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Abstract: Cuminum cyminum L. essential oil (cumin EO) was studied for its chemical composition,
antioxidant and vibriocidal activities. Inhibition of biofilm formation and secretion of some virulence
properties controlled by the quorum sensing system in Chromobacterium violaceum and Pseudomonas
aeruginosa strains were also reported. The obtained results showed that cuminaldehyde (44.2%)
was the dominant compound followed by β-pinene (15.1%), γ-terpinene (14.4%), and p-cymene
(14.2%). Using the disc diffusion assay, cumin EO (10 mg/disc) was particularly active against
all fifteen Vibrio species, and the highest diameter of growth inhibition zone was recorded against
Vibrio fluvialis (41.33 ± 1.15 mm), Vibrio parahaemolyticus (39.67 ± 0.58 mm), and Vibrio natrigens
(36.67 ± 0.58 mm). At low concentration (MICs value from 0.023–0.046 mg/mL), cumin EO inhibited
the growth of all Vibrio strains, and concentrations as low as 1.5 mg/mL were necessary to kill them
(MBCs values from 1.5–12 mg/mL). Using four antioxidant assays, cumin EO exhibited a good result
as compared to standard molecules (DPPH = 8 ± 0.54 mg/mL; reducing power = 3.5 ± 0.38 mg/mL;
β-carotene = 3.8 ± 0.34 mg/mL; chelating power = 8.4 ± 0.14 mg/mL). More interestingly, at 2x MIC
value, cumin EO inhibited the formation of biofilm by Vibrio alginolyticus (9.96 ± 1%), V. parahaemolyti-
cus (15.45 ± 0.7%), Vibrio cholerae (14.9 ± 0.4%), and Vibrio vulnificus (18.14 ± 0.3%). In addition,
cumin EO and cuminaldehyde inhibited the production of violacein on Lauria Bertani medium
(19 mm and 35 mm, respectively). Meanwhile, 50% of violacein inhibition concentration (VIC50%)
was about 2.746 mg/mL for cumin EO and 1.676 mg/mL for cuminaldehyde. Moreover, elastase and
protease production and flagellar motility in P. aeruginosa were inhibited at low concentrations of
cumin EO and cuminaldehyde. The adopted in-silico approach revealed good ADMET properties
as well as a high binding score of the main compounds with target proteins (1JIJ, 2UV0, 1HD2, and
3QP1). Overall, the obtained results highlighted the effectiveness of cumin EO to prevent spoilage
with Vibrio species and to interfere with the quorum sensing system in Gram-negative bacteria by
inhibiting the flagellar motility, formation of biofilm, and the secretion of some virulence enzymes.

Keywords: Cuminum cyminum L.; phytochemistry; Vibrio spp.; antioxidant; in silico approach

1. Introduction

Infectious diseases, reinforced by the emergence of antibiotic resistant pathogens are
known as a high leading cause of death in the world lead causing higher mortality and
morbidity and increased healthcare costs [1,2]. Antimicrobial resistance (AMR) represents
the acquired ability of pathogens to withstand antimicrobial treatment is an increasing
global concern results from the abuse and misuse of antibiotics have been recognized as
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one of the top health threats to human society [3]. A recent study revealed that microor-
ganisms responsible for various human infections (~80%) and hospital-acquired infections
(60–70%), have shown a biofilm origin [4]. Biofilms as a cellular conformation confers
survival properties to microbial populations which are attached to a surface, enveloped
and organized in an exopolysaccharide matrix, play an important role in the development
of antimicrobial resistance [5]. Many genes and environmental factors were implicated
in the formation of biofilm by P. aeruginosa strains known for their high drug resistance
against traditional antibiotic therapy [6,7]. In fact, P. aeruginosa is a human pathogen
that is frequently responsible for hospital-acquired infections and is the main cause of
morbidity and mortality in cystic fibrosis patients [8]. In P. aeruginosa, LasR and RhlR
are homologous LuxR-type soluble transcription factor receptors that bind their cognate
AIs and activate the expression of genes encoding functions required for virulence and
biofilm formation [9]. To eradicate the problem of biofilm formation, the QS inhibitory
activity remains a significant strategy. Aromatic and medicinal plants represent a rich
source of novel lead compounds that have been traditionally used in phytotherapy [10,11].
Herbs, spices and derived extracts are gaining more popularity and have been used for
treating several disorders and diseases due to the inherent medicinal properties, due to
their antioxidant [12–19], antibacterial [16], anti-inflammatory [16], antimicrobial [17–21],
wound healing [20], cytotoxicity [20], anti-acetylcholinesterase [21,22], and antidiabetic [22]
potential. They have been largely used in food and beverages to enhance flavor, aroma and
color [23–25].

Cuminum cyminum L., known as “KAMMOUN” is a member of the Apiaceae (Um-
belliferae) family, just like parsley. Cumin is an annual, herbaceous, medicinal spice and
culinary plant (15 to 50 cm high) [26]. The plant is largely cultivated in arid and semi-arid
areas, including India, Middle East, China and Mediterranean region [27]. The stems are
hollow and grooved, with alternate leaves, digested, light green, without stipules. The
small, white flowers have five petals, in umbels. The seeds are long, straight brown, lon-
gitudinal ribs of 5–6 mm. Appear in pairs on the branches. As a condiment, cumin is
extensively used as food additive and flavoring agent in different cuisines, essentially in
South Asian, Northern African, and Latin American cuisines [28]. The nutritional values
and health benefits of cumin seeds have been reported demonstrating their uses in the
treatment of fever, flatulence, loss of appetite, wounds, diarrhea, vomiting, abdominal
distension, edema and puerperal disorders as well as increase the appetite, taste perception,
digestion, vision, strength and lactation [27]. The pharmacological activities of this plant
have been reported, revealing the ability of this plant to exert antimicrobial, insecticidal,
anti-inflammatory, analgesic, antioxidant, anticancer, antidiabetic, antiplatelet aggrega-
tion, hypotensive, bronchodilators, immunological, contraceptive, anti-amyloidogenic,
anti-osteoporotic, protective, and central nervous effects [29]. Phytochemical’s analysis of
cumin showed that was a reach sources of coumarin, flavonoid, anthraquinone, alkaloid,
glycoside, protein, resin, saponin, tannin and steroid [30].

