is known about contaminated surfaces as a route of transmission for SARS-CoV- 2 and a systematic review is
missing and urgently needed to provide guidelines for future research studies. As such, the aim of the present
study was to review the current scientific knowledge and to summarize the existing studies in which SARS-
CoV-2 has been detected in inanimate surfaces. This systematic review includes studies since the emergence of
SARS-CoV-2, available in PubMed/MEDLINE and Scopus. Duplicate publications were removed, and exclusion
criteria was applied to eliminate unrelated studies, resulting in 37 eligible publications. The present study pro-
vides the first overview of SARS-CoV-2 detection in surfaces. The highest detection rates occurred in hospitals
and healthcare facilities with COVID-19 patients. Contamination with SARS-CoV-2 on surfaces was detected in
awide range of facilities and surfaces. There is a lack of studies performing viability testing for SARS-CoV-2 recov-
ered from surfaces, and consequently it is not yet possible to assess the potential for transmission via surfaces.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

On December 2019, in the city of Wuhan, China, a new coronavirus
from the Betacoronavirus genus was isolated for the first time from a
cluster of patients with an unrecognizable acute pneumonia (Wu
et al., 2020). It was first reported that the only common denominator
among the patients was that all of them visited the Huanan Seafood
Wholesale Market in Wuhan (Peeri et al., 2020). Recent retrospective
investigations concluded that not all early cases of disease had associa-
tions with the HuananMarket (WHO, 2021). The newly identified virus
was named severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) (Wu et al., 2020), it spread in China and was quickly reported
in nearly all countries and territories around the world (JHU, 2020;
WHO, 2020a) to such an extent that it is now responsible for the ongo-
ing global pandemic of Coronavirus Disease 2019 (COVID-19).

The Coronaviridae family is composed of enveloped single stranded
RNA viruses with positive polarity, and members of this family are gen-
erally the causing agents of infections in the upper respiratory tract
(Payne, 2017). According to the World Health Organization (WHO),
the main transmission routes of SARS-CoV-2 are close contact between
individuals by respiratory droplets smaller than 5 μm of diameter
(Rothan and Byrareddy, 2020;WHO, 2020b). Droplet aerosols produced
by infected individuals are an issue of significant importance and
concern that should be considered to reduce the risk of new
infections. In fact, a recent review study concluded that transmission
of SARS-CoV-2 between people is mainly through viruses suspended
either on droplets or aerosols (Meyerowitz et al., 2021a). According to
WHO, aerosol-generating medical procedures might increase transmis-
sion of SARS-CoV-2, however air transmission outside healthcare
settings has not yet been widely recognised as a transmission pathway
(WHO, 2020b).

Air pollution seems to play a role on the spread of SARS-COV-2 and
lethality of COVID-19, above all particulate matter (Bontempi, 2020;
Coccia, 2020; Copat et al., 2020; Domingo et al., 2020; Gonçalves et al.,
2021). It has beenhypothesized that certain air pollutantsmay carry ad-
herent SARS-CoV-2 virions, and consequently, the question of whether
an interpersonal distance of 2m is sufficient to prevent transmission be-
tween people has been raised (Adhikari and Yin, 2020; Comunian et al.,
2020; Marquès et al., 2021; Setti et al., 2020a, 2020b; Yao et al., 2020;
Zoran et al., 2020).

In addition to these main routes of transmission of SARS-CoV-2, a
compelling body of evidence has growingly pointed contaminated sur-
faces as a potential route of transmission (Arav et al., 2020a;
Meyerowitz et al., 2021b; Zheng et al., 2020a). Nearly a half a century
ago, a review paper on the persistence of many viruses on different
types of surfaces was published, highlighting for the first time the pos-
sible role of inanimate surfaces in the transmission of viruses (Mahl
and Sadler, 1975). From then on, a vast amount of data has been pro-
duced on the topic and it was later applied to SARS-CoV (that emerged
in 2002) (Meyerowitz et al., 2021a, 2021b). Particularly, generated data
pointed to the survival of this virus on various surfaces in the environ-
ment, concluding that transmission through droplet-contaminated
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cotton gowns and paper was unlikely, but yet possible to occur (Lai
et al., 2005). Subsequent research supported these findings by conclud-
ing that most respiratory tract viruses can persist on surfaces for a few
days and that transmission via contaminated surfaces can be a potential
source of transmission if preventive surface disinfection is not
performed (Kramer et al., 2006).