Hence, in view of the attributed medicinal significance of the cumin plant and its
availability as medicinally resource, the present work focuses specifically on an aromatic
plant commonly used in the Saudi kitchen to prepare fish and shellfish dishes. We aimed to
explore the constituents of its EO and to evaluate in vitro, its anti-Vibrio activities. The abil-
ity of the obtained cumin EO to scavenge reactive oxygen species using different assays was
also assessed. Moreover, a computational study has been performed to elucidate the physic-
ochemical properties, pharmacokinetic properties, druglikeness, and toxicity prediction of
the main bioactive compounds from cumin EO. To get insight into the interaction mode of
these bioactive molecules with known target enzymes involved in antioxidant, antibacterial,
and anti-quorum sensing activities, a molecular docking approach was adopted.
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2. Results
2.1. Phytochemical Composition

Table 1 summarized the phytochemical composition of cumin EO obtained by hy-
drodistillation technique of seeds. Twenty chemical compounds were identified represent-
ing 99.1% of the total identified phytoconstituents. This volatile oil was dominated by
oxygenated monoterpenes (51.3%) and monoterpene hydrocarbons (46.7%). The main com-
pounds identified in cumin EO were cuminaldehyde (42.4%), β-pinene (15.1%), γ-terpinene
(14.4%), p-cymene (14.2%), and α-terpin-7-al (5.2%).

Table 1. Chemical composition of C. cyminum L. (seeds) EO assessed by GC/MS technique. a: Linear
Retention Index.

Code Components l.r.i. a Percentage Molecular Weight Chemical Formula

1 α-thujene 933 0.4 136.23 C10H16
2 α-pinene 941 0.9 136.23 C10H16
3 Sabinene 978 0.3 136.23 C10H16
4 β-pinene 982 15.1 136.238 C10H16
5 Myrcene 993 0.6 136.238 C10H16
6 α-phellandrene 1006 0.3 136.23 C10H16
7 p-cymene 1028 14.2 134.22 C10H14
8 Limonene 1032 0.5 136.24 C10H16
9 γ-terpinene 1064 14.4 136.234 C10H16
10 Linalool 1101 0.1 154.253 C10H18O
11 4-terpineol 1179 0.4 154.25 C10H18O
12 α-terpineol 1191 0.2 154.25 C10H18O
13 Cuminaldehyde 1240 42.4 148.205 C10H12O
14 Carvone 1242 0.1 150.22 C10H14O
15 Phellandral 1274 0.2 152.23 C10H16O
16 α-terpin-7-al 1283 5.2 150.22 C10 H14O
17 γ-terpin-7-al 1288 2.7 150.22 C10H14O
18 β-caryophyllene 1419 0.3 204.36 C15H24
19 γ-muurolene 1478 0.4 204.35 C15H24
20 Carotol 1595 0.4 222.37 C15H26O

Chemical classes

Monoterpene hydrocarbons 46.7%
Oxygenated monoterpenes 51.3%

Sesquiterpene hydrocarbons 0.7%
Oxygenated sesquiterpenes 0.4%

Total identified 99.1%

2.2. Antioxidant Activities

Table 2 summarizes the results of the antioxidant activities of cumin EO as compared
to well-known standard molecules evaluated by using DPPH, reducing power, β-carotene,
and chelating power assays. The obtained results reveal promising antioxidant activi-
ties at low concentrations as compared to ascorbic acid (AA), butylated hydroxytoluene
(BHT), and butylate hydroxyanisole (BHA). In fact, IC50 for the DPPH test was about
8 ± 0.54 mg/mL, 3.8 ± 0.34 mg/mL for the β-carotene test, and 8.4 ± 0.14 mg/mL for the
chelating power test.



Plants 2022, 11, 2236 4 of 20

Table 2. Antioxidant activities of cumin EO. The letters (a–c) indicate a significant difference between
the different antioxidant methods according to the Duncan test (p < 0.05).

Antioxidant Tests Cumin EO
IC50 (mg/mL)

AA
EC50 (mg/mL)

BHT
IC50 (mg/mL)

BHA
IC50 (mg/mL)

DPPH (IC50 mg/mL) 8 ± 0.54 b 12 ± 0.01 a 11.50 ± 0.62 a -
Reducing power (EC50 mg/mL) 3.50 ± 0.03 c 25 ± 0.01 a 23.00 ± 1.0 b -

β-carotene (IC50 mg/mL) 3.80 ± 0.34 b - 4.60 ± 1.60 a -
Chelating Power (IC50 mg/mL) 8.40 ± 0.14 b - - 32.50 ± 1.32 a

2.3. Antimicrobial Activity

The ability of the obtained cumin EO was tested against fifteen Vibrio species. Results
revealed a bacteriostatic action of the tested oil (MBC/MIC ratio > 4). The growth of
almost all Vibrio species on liquid media was inhibited at low concentrations ranging
from 0.023 to 0.046 mg/mL. In addition, the same bacteria were completely killed by low
concentration of cumin EO varying from 1.5 to 12 mg/mL. The mean diameter of growth
inhibition zone obtained by the disc diffusion agar test at 10mg/disc confirms the high
activity of cumin EO against almost all Vibrio species with mean diameter of inhibition
zone (mZI) of approximately 34.33 ± 0.58 mm for V. cholerae ATCC 9459, 39.67 ± 0.58 mm
for V. parahaemolyticus ATCC 17802, 34.67 ± 0.58 mm for V. alginolyticus ATCC 33787, and
30.33 ± 0.58 mm for V. vulnificus ATCC 27562. All results are summarized in Table 3.

Table 3. Mean diameter of inhibition zone (mIZ ± mm), MICs, MBCs, and MBC/MIC ratio determi-
nation by disc diffusion and microdilution assays. The letters (a–k) indicate a significant difference
between the different mZI according to the Duncan test (p < 0.05).

Vibrio spp. Tested

Cumin EO

mZI ± SD
(mm)

MIC ± SD
(mg/mL)

MBC ± SD
(mg/mL) MBC/MIC Ratio

V. cholerae ATCC 9459 34.33 ± 0.58 ef 0.023 6 >4; Bacteriostatic
V. vulnificus ATCC 27562 30.33 ± 0.58 g 0.023 1.5 >4; Bacteriostatic
V. parahaemolyticus ATCC 17802 39.67 ± 0.58 b 0.046 12 >4; Bacteriostatic
V. parahaemolyticus ATCC 43996 28.67 ± 1.15 h 0.023 1.5 >4; Bacteriostatic
V. alginolyticus ATCC 33787 34.67 ± 0.58 de 0.023 3 >4; Bacteriostatic
V. alginolyticus ATCC 17749 33.33 ± 0.58 f 0.023 6 >4; Bacteriostatic
V. furnisii ATCC 35016 11.33 ± 0.58 k 0.023 3 >4; Bacteriostatic
V. cincinnatiensis ATCC 35912 14.67 ± 0.28 j 0.046 12 >4; Bacteriostatic
V. proteolyticus ATCC 15338 30.33 ± 0.58 g 0.023 6 >4; Bacteriostatic
V. natrigens ATCC 14048 36.67 ± 0.58 c 0.023 3 >4; Bacteriostatic
V. mimicus ATCC 33653 28.67 ± 0.58 h 0.046 12 >4; Bacteriostatic
V. fluvialis ATCC 33809 41.33 ± 1.15 a 0.046 3 >4; Bacteriostatic
V. carhiaccae ATCC 35084 35.33 ± 0.58 d 0.046 6 >4; Bacteriostatic
V. harveyi ATCC 18293 35.67 ± 0.58 cd 0.023 3 >4; Bacteriostatic
V. diazotrophicus ATCC 33466 11.00 ± 0.00 k 0.023 3 >4; Bacteriostatic
V. tapetis CECT 4600T 30.67 ± 0.58 g 0.046 6 >4; Bacteriostatic
V. splendidus ATCC 33125 26.33 ± 0.58 i 0.046 6 >4; Bacteriostatic

2.4. Biofilm Inhibition

Cumin EO was tested for its ability to inhibit the biofilm formation on polystyrene
96 well-plate by four Vibrio species including V. cholerae, V. vulnificus, V. parahaemolyticus,
and V. alginolyticus by using XTT technique. Results showed that the examined oil was able
to inhibit the biofilm formation of the tested Vibrio species in a concentration-dependent
manner. In fact, at 2xMIC, the inhibition was about 9.96 ± 1.00% against V. alginolyticus
ATCC 33787) and 18.14 ± 0.30% against V. cholerae ATCC 9459. Interestingly, at 50 mg/mL,
the highest percentage of biofilm formation inhibition was recorded for all strains reaching
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a percentage between 66.29 ± 3% (V. cholerae ATCC 9459) and 76.29 ± 4%. All these data
are summarized in Figure 1.
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Figure 1. Evaluation of the percentage of biofilm formation inhibition tested by using the colorimetric
XTT technique against V. alginolyticus ATCC 33787, V. parahaemolyticus ATCC 17802, V. vulnificus ATCC
27962, and V. cholerae ATCC 9459. Errors bars represent standard deviation from three determinations.

2.5. Anti-QS Activity
2.5.1. Qualitative and Quantitative Violacein Inhibition Estimation

The ability of cumin EO and its major compound (cuminaldehyde) to inhibit the
production of violacein by C. violaceum CV026 was tested at 2 mg/mL (Figure 2). The
inhibition zone of the EO was about 32 mm and about 35 mm for its main compound
(cuminaldehyde). Meanwhile, the anti-QS sensing zone of cuminaldehyde was interestingly
higher than the EO (35 mm and 19 mm, respectively).
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Figure 2. Violacein inhibition by cumin EO (A) and its main component (cuminaldehyde, B).

More interestingly, quantitative estimation on the effect of various concentration of
cumin volatile oil on the growth of C. violaceum, showed a MIC value about 5 mg/mL and
the VIC50% was about 2.746 mg/mL. Meanwhile, for the main compound (Cuminaldehyde),
MIC and VIC50% values were about 1.25 mg/mL about 1.676 mg/mL, respectively.

2.5.2. Anti-Swarming Activity

The starter strain (P. aeruginosa PAO1) was used to test the effect of cumin EO and
cumin aldehyde at different concentrations on its motility on semi-solid agar plates. The
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results obtained are summarized in Table 4. At 10 mm/mL, the motility of this bac-
terium was more inhibited by cuminaldehyde (by 70.99 ± 0.57%) as compared to the EO
(64.20 ± 0.57%). At higher concentration (500 mg/mL), the percentage of motility inhibition
was about 89.77 ± 0.00% for cuminaldehyde and 90.12 ± 0.57% for the cumin EO.

Table 4. Swarming inhibition on Lauria Bertani (0.5% agar-agar) by cumin EO and cuminaldehyde.
The letters (a–f) indicate a significant difference between the diameter of colony tested at different
concentrations according to the Duncan test (p < 0.05).

Control
Concentrations Tested (mg/mL)

10 50 125 250 500

Diameter of the colony (mm± SD)
Cumin EO 54.00 ± 0.00 a 19.33 ± 0.57 b 14.67 ± 0.57 c 12.00 ± 0.00 d 10.33 ± 0.57 e 8.67 ± 0.57 f

Cuminaldehyde 54.00 ± 0.00 a 15.67 ± 0.57 b 13.67 ± 0.57 c 12.00 ± 0.00 d 10.33 ± 0.57 e 9.00 ± 0.00 f

Percentage of motility inhibition (%)
Cumin EO 100 ± 0.00 64.20 ± 0.57 77.15 ± 0.57 84.45 ± 0.00 87.76 ± 0.57 90.12 ± 0.57

Cuminaldehyde 100 ± 0.00 70.99 ± 0.57 80.75 ± 0.57 85.96 ± 0.57 87.98 ± 0.57 89.77 ± 0.00

2.5.3. Elastase and Protease Inhibition

Pseudomonas aeruginosa is able to produce several virulence factors responsible for
its pathogenecity like alkaline proteases, elastases, and collagenase. Our results showed
that the obtained cumin EO and its main compounds are able to modulate the produc-
tion of elastase and protease with different degree and in a concentration dependent
manner (Figure 3). In fact, cumin EO and cuminaldehyde decreased the production of pro-
tease by 68.32% and 71.09% respectively at 0.05 mg/mL. Similarly, at high concentration
(2.5 mg/mL), cumin EO inhibited the production of protease by 82.14%, and by 83.43%
for cuminaldehyde. More interestingly, cumin EO inhibited the production of elastase
by 46.08% for cuminaldehyde and by 43.34% for the volatile oil. At 2.5 mg/mL, elastase
production in P. aeruginosa PAO1 was inhibited by 63.14% and 62.12% respectively for
cumin EO and its main compound (cuminaldehyde).
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2.6. ADMET Analysis

The in silico ADMET prediction of the selected major compounds (Table 5) revealed
a good permeability on intestinal Caco-2 cells and is easy to be absorbed, with values in
the range of 1.373–1.517, and high intestinal human absorption (above 94%), with only
16 and 17 exhibited low skin permeability. All phytocompounds were expected to not act
on P-glycoprotein, are likely to cross the blood-brain barrier (BBB) with 9, 16 and 17 are able
to slightly access to the central nervous system (CNS). Another important parameter used
in distribution named distribution volume which characterize the distribution of drugs
in various tissues in vivo. Predictive data showed that compound 4 was well distributed,
7 and 9 were moderately, but 16 and 17 were relatively lower distributed.