After more than a year since the discovery of SARS-CoV-2, and de-
spite several studies reporting it's detection on surfaces, it is still not
clear to what extent SARS-CoV-2 can be transmitted via contaminated
surfaces. To date, although experimental studies have demonstrated
survival of the virus on certain types of surfaces, there are no reports
demonstrating direct transmission via fomites. Interestingly, WHO, re-
ports that individuals who come into contact with potentially infectious
surfaces often also have close contactwith an infected person,making it
difficult to distinguish between respiratory droplet and fomite trans-
mission (WHO, 2020c). Since little is known about contaminated sur-
faces as a route of transmission for SARS-CoV-2, a systematic review
and summary is lacking and is urgently needed to provide guidelines
for future research studies. Therefore, the aim of the present study
was to review the current scientific knowledge and summarize the
existing studies in which SARS-CoV-2 has been detected on inanimate
surfaces, as well as to compile further information on fomite transmis-
sion and guidelines for infection control.

2. Methods

This systematic review includes studies since the emergence of
SARS-CoV-2, available in the following databases: PubMed/MEDLINE
and Scopus. The systematic review followed the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines
(Shamseer et al., 2015). Language restrictions were not applied in the
search. To the best of the authors’ knowledge, there are no review arti-
cles on the topic presented. An extensive search was conducted, and
published research articles were included.

The literature search was conducted using the terms “SARS-CoV-2
AND detection AND surface”. Titles and abstracts were screened for rel-
evance andpublications up to 24 February 2021were included if the fol-
lowing conditions were present: “samples were taken from surfaces
and tested for SARS-CoV-2”.

3. Results

A total of 476 articles were found during the literature search. Dupli-
cate publications in both databases were removed, and exclusion crite-
rion was applied to eliminate unrelated studies, resulting in 37 eligible
publications (Fig. 1). The 37 publications were included in this review
after being assessed and the results and findings of each publication
are summarized in the Supplementary Table. This table includes the
date of sampling, location and site of sampling, total number of samples
collected, method used for sampling and detection of SARS-CoV-2, mo-
lecular targets, viability, number and percentage of positive samples,
and surfaces on which SARS-CoV-2 RNA was detected.



Fig. 1.PRISMAflowdiagram for inclusion of studies. PRISMA. PRISMA, Preferred Reporting of Systematic Reviews andMeta-analysis; LILACS, LatinAmerican and CaribbeanHealth Sciences
Literature.
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3.1. Methods used for the collection and detection of SARS-CoV-2 from sur-
face samples

As summarized in Table 1, most studies used swabs as a collection
method for surface samples (n = 33). The exceptions were studies
using a combination of swabs and wipes (Santarpia et al., 2020),
gauze pads (Bloise et al., 2020) and sponges (Hu et al., 2021).

All 37 studies used RT-qPCR to detect SARS-CoV-2 RNA from surface
samples. In one study, droplet digital RT-PCR (RT-ddPCR) was
Table 1
Summary of the methods used for sampling and detection of SARS-CoV-2 in the 37
reviewed studies.

No.
studies

No.
samples

Viral viabilitya

Sampling method

Swab 33 4574
Viral viability attempted in 5 studies but not
confirmed.

Swabs and
wipes

1 102 Not tested

Gauze pads 1 163
Viral viability attempted in 1 study but not
confirmed.

Sponges 1 57 Not tested
Not specified 1 7 Not tested

Detection method

RT-qPCR 37 4801
Viral viability attempted in 6 studies but not
confirmed.

ddPCR 1 61 Not tested

a Vero E6 cells were used to culture virus from environmental samples.
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additionally used (Lv et al., 2020). In this study, all 61 surface samples
were negative byRT-qPCR, but 13were positive using RT-ddPCR. Sanger
sequencing was used to confirm and characterize the positive samples
in one study (Wong et al., 2020).