Table 5. ADMET properties of compounds the major phytocompounds. Number of the compounds
are same listed in Table 1.

Entry 4 7 9 13 16 17 Reference

Absorption
Water solubility −4.221 −5.163 −3.941 −3.923 −2.79 −2.79 -

Caco2 permeability 1.373 1.399 1.414 1.503 1.517 1.517 >0.9
Intestinal absorption (human) 94.607 94.256 96.219 95.543 97.506 97.506 <30% is poorly

Skin Permeability (log Kp) −1.646 −1.2 −1.489 −1.425 −2.624 −2.624 >−2.5 is low

Distribution
P-glycoprotein substrate No No No No No No No
P-glycoprotein I inhibitor No No No No No No No
P-glycoprotein II inhibitor No No No No No No No

VDss (human) 0.68 0.455 0.412 0.274 0.233 0.233 Low is <−0.15,
High is >0.45

Fraction unbound (human) 0.353 0.262 0.42 0.305 0.465 0.465 -

BBB permeability 0.812 0.785 0.754 0.664 0.633 0.633 Poorly is <−1,
High is >0.3

CNS permeability −1.837 −1.359 −2.049 −1.506 −2.197 −2.197 Penetrate is >−2,
Unable is <−3

Metabolism
CYP2D6 substrate No No No No No No No
CYP3A4 substrate No No No No No No -
CYP1A2 inhibitior No No No No No No No
CYP2C19 inhibitior No No No No No No No
CYP2C9 inhibitior No No No No No No No
CYP2D6 inhibitior No No No No No No No
CYP3A4 inhibitior No No No No No No No

Excretion
Total Clearance 0.03 1.163 0.217 0.212 0.182 0.182 -

Renal OCT2 substrate No No No No No No -

Toxicity
AMES toxicity No No No No No No No

Max. tolerated dose (human) 0.24 0.193 0.756 0.128 0.723 0.723 Low is ≤0.477,
High is >0.477

hERG I inhibitor No No No No No No No
hERG II inhibitor No No No No No No No

Oral Rat Acute Toxicity
(LD50) 1.617 1.533 1.766 1.499 1.971 1.971 -

Oral Rat Chronic Toxicity
(LOAEL) 2.247 2.411 2.394 2.052 2.034 2.034 -

Hepatotoxicity No No No No No No No
Skin Sensitisation No No No Yes Yes Yes No

T.Pyriformis toxicity 0.633 0.767 0.627 0.765 0.732 0.732 >−0.5 is toxic
Minnow toxicity 1.131 0.65 0.906 0.862 1.118 1.118 <−0.3 is toxic
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Cytochrome P450s is an important enzyme system for drug metabolism in liver, with
the most important where subtypes are CYP2D6 and CYP3A4. Results indicate that none of
the selected compounds will be metabolized by the cytochrome P450s enzymes. Regarding
toxicity parameters, our phytocompounds may not inhibit the hERG channel and have no
AMES nor hepatotoxicity profile.

2.7. Molecular Docking Analysis

In order to assess the potential of cumin EO to inhibit the growth of pathogenic
microorganisms and to reduce hydrogen peroxide and alkyl hydroperoxides, molecular
docking study was performed to gain insight into the most preferred binding mode of
compound into the enzyme binding active site. Ligands have been selected based on their
abundance in the EO (%) and their lowest binding score.

Staphylococcus aureus tyrosyl-tRNA synthetase (PDB ID, 1JIJ): inhibitors of tyrosyl-
tRNA synthetase could be promising drug candidates leading to high selectivity and
broad-spectrum antibacterial agents. As shown in Table 6 and Figure 4, cuminaldehyde
form C-H bond: Gly192 (2.81). Alkyl/Pi-Alkyl: Cys37 (5.21), Leu70 (4.89) (5.39), however
β-Caryophyllene was involved via Alkyl/Pi-Alkyl: Cys37(4.64), Ala39 (4.28) (4.53) (4.75),
Pro53 (5.37) (4.50), His50 (4.00) (5.06) with S. aureus tyrosyl-tRNA synthetase.

Table 6. Best phytoconstituents identified from C. cyminum L. EO with the lowest binding energies
and their interaction residues with selected target proteins.

Compounds Interacting Residues
Receptor vs. Targets

Binding Energy
(kcal/mol)

β-pinene vs. 1HD2 Alkyl/Pi-Alkyl: Pro40 (4.05) (4.38), Pro45 (5.05), Cys47 (4.99),
Leu116 (5.11), Phe120 (4.88). −4.6

Cuminaldehyde vs. 1HD2 H bond: Thr147 (2.10). Alkyl: Pro45 (5.14), Cys47 (5.00). −5.4

Cuminaldehyde vs. 1JIJ C-H bond: Gly192 (2.81). Alkyl/Pi-Alkyl: Cys37 (5.21),
Leu70 (4.89) (5.39). −7.4

β-Caryophyllene vs. IJIJ Alkyl/Pi-Alkyl: Cys37(4.64), Ala39 (4.28) (4.53) (4.75), Pro53 (5.37) (4.50),
His50 (4.00) (5.06). −6.4

p-Cymene vs. 2UV0
van der Waals: Leu110. Unfavorable Bump: Trp88 (0.69) (1.13) (1.47)

(1.49). Pi-Pi T-Shaped: Tyr56 (5.01). Alkyl/Pi-Alkyl: Leu36 (4.93),
Trp88 (4.87).

−7.4

γ-Terpinene vs. 2UV0 Unfavorable Bump: Trp88 (0.61) (1.34) (1.54). Alkyl/Pi-Alkyl: Leu36
(4.93), Tyr56 (5.20), Tyr64 (3.76) (4.88), Trp88 (4.67). −7.4

Cuminaldehyde vs. 2UV0
H bond: Arg61 (4.31). Pi-Lone Pair: Tyr64 (2.79). Unfavorable Bump:

Trp88 (0.71) (0.75) (0.22) (1.39). Pi-Pi T-Shaped: Tyr56 (4.90).
Alkyl/Pi-Alkyl: Trp88 (4.75).

−7.4

p-Cymene vs. 3QP1
Unfavorable Bump: Trp111 (1.25) (1.58). Pi-Pi T-Shaped: Tyr80 (5.80).
Alkyl/Pi-Alkyl: Trp84 (3.37) Ile99 (4.80), Phe126m(4.94), Ala130 (4.88).