3.2. Sampling locations

The studies were divided into two main categories based on where
the sampling was conducted, namely hospital settings and non-
hospital settings. In two studies (Ben-Shmuel et al., 2020; Mouchtouri
et al., 2020), samples were taken in both hospital and non-hospital set-
tings. Thus, the studies were included in both sample groups and the
number of samples were separated according to the two categories.
The details of these studies are summarized in Table 2. Studies (n =
26) conducted in hospital settings represented 70.3% and included iso-
lation wards for COVID-19 patients (n = 14), intensive care units for
COVID-19 patients (n = 3), and other hospital areas (n =
9) (e.g., cross-section of the entire hospital, diagnostic laboratories
within the hospital, and others). The 26 studies conducted in hospital
settings yielded 64.1% of all the surface sampling (n = 3077), with
17.3% positive samples (n=533) for SARS-CoV-2 RNA. COVID-19 isola-
tion wards were the sites with the highest number of samples collected
(n=1558) and the highest percentage of positive samples (24.2%). Ten
out of the forteen studies where samples were collected in isolation
wards reported the number of positive COVID-19 patients hospitalized
at the time of sampling. The number of COVID-19 patients in the isola-
tion wards ranged from 1 to 21 (Cheng et al., 2021; Declementi et al.,
2020; Ding et al., 2021; Kim et al., 2020; Pasquarella et al., 2020;
Razzini et al., 2020; Santarpia et al., 2020; Wang et al., 2020; Wei

Image of Fig. 1


Table 2
Number of studies, number of collected samples, number of positive samples and percent-
age of positive samples in the reviewed studies per sampling location. The sampling loca-
tions were divided into two main groups: hospital setting and non-hospital setting.

Sampling
location

No. studies No. collected
samples

No. Positive samples
(% positive samples)

Hospital setting
Total 26 3077 533 (17.3)
COVID-19 isolation ward 14 1558 377 (24.2)
ICU ward 3 273 13 (4.8)
Other hospital areas
(e.g. cross section)

9 1246 143 (11.5)

Non-hospital setting
Total 13 1724 174 (10.1)
Transport (train, bus
ferryboat, ship)

4 655 82 (12.5)

Quarantine hotel rooms 4 531 39 (7.3)
Public spaces 3 406 37 (9.1)
Long-term care facilities
(e.g. nursing homes)

2 110 12 (10.9)

Diagnostic laboratory 1 22 4 (18.2)
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et al., 2020a, 2020b), and no significant differences in the positivity rates
among studies with different number of COVID-19 patients was found.

In 35.1% of the studies (n = 13) samples were collected in non-
hospital settings, which included transportation systems (n=3), quar-
antine hotel rooms (n = 4), public city spaces (n = 3), long-term care
facilities (n = 2) and a diagnostic laboratory (n = 1). The combination
of these studies yielded 35.9% of all the surface sampling (n = 1724)
with 10.1% of positive samples (n = 174) for SARS-CoV-2. The study
performed in the diagnostic laboratory reported the highest percentage
of positive samples (18.2%), with SARS-CoV-2 RNA being detected on
computer mouses (2/4), keyboards (1/4) and on a mobile phone (1/9)
(Bloise et al., 2020). Studies performed in transportation systems have
the highest number of samples (n = 655) with 12.5% (n = 82) of
them reported to be positive for SARS-CoV-2 RNA.

3.3. Viability of SARS-CoV-2 collected in surfaces

Six out of the 37 studies have evaluated the viability/infectivity of
SARS-CoV-2 from positive surface samples (Ben-Shmuel et al., 2020;
Colaneri et al., 2020; Lednicky et al., 2021; Moreno et al., 2021;
Santarpia et al., 2020; Yamagishi et al., 2020). A total of 242 positive
samples were tested but no virus could be isolated from these samples
and thus not proving the viability/infectivity of SARS-CoV-2.

4. Discussion

The present work is aimed at reviewing the scientific information
that is currently available in PubMed/MEDLINE and Scopus databases
on the detection of SARS-CoV-2 on surfaces. To the best of our knowl-
edge, it is the first review on this topic.

One of the most important measures immediately recommended to
contain the ongoing COVID-19 pandemic was recurrent cleaning and
disinfection of frequently touched surfaces due to the potential contam-
ination and stability of SARS-CoV-2 in the environment (CDC, 2020;
WHO, 2020b). Studies have shown that RNA of human coronaviruses
HCoV (OC43, 229E, HKU1, NL63), as well as MERS-CoV and SARS-CoV
RNA may be detected on inanimate surfaces from just a few hours to a
few days (Kampf et al., 2020). Recent reports indicate that SARS-CoV-
2 RNA can be detected in the air for up to 3 h after aerosolization
(Wißmann et al., 2021). Additional experimental efforts on surface sta-
bility of SARS-CoV-2 made in laboratory conditions show that SARS-
CoV-2 is able to remain infectious for up to 24 h on cardboard surfaces,
and for up to three days on plastic and stainless steel surfaces (van
Doremalen et al., 2020). These findings lead to the possibility of
4

transmission via contaminated surfaces and there has been a rapid liter-
ature growth on the detection of SARS-CoV-2 on surfaces.