Met135 (5.80).
−7.5

γ-Terpinene vs. 3QP1
van der Waals: Leu57, trp84, Tyr88, Ile99, Leu100. Unfavorable Bump:
Trp111 (0.90) (1.41). Alkyl/Pi-Alkyl: Tyr80 (5.36), Phe115 (4.99), Phe126

(4.99), Ala130 (5.01), Met135 (3.80) (5.35), Trp111 (4.20) (4.45).
−7.5

Cuminaldehyde vs. 3QP1 Pi-Pi T-Shaped: Tyr80 (5.82). Pi-Alkyl: Ile99 (4.76). −7.2

Human peroxiredoxin 5 (PRDX5) receptor (PDB ID, 1HD2) is a potential target for
the evaluation of antioxidant activity which permits the reduction of hydrogen peroxide
and alkyl peroxide, with the help of thiol-containing donor molecules. The major and the
most relevant docked phytocompounds were β-pinene which interact preferentially via
Alkyl/Pi-Alkyl with Pro40 (4.05) (4.38), Pro45 (5.05), Cys47 (4.99), Leu116 (5.11), Phe120
(4.88) residues. On the other hand, cuminaldehyde interact with Thr147 (2.10). Alkyl: Pro45
(5.14), Cys47 (5.00) residues by H bond interactions (Table 5 and Figure 5).
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LasR enzyme (PDB ID, 2UV0) and CviR enzyme (PDB ID, 3QP1): To combat multidrug
resistant bacteria, QS inhibition strategies remains a promising strategy due to their ability
to regulate pathogenicity and virulence. For this, docking studies were performed towards
two target QS receptors, LasR enzyme (PDB ID, 2UV0) and CviR enzyme (PDB ID, 3QP1)
able of inhibiting P. aeruginosa bacterium. CviR is receptor protein of C. violaceum 12472
and LasR is transcriptional activator of P. aeruginosa virulence factors. All the selected
compounds were able to bind in the evaluated structures of the CviR and LasR with the
following binding scores and binding residues (Table 4).

The best selected bioactive phytocompounds in C. cyminum L. EO with LasR enzyme
were p-cymene (Figure 6A) which was able to bind via the following interactions: van der
Waals with Leu110, Unfavorable Bump with Trp88 (0.69) (1.13) (1.47) (1.49), Pi-Pi T-Shaped
with Tyr56 (5.01) and Alkyl/Pi-Alkyl with Leu36 (4.93), Trp88 (4.87).g-Terpinene form
Unfavorable Bump with Trp88 (0.61) (1.34) (1.54) and Alkyl/Pi-Alkyl with Leu36 (4.93),
Tyr56 (5.20), Tyr64 (3.76) (4.88), Trp88 (4.67). However, cuminaldehyde involved H bond
(Arg61 (4.31)), Pi-Lone Pair (Tyr64 (2.79)), Unfavorable Bump (Trp88 (0.71) (0.75) (0.22)
(1.39)), Pi-Pi T-Shaped (Tyr56 (4.90)), and Alkyl/Pi-Alkyl (Trp88 (4.75)) interactions.
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The selected phytocompounds with CviR enzyme were p-Cymene, forming the CviR-
p-cymene complex (−7.5 kcal/mol), which was stabilized by the following interactions
(Figure 6B): Unfavorable Bump with Trp111 (1.25) (1.58), Pi-Pi T-Shaped with Tyr80 (5.80),
Alkyl/Pi-Alkyl with Trp84 (3.37) Ile99 (4.80), Phe126m(4.94), Ala130 (4.88), Met135 (5.80)
residues. The complex CviR-g-Terpinene (−7.5 kcal/mol) form van der Waals: Leu57,
trp84, Tyr88, Ile99, Leu100. Unfavorable Bump: Trp111 (0.90) (1.41). Alkyl/Pi-Alkyl: Tyr80
(5.36), Phe115 (4.99), Phe126 (4.99), Ala130 (5.01), Met135 (3.80) (5.35), Trp111 (4.20) (4.45),
however, CviR-cuminaldehyde (−7.5 kcal/mol) form Pi-Pi T-Shaped with Tyr80 (5.82) and
Pi-Alkyl with Ile99 (4.76) residues

Table 6 summarizes the best obtained poses based on the binding energy with the
dominant compounds.

3. Discussion

Cumin seeds are largely used as a flavoring and food preservative agent due to their
richness in bio-compounds with a large array of biological activities [5].

In this study, the volatile oil extracted from cumin seeds by hydrodistillation is a
rich source of cuminaldehyde (42.4%). In fact, it is well documented that the chemical
composition of cumin seeds depends on several endogenous (cultivar, genetic traits) and
exogenous factors (geographical region, harvesting time, and extraction procedures). Dif-
ferent percentages of cuminaldehyde were reported from cumin seeds around the word as
summarized in Table 7.
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Table 7. Review of the chemical composition of C. cyminum EO from seeds.

Origin Chemical Composition (Main Constituents) References

China Cuminaldehyde (36.31%), cuminic alcohol (16.92%), γ-terpinene (11.14%), safranal (10.87%),
p-cymene (9.85%) and β-pinene (7.75%) [31]

Iran

α-pinene (29.1%), limonene (21.5%), 1,8-cineole (17.9%), and linalool (10.4%) [32]

Cuminaldehyde (25.2%), p-mentha-1,3-dien-7-al (13%), p-mentha-1,4-dien-7-al (16.6%),
γ-terpinene (19%), p-cymene (7.2%), and β-pinene (10.4%). [33]

α-Pinene (29.2%), limonene (21.7%), 1,8-cineole (18.1%), linalool (10.5%), linalyl acetate (4.8%),
and α-terpineole (3.17%). [34]

α-pinene (30.12%), limonene (10.11%), 1,8-cineole (11.54%), γ-terpinene (3.56%), linalool (10.3%),
sabinene (1.11%), p-cymene (0.6%), α-campholenal (1.76%), linalyl acetate (4.76%), α-terpinyl
acetate (1.8%), neryl acetate (1%).

[35]

Cuminaldehyde (28.24%), γ-terpinene (21.39%), o-Cymene (13.78%), β-pinene (3.14%), and
β-Acoradiene (1.68%). [36]

3-caren-10-al (47.27%), cuminal (25.92%), 2-caren-10-al (8.05%), γ-terpinene (7.66%), (-)-β-pinene
(5.11%), and p-cymene (2.71%). [37]

Cuminaldehyde (38.26%), α,β-dihydroxy ethylbenzene (29.16%), 2-caren-10-al (11.20%),
γ-terpinene (6.49%), and β-pinene (5.25%). [38]

Cuminaldehyde (29.0%), α-terpinen-7-al (20.7%), γ-terpinene (12.94%), γ-terpinen-7-al (8.91%),
p-cymene (8.55%), and β-pinene (7.72%). [39]

India

Safranal (16.8–29.0%), γ-terpinene (14.1–19.6%), γ-terpinene-7-al (13.5–25.5%), cuminaldehyde
(17.5–22.3%), β-pinene (6.8–10.4%), and p-cymene (4.1–8.8%). [40]

Cuminaldehyde (49.4%), p-cymene (17.4%), β-pinene (6.3%), α-terpinen-7-al (6.8%), γ-terpinene
(6.1%), p-cymen-7-ol (4.6%), and thymol (2.8%). [41]

Cuminaldehyde (36.67%), caren-10-al (21.34%), β-pinene (18.76%), γ-terpinene (16.86%),
terpinen-4-ol (2.44%), α-thujene (1.88%), α-pinene (1.41%), p-cymene (0.30%), carbicol (0.19%)
and α-terpineol (0.09%).

[42]

China Cuminaldehyde (44.53%), p-cymene (12.14%), β-pinene (10.47%) and γ-terpinene (8.40%) [43]

Thailand

Cumin aldehyde (33.94%), α-terpinen-7-al (32.20%), γ-terpinen-7-al (13.74%), γ-terpinene (6.67%),
β-pinene (5.34%) and p-cymene (3.58%). [44]

Cuminaldehyde (27.10%), β-pinene (25.04%) and γ-terpinene (15.68%). [45]

Tunisia

γ-terpinen (25.58%), 1-phenyl-1,2 ethanediol (23.16%), cuminaldehyde (15.31%), β-pinene
(15.16%), and ρ-cymene (9.05%) [46]

Cuminaldehyde (39.48%), γ-terpinene (15.21%), O-cymene (11.82%), β-pinene (11.13%),
2-caren-10-al 7.93%), trans-carveol (4.49%) and myrtenal (3.5%). [47]

Cuminaldehyde (28.22%), 1-phenyl-1-butanol (23.33%), β-pinene (12.61%) and p-cymene
(11.72%). [48]

Sudan 2-Caren-10-al (29.64%), benzaldehyde, 4-1-methyethyl (16.58%), and 2-J-pinene (12.06%) [49]

Spain Cuminaldehyde (34.11%), ∆2-Caren-10-al (20.78%), p-cymene (12.25%), ∆3-C10-al (11.80%),
∆4-Carene (10.47%), β-pinene (7.3%). [50]

Iran Cuminaldehyde (41.5%), p-cymene (17.4%), β-pinene (10.7%), γ-Terpinene (6.5%),
p-mentha-1,3-dien-7-al (5.5%), p-mentha-1,4-dien-7-al (1.5%), β-acoradiene (3.5%).

[51]
Egypt Cuminaldehyde (29.3%), γ-Terpinene (18.5%), β-pinene (15.7%), p-mentha-1,3-dien-7-al (10.6%),

p-cymene (10.1%), p-mentha-1,4-dien-7-al (7.6%), β-acoradiene (0.2%).

India γ-Terpinene (31.1%), cuminaldehyde (23.2%), p-cymene (18.4%), β-pinene (12.6%),
p-mentha-1,3-dien-7-al (7.2%), p-mentha-1,4-dien-7-al (0.4%), β-acoradiene (0.1%).

Europe γ-Terpinene (26.5%), cuminaldehyde (22.4%), p-cymene (20.2%), β-pinene (14.1%),
p-mentha-1,3-dien-7-al (6.6%), p-mentha-1,4-dien-7-al (1.4%), β-acoradiene (0.3%).

Morocco β-pinene (20.8–86.4%), p-cymene (6.2–24.7%), γ-terpinene (18.1–90.7%), cuminaldehyde
(51.5–91.5%), α-terpinen-7-al (21.2–95.3%) and α-terpinen-7-al (22.6–55.06%) [52]
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Our results revealed that the obtained EO was active against fifteen Vibrio species
with different degrees. The diameter of growth inhibition zone ranged from 11 ± 00 mm
(V. diazotrophicus ATCC 33466) to 41.33 ± 1.15 mm (V. fluvialis ATCC 33809). Cumin EO
oil exhibited bacteriostatic activity against all Vibrio species with MICs and MBCs values
ranging from 0.023–0.046 mg/mL and 1.5–12 mg/mL, respectively. Our results are in
agreement with previous study who demonstrated that cumin EO is active against a wide
spectrum of microorganisms [32,33,47]. More recently, it has been reported that cumin EO
from Iran (cuminaldehyde 38.26%) was active against multidrug resistant Staphylococcus
aureus (S. aureus) strains with MICs and MBCs values ranging from 5 to 10 and 10 to
20 µL/mL, respectively [38].

This antimicrobial activity can be positively correlated with the concentration of alde-
hydes (cuminaldehyde) and terpene group (mainly α-pinene and β-pinene). Using cumin
EO (Cuminaldehyde 39.78%), Hajlaoui and colleagues [47] have demonstrated a large
antimicrobial activity against Gram-positive bacteria (S. aureus, S. epidermidis, Micrococcus
luteus, Bacillus cereus), Gram negative bacteria (Escherichia coli, Enterococcus faecalis, P. aerugi-
nosa, Salmonella typhimirium, Listeria monocytogenes), twelve Vibrio species, and yeast strains
(Candida albicans, Candida tropicalis, Candida glabrata, Saccharomyces cerevisiae). More recently,
our team demonstrated that caraway (Carum carvi L.) EO was active against the same Vibrio
species tested in the present study with a high diameter of growth inhibition zone and
low MIC and MBC values [53]. Table 8 represents a systemic review of the bibliography
describing the effect of some EOs against different members of Vibrionaceae family.

Table 8. Review of the antibacterial activities of some EO against Vibrio species.