The present review shows that SARS-CoV-2 RNA contamination on
surfaces has been detected in a wide range of facilities and surfaces
using molecular methods. 17.7% of samples in hospital settings were
positive and 10.2% in non-hospital settings. However, to date, there is
a limited amount of data regarding the viability of SARS-CoV-2 on sur-
faces and the evaluation of its persistence in the environment has
been constructed by results of studiesmade in laboratory settings, as re-
cently reviewed (Aboubakr et al., 2021). Reported results from environ-
mental contamination should be evaluated and interpreted with
caution because the level of contamination in the environment with
SARS-CoV-2 RNA is influenced by several factors that include the status
of COVID-19 patients in the vicinity of the sampling area, cleaning and
disinfection, sampling procedures, detection methods, and contamina-
tion rates.

In this review, the highest detection ratewas found in COVID-19 iso-
lation wards, followed by a single study in a diagnostic laboratory, pub-
lic transport systems, and long-term care facilities. The ongoing COVID-
19 pandemic has created an enormous burden on public health and di-
agnostic laboratories worldwide due to the demand formass laboratory
testing for SARS- CoV-2. Consequently, a higher level of contamination
is a possibility and can lead to an increase number of false positive re-
sults (Borst et al., 2004). This is due to the high sensitivity of nucleic
acid amplification on RT-qPCR assays where RNA derived from nucleic
acid extractions or DNA fragments from the previous experiments
may be (re)amplified, causing the false positive results of the next de-
tection (Braunstein et al., 2021).

All studies selected a real time RT-PCR cycle threshold (Ct) value of
≤40 to consider a sample positive, with the exception of five studies
that selected smaller treshold values (Cheng et al., 2021; D'Accolti
et al., 2020; Declementi et al., 2020; Wei et al., 2020a; Ye et al., 2020).
As seen in Supplementary Table, differentmolecular techniques and dif-
ferent RT-qPCR targetswere usedwith different levels of sensitivity and
specificity. In the majority of the studies, the Ct values of positive sam-
ples were very close to this value. The studies that sampled surfaces in
COVID-19 isolation wards (and reported the number of patients) had
from 1 to 21 positive patients at the time of sampling. There are no sig-
nificant differences in the positivity rates among studies with different
numbers of COVID-19 patients. Neverthless, a study showed that the
positivity rate in surface samples decreases with the increasing distance
to the positive patients (Razzini et al., 2020).

Thirty-three studies used swabs to sample surfaces, which corre-
sponds to 95.3% of the samples taken (n = 4574). However, studies
have shown that other sampling tools such as bio wipes and cell
scraper-aspiration methods could be more efficient than swabs to re-
cover viruses from surfaces due to higher moisture retention (De
Keuckelaere et al., 2014; Taku et al., 2002). A review study concluded
thatmore techniques and tools of recovery of viruses from environmen-
tal surfaces need to be evaluated and these evaluations should include a
variety of human viruses (Turnage and Gibson, 2017). Most studies re-
ported results as either positive or negative or with Ct values, while
some gave the viral concentrations. Cheng et al., 2021 reported a
range from 1.1 × 102 to 9.4 × 104 copies/mL. Lv et al., 2020 reports
that the areas with highest density of SARS-CoV-2 nucleic acid were
outer gloves (37.4 copies/cm2), followed by a door handle (26.25 cop-
ies/cm2), goggles (22.16 copies/cm2), an outer cover of a high speed
centrifuge (19.95 copies/cm2) and an inner wall of a high speed centri-
fuge (14.70 copies/cm2). In the study Burton et al., 2021 the genomic
copies ranged from 59 to 2.2 × 105 genomic copies/swab. Santarpia
et al., 2020 shows viral gene copy concentrations from 0 to 1.75
copies/μL.