Plant Species Tested Vibrio Species Tested References

Bauhinia variegata V. cholerae [54]

Psidium guajava, Azadirachta indica V. cholerae [55]

Mentha pulegium V. cholerae [56]

Syzygium aromaticum V. parahaemolyticus [57]

Mentha longifolia; M. pulegium; Eugenia
caryophyllata; Rosmarinus officinalis and

Thymus vulgaris
V. alginolyticus, V. parahaemolyticus, V. fluvialis, V. vulnificus [58]

C. cyminum
V. cholerae, V. parahaemolyticus, V. alginolyticus, V. vulnificus, V. harveyi,

V. proteolyticus, V. furnisii, V. mimicus, V. furnisii, V. natrigens,
V. carhiaccae, V. fluvialis

[47]

Ocimum basilicum V. parahaemolyticus, V. mimicus [59]

Satureja bachtiarica Bunge, Zataria
multiflora V. parahaemolyticus, V. harveyi. [60]

Cymbopogon nardus V. damsela, Vibrio spp. [61]

Lippia berlandieri V. cholerae, V. parahaemolyticus, V. vulnificus [62]

Cordia globosa V. cholerae [63]

Eucalyptus globulus V. cholerae [64]

V. harveyi, V. ichthyoenteri [65]

Mentha piperita V. parahaemolyticus, V. cholerae, V. vulnificus, V. alginolyticus, V. mimicus,
V. damsela, V. campbellii, V. harveyi, V. logei [66]

Elettaria cardamomum, Mentha spicata,
Petroselinum crispum, Ocimum basilicum

V. cholerae, V. vulnificus, V. parahaemolyticus, V. alginolyticus, V. furnisii,
V. cincinnatiensis, V. proteolyticus, V. natrigens, V. mimicus, V. fluvialis,
V. anguillarum, V. carrichariae, V. harveyii, V. diazotrophicus, V. tapetis,

V. splendidus.

[67–69]
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Table 8. Cont.

Plant Species Tested Vibrio Species Tested References

Nigella sativa V. parahaemolyticus [70]

Origanum majorana V. parahaemolyticus, V. alginolyticus [21]

Artemisia absinthium, Zataria multiflora,
Pulicaria gnaphalodes, Trachyspermum

ammi, Cuminum cyminum
V. parahaemolyticus [71]

Alpinia galanga, Zingiber officinale V. cholerae [72]

Origannum majorana, Cinnamomum verum V. parahaemolyticus, V. cholerae [73]

Protium heptaphyllum V. parahaemolyticus [74]

Abies alba, Apium graveolens, Artemisia
dracunculus, A. herba alba, Cinnamomum
camphora, C. cassia, C. zeylanicum, Citrus

sinensis, C. cyminum, Curcuma longa,
Cymbopogon martini, E. citriodora, E. dives,

Laurus nobilis, Litsea citrata, Melaleuca
alternifolia, Mentha × piperita, M. pulegium,

P. crispum, Pogostemon cablin, Thymus
zygis, Zingiber officinalis.

V. campbellii, V. parahaemolyticus [75]

Clove, thyme, garlic V. parahaemolyticus [76]

Carum carvi, Coriandrum sativum L. V. parahaemolyticus, V. alginolyticus, V. proteolyticus, V. furnisii,
V. mimicus, V. natrigens, V. carhiaccae, V. fluvialis [77]

Carum carvi

V. cholerae, V. vulnificus, V. parahaemolyticus, V. alginolyticus, V. furnisii,
V. cincinnatiensis, V. proteolyticus, V. natrigens, V. mimicus, V. fluvialis,
V. anguillarum, V. carrichariae, V. harveyii, V. diazotrophicus, V. tapetis,

V. splendidus.

[53]

More interestingly, our EO exhibited antioxidant activities as revealed by DPPH
(IC50= 8 ± 0.54 mg/mL), reducing power (EC50 = 3.5 ± 0.03 mg/mL), β-carotene
(IC50 = 3.8 ± 0.34 mg/mL), and chelating power (IC50 = 8.4 ± 0.14 mg/mL) assays in com-
parison with BHA, BHT, and ascorbic acid. Previous results have discussed the antioxidant
activity of cumin essential oil from different origin [46,48,78–80].

In addition, our results showed that cumin EO (Chemotype cuminaldehyde) was
able to inhibit the biofilm formation of V. alginolyticus ATCC 33787, V. parahaemolyticus
ATCC 17802, V. vulnificus ATCC 27962, and V. cholerae ATCC 9454 at MICs value ranging
from 9.96 to 18.14%. The biofilm formation by these strains was highly inhibited at MBCs
values, and at 50 mg/mL. Similar results have reported the effectiveness of EO from
P. crispum, O. basilicum, M. spicata, C. carvi to inhibit the biofilm formation by the same
strains [53,67–69]. It has been also demonstrated that clove, garlic, and thyme volatile
oils are able to inhibit the formation of biofilm by V. parahaemolyticus at 8xMIC (0.56% for
clove, 0.16% for thyme, and 0.72% for garlic) after 30 min of application of the volatile oils.
Cumin EO was described to inhibit the biofilm formation by clinical Klebsiella pneumoniae
on semiglass lamellas [81] and the attachment of E. coli MTCC 40, Salmonella spp. MTCC
1163 and S. aureus MTCC 7443 strains on microtiter plate by 52.11% [82].

In this work, we evaluated the effect of cumin EO and cuminaldehyde to inhibit the
production of violacein by C. violaceum using both qualitative and quantitative methods.
Previous reports have shown that C. cyminum exhibited potent inhibition of violacein
production in C. violaceum at low concentration (0.5 mg/mL of methanolic extract), as
well as swarming and swimming motility in P. aeruginosa PAO1 at 60 µg/mL [83]. In
addition, methanolic extract of cumin seeds was able to inhibit the violacein production by
C. violaceum, exopolysaccharide production, flagellar motility, and biofilm formation [84].
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Overall, the biological activity of the tested cumin EO (anti-Vibrio spp., antioxidant,
antibiofilm, and anti-quorum sensing properties) can be explicated by the high percentage
of cuminaldehyde (42.4%), β-pinene (15.1%), γ-terpinene (14.4%), and p-cymene (14.2%).
In fact, cuminaldehyde was described to be active against biofilm-forming K. pneumoniae
and P. aeruginosa strains [81,85]. In addition, this aldehyde was described to be active
against planktonic B. cereus, B. licheneformis, S. aureus, E. coli, P. fluorescens, P. aeruginosa,
P. fragi, S. paratyphi, S. abony, and S. Typhi strains [45,51,85,86]. More recently, it has been
reported that cuminaldehyde enhances the antimicrobial potential of ciprofloxacin tested
against S. aureus and E. coli strains [87]. In addition, Chen et al. [78] highlighted the role
cuminaldehyde, β-pinene, p-cymene, and γ-terpinene as promising scavenging molecules
of various reactive oxygen species.

4. Materials and Methods
4.1. Plant Material and Extraction Procedure

Cumin seeds (Cuminum cyminum L.) were purchased from a local market in August
2021. The taxonomic position was evaluated by Dr. Zouhair Noumi, University of Sfax,
Tunisia (Voucher No: AN-0005). The volatile oil was extracted by using hydrodistillation
technique [53].