Noteworthy, an expressive number of COVID-19 infections were re-
ported to occur in hospitals and confined spaces (Arav et al., 2020b,
p. 19; Azuma et al., 2020; Bhagat et al., 2020; Zheng et al., 2020b). Con-
tamination of surfaces either by infected patients or by persons who
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have been in contact with infected patients usually does not occur in
isolation but by several persons touching different surfaces between en-
tering a room where an infected person is present and leaving it (Choi
et al., 2021). This in turn leads to the creation of contaminated surfaces
(also known as fomites). In healthcare settings, there are so-called high-
touch surfaces, namely bed rails, bed frames,movable lamps, tray tables,
bedside tables, handles IV poles and blood pressure cuffs (CDC, 2020b).
In the present review, environmental surfaces were contaminated with
SARS-CoV-2 RNA mainly in COVID-19 patient wards, commonly used
objects, high-touch surfaces, medical equipment, and PPE. The contam-
ination is likely the result of viral shedding in respiratory droplets or
aerosols from infected patients and/or indirect contact by healthcare
workers, patients, and visitors. These findings emphasize the need to
ensure adequate environmental cleaning, strengthen infection preven-
tion training, and improve infection prevention precautions within
healthcare premises. A study from 2017 on the potential disease trans-
mission opportunities in healthcare environment reported that most
touched items during patient care were bedrail, bed-surface and bed
side table. Three of the top ten most common subsequences included
touching personal medical equipment (PME) and the patient, namely:
computer on wheels-patient, patient-computer on wheels, and
patient-IV pump. The network plots revealed large interconnectedness
among objects in the room, the patient, PME, and healthcare workers
(Jinadatha et al., 2017). These results demonstrate that it might be pos-
sible that a virus could be transferred between patients, surfaces and
healthcare workers. If the fomite is a portable medical equipment
(PME), fomite transmission could occur (Choi et al., 2021).

Despite the increasing number of studies reporting the detection of
SARS-CoV-2 RNA on a variety of inanimate surfaces, few mentioned
the material of the surfaces, so predictions of how long SARS-CoV-2
may persist, based on surface type, are hindered. Nosocomial transmis-
sion of SARS-CoV-2 has been extensively studied (Rickman et al., 2021),
with most studies focusing on surfaces and air sampling to detect the
presence of environmental contamination (Rickman et al., 2021). Tem-
perature, relative humidity and UV radiation in indoor environments
are also considered to be factors that play a key role on transmission,
as infected droplets expelled by patients that could settle on surfaces
or remain airborne for long periods of time are sensitive to changes in
these parameters (Kanamori et al., 2020; Tang et al., 2006; Wei and Li,
2016). Biryukov et al. (2020) observed that SARS-CoV-2 decayed more
rapidly when either humidity or temperature increased, but the droplet
volume (1–50 μl) and surface type (stainless steel, plastic or nitrile
glove) did not show significant impacts on thedecay rate. A potential fo-
mite transmission could persist for hours to days in indoor environ-
ments, thus having important implications to assess the risks of
surface contamination, especially in healthcare environments where
surface contamination can be higher due to the constant presence of
COVID-19 patients and frequent contact between healthcare workers
and these patients (Biryukov et al., 2020). Simulated sunlight can also
rapidly inactivate SARS-CoV-2 on surfaces, which suggests that persis-
tence and exposure risk in indoor environments might be higher than
in outdoor (Ratnesar-Shumate et al., 2020). A recent study has shown
that SARS-CoV-2 was isolated from the surface of an imported frozen
cod outer package, which highlights a potential transboundary route
of SARS-CoV-2 transmission and the need to further investigate the
role of fomite transmission in food packaging (Liu et al., 2020).

In spite of the wide detection of SARS-CoV-2 RNA on surfaces by RT-
qPCR and ddRT-qPCR, viable viruseswere not yet confirmed.Most stud-
ies do not include viral infectivity assays because this requires SARS-
CoV-2 propagation in cell culture that is only allowed in biosafety
level 3 facilities (not widely available) (Kaufer et al., 2020). Laboratory
experiments with spiked samples have shown SARS-CoV-2 is stable in
certain environmental conditions. In one study it was shown that infec-
tious viruses could not be recovered from printing and tissue papers
after only 3 h of incubation and from treated wood and cloth after two
days (Chin et al., 2020a, 2020b). SARS-CoV-2 was more stable on
5

smooth surfaces. On the other hand, infectious virus was detected on
the outer layer of a surgical mask seven days after incubation. SARS-
CoV-2 was extremely stable in a wide range of pH at room temperature
and highly stable at 4 °C, but very sensitive to heat (Chin et al., 2020a,
2020b). Another study conducted with spiked samples has shown that
SARS-CoV-2 can be isolated in appropriate cell cultures (Wurtz et al.,
2021). Nevertheless, the few studies that reported SARS-CoV-2 RNA de-
tection from surface samples and that attempted virus isolation, either
failed to induce cytopathic effect or found only weak signals for the
presence of replication-competent viruses due to the very low amounts
of detected RNA (Colaneri et al., 2020; Santarpia et al., 2020).

All studies that have conducted pre- and post- clean-up sampling
have shown that routine cleaning interventions are highly effective.
SARS-CoV andMERS-CoV are extremely sensitive to detergents and dis-
infectants (Aboubakr et al., 2021), and there is no evidence to date that
SARS-CoV-2 has a higher resistance, so it seems adequate to continue
the current periodic cleaning of surfaces (WHO, 2020b). The likelihood
of surface contamination is higher in healthcare settings, especially
where aerosol-generating medical procedures are performed. SARS-
CoV-2 is an enveloped virus with a fragile outer lipid layer that makes
it very sensitive to disinfectants (Chin et al., 2020a, 2020b). Studies
have shown that surfaces can be rapidly sanitized with a variety of
widely used chemicals, including povidone-iodine solution (Bidra
et al., 2020; De et al., 2020), ethanol (Behzadinasab et al., 2020;
Fischer et al., 2020; Kratzel et al., 2020), sodium hypochlorite (Chan
et al., 2020) and benzalkonium chlorite (Chin et al., 2020b). A recent
study concluded that environmental contamination with the potential
for SARS-CoV-2 transmission is unlikely, provided standard cleaning
procedures and precautions are followed (Mondelli et al., 2021).

WHO considers that there is not yet enough scientific evidence to
suggest environmental surveillance as a standard approach for COVID-
19 monitoring (WHO, 2020a, 2020b, 2020c). WHO also states that re-
search on the detection of SARS-CoV-2 in the environment should con-
tinuewith the goal to advance knowledge about COVID-19 transmission
and thus aid the development of public health strategies. This review
shows that many studies have demonstrated the presence of SARS-
CoV-2 RNA in environmental surfaces. These studies are an important
contribution to the understanding of the spread of the virus in the envi-
ronment, but to date there is no evidence of viable virus on surfaces.
Routine cleaning of environmental surfaces is highly effective, as is on-
going regular hand disinfection, and therefore disinfection recommen-
dations from WHO must also continue to be followed. Although
studies on the viability of SARS-CoV-2 in surfaces are scarce, surface
transmission may be possible (WHO, 2020b) and consequently disin-
fection measures should be continued and extended to the interiors of
public facilities and high-risk sites. More research is needed on the pos-
sible transmission of SARS-CoV-2 via contaminated surfaces with focus
on virus viability testing and reporting the material of the tested sur-
faces. Viability testing is particularly important in non-hospital environ-
ments where frequent disinfection cannot occur as regularly as in
hospital environments. In all settings, including those where frequent
cleaning and disinfection is not possible due to resource constraints, re-
current hand washing and avoidance of touching the face must be the
primary prevention approaches to decrease possible transmission asso-
ciated with surface contamination.

The current data highlight the importance of environmental RNA
surveillance and viral viability testing, which could contribute to im-
proved spatial and temporal assessment of COVID-19 risk by monitor-
ing suspicious and high-touch environmental surfaces in high-risk
settings, such as hospitals, health centres, public transportation, and
long-term care facilities. However, extrapolating SARS-CoV-2 RNA de-
tection data into decision-making may exaggerate the risk of fomite
transmission because there is no evidence of viable and infectious
SARS-CoV-2 on surfaces. Although SARS-CoV-2 can be transmitted by
direct or indirect contact, by touching contaminated surfaces and ob-
jects followed by touching the mouth, nose, or eyes, it remains
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unknown whether transmission is due to a fomite because making the
distinction between respiratory droplet and fomite transmission is
difficult.

5. Conclusion

The present study provides the first overview of the detection of
SARS-CoV-2 on surfaces. As expected, the highest detection rates oc-
curred in hospitals and healthcare facilities with COVID-19 patients.
Contamination with SARS-CoV-2 on surfaces was detected in a wide
range of facilities and surfaces. COVID-19 fomite transmission has not
been demonstrated. Until the risk of COVID-19 fomite transmission is
understood and further studies of virus survival and clinical evidence
of fomite transmission are available, continued efforts to frequently
clean and disinfect environmental surfaces are needed. Due to the lack
of BSL 3 facilities, viability testing for SARS-CoV-2 recovered from sur-
faces remain scarce, and consequently it is not yet possible to assess
the potential for transmission via surfaces. More studies need to be con-
ducted and the inclusion of metadata, such as surface material, temper-
ature and relative humidity, are of paramount importance.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2021.149231.
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