4.2. Analysis of the Volatile Compounds

GC/EIMS analyses was performed with a Varian CP-3800 GC equipped with a HP-5
capillary column (30 m × 0.25 mm; coating thickness 0.25 µm) and a Varian Saturn 2000
ion trap mass detector. The identification of compounds was done by comparison of
their Kovats retention indices (Ri) [determined relative to the tR of n-alkanes (C10–C35)],
with either those of the literature and mass spectra of authentic compounds available in
our laboratories by means of NIST 02 and Wiley 275 libraries. The components’ relative
concentrations were obtained by peak area normalization [18].

4.3. Sceening of the Anti-Vibrio spp. Activity

Fifteen Vibrio species (17 bacteria) commonly isolated from aquatic environment ant
their associated organisms were used in this study. Semi-quantitative disc diffusion tech-
nique on Mueller Hinton-1%NaCl Petri dishes was used to estimate the growth inhibition
zone around sterile Whatmann disc impregnated with 10 mg of cumin EO [53,67,68]. For
the experiment, Vibrio strains were grown on Mueller-Hinton supplemented with 1% NaCl.
Fresh Petri dishes were inoculated using bacterial suspension (optical density was adjusted
to 0.5 McFarland) by cotton swab technique. Sterile filter paper disks (6 mm in diameter,
Biolife, Milan, Italy) were impregnated with 10 mg of cumin EO and then placed on the
inoculated Petri dishes. After sitting overnight at 37 ◦C, the diameter of growth inhibition
zone around the disks was estimated using a 1-cm flat ruler.

The determination of the lowest concentration able to inhibit the growth and/or to
kill the tested Vibrio species was estimated by using microdilution technique as reviously
described by Snoussi et al. [58]. In fact, a twofold serial dilution of cumin EO in DMSO-5%
was prepared in 96-well plates, starting from 25 µL/mL (23.125 mg/mL), in Mueller-Hinton
Broth-1% NaCl. Five microliters of microbial inoculum were added to each well containing
100 µL of the serially diluted volatile oil. After incubation at 37 ◦C, the minimum inhibitory
concentration (MIC) was defined as the lowest concentration able to inhibit the growth of
a specific microorganism. To determine the minimum bactericidal concentration (MBC),
3 µL from all the wells with no visible growth were point-inoculated in Mueller-Hinton
(1% NaCl) agar. After 24 h of incubation, the concentration at which the Vibrio spp. strain
presents no growth is recorded as the MBC value.
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4.4. Evaluation of the Antioxidant Activities

The antioxidant activity experiments were carried out by using four different assays:
DPPH, β-Carotene bleaching, and reducing/chelating power assays by using the protocols
previously described Ghannay et al. [53].

4.5. Inhibition of Virulence Factors Regulated by QS System
4.5.1. Inhibition of Violacein

Chromobacterium violaceum (CV026) strain was selected to study the effect of cumin EO
against the production of violacein by using disc diffusion assay on LB-agar Petri dishes
(2 mm/disc). Twofold serial dilutions of cumin EO were prepared in 96-well plates starting
from 5 mg/mL in LB broth and inoculated with C. violaceum ATCC 12472 [88].

4.5.2. Biofilm Inhibition

The ability of the tested cumin EO to inhibit the biofilm formation by four Vibrio
species (V. alginolyticus, V. parahaemolyticus, V. vulnificus, and V. cholerae) on a 96 well plate
was tested at different concentrations ranging from 2xMIC to 50 mg/mL by using the same
protocol described by Ghannay et al. [53].

4.5.3. Effect on Flagellar Motility

Pseudomonas aeruginosa PAO1 was used to study the effect of cumin EO at different
concentrations on its motility on semi-solid Lauria Bertani (LB-0.3% agar-agar) by using
the same protocol described by Snoussi et al. [88].

4.5.4. Elastase and Protease Inhibition in P. aeruginosa PAO1

The effect of cumin on the production of elastase by P. aeruginosa PAO1 was tested in
Elastin Congo Red buffer supplemented with 0.05, 0.5, 0.625, 1.25, and 2.5 mg/mL of the
volatile oil. For the protease inhibition, 3 mg of azocasein (Sigma, Tokyo, Japan) was used
as enzyme.

4.6. Computational Approach

The receptor proteins (PDB ID: 1HD2, 1JIJ, 2UV0, and 2QP1) were selected from the
RSCB protein data bank (http://www.rcsb.org/ accessed on 15 December 2021). Water
molecules and co-crystal ligands were removed from each of the protein. AutoGrid was
used to create a grid map using a grid box. The grid size and grid dimensions were set for
each protein according to the binding pocket are as follow: 1HD2 (Grid size 40 × 40 × 40;
Grid dimension center 7.089, 41.659, 34.385; Grid spacing in Å 0.375), 1JIJ (Grid size
40 × 40 × 40; Grid dimension center-11.273, 13.817, 86.080; Grid spacing in Å 0.375), 2UVO
(Grid size 440 × 40 × 40; Grid dimension center 23.998, 16.050, 80.315; Grid spacing
in Å 0.375), and 3QP1(Grid size 38 × 40 × 40; Grid dimension center 20.546, 12.912,
49.410; Grid spacing in Å 0.375. Docking conditions and steps are previously described by
Ghannay et al. [53].

4.7. ADMET Predicted Properties

The ADMET predictor remains one of the powerful tools for the enhancement of
drug design [89–93]. In order to discover effective compounds with better ADMET and
drug-likeliness properties, the ADMET profiles of the top major identified compounds were
predicted using ADMET SAR online server (http://lmmd.ecust.edu.cn:8000/ accessed on
15 December 2021).

4.8. Statistical Analysis

Average values of three replicates were calculated using the SPSS 25.0 statistical
package for Windows. Differences in means were calculated using the Duncan’s multiple-
range tests for means with a 95% confidence interval (p ≤ 0.05).

http://www.rcsb.org/
http://lmmd.ecust.edu.cn:8000/
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5. Conclusions

In summary, our results indicated that cuminaldehyde, β-pinene, γ-terpinene, and
p-cymene were the main phytoconstituents identified in cumin EO by GC/MS technique.
This chemovar was particularly active against planktonic and biofilm forming V. alginolyti-
cus, V. cholerae, V. vulnificus, and V. parahaemolyticus species. The same EO and its main
compound (cuminaldehyde) were able to modulate the expression of violacein production
in C. violaceum in a concentration dependent manner. At low concentrations, cumin EO
and cuminaldehyde were able to inhibit the flagellar motility of P. aeruginosa PAO1 strain
and attenuate the production of elastase and protease. Further analyses are necessary to
elucidate the mechanism of action of cumin EO and its role in the prevention of seafood
product contamination by spoilage bacteria belonging to Vibrio genus.
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