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Abstract
When incorporating more realistic synaptic dynamics, the computational efficiency of population density methods
(PDMs) declines sharply due to the increase in the dimension of master equations. To avoid such a decline, we
develop an efficient PDM, termed colored-synapse PDM (csPDM), in which the dimension of the master equations
does not depend on the number of synapse-associated state variables in the underlying network model. Our goal
is to allow the PDM to incorporate realistic synaptic dynamics that possesses not only finite relaxation time but
also short-term plasticity (STP). The model equations of csPDM are derived based on the diffusion approximation
on synaptic dynamics and probability density function methods for Langevin equations with colored noise.
Numerical examples, given by simulations of the population dynamics of uncoupled exponential integrate-and-
fire (EIF) neurons, show good agreement between the results of csPDM and Monte Carlo simulations (MCSs).
Compared to the original full-dimensional PDM (fdPDM), the csPDM reveals more excellent computational efficiency
because of the lower dimension of the master equations. In addition, it permits network dynamics to possess the
short-term plastic characteristics inherited from plastic synapses. The novel csPDM has potential applicability to any
spiking neuron models because of no assumptions on neuronal dynamics, and, more importantly, this is the first report
of PDM to successfully encompass short-term facilitation/depression properties.
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Significance Statement

Our study successfully solve an outstanding problem, how to reduce the dimension of population density
equations when realistic synaptic dynamics is incorporated. With the newly proposed Fokker–Planck
formalism, population density method (PDM) is conferred short-term plasticity (STP) properties and there-
fore becomes more widely applicable. As such, our method offers an opportunity to use the PDM to gain new
insights into neural mechanisms of brain functions that are strongly dependent on STP synapses. This is the first
step toward macroscopic description of large-scale neural network activities, reflected in some commonly used
neurophysiological measurements, e.g., EEG, MEG, fMRI, and voltage-sensitive dye imaging data.
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Introduction
The population density method (PDM) appears as a

time-saving alternative to direct numerical simulations
[i.e., Monte Carlo simulation (MCS)] of large-scale neural
networks of spiking neurons (Knight et al., 1996; Brunel
and Sergi, 1998; Brunel, 2000; Nykamp and Tranchina,
2000; Omurtag et al., 2000; Casti et al., 2002; Huertas and
Smith, 2006; Augustin et al., 2013). In this method, bio-
physically similar neurons are grouped into a population,
and a probability density function for each population is
defined to describe the variability of state variables of
such neurons. The evolution of this density function is
governed by a master equation (generally a partial differ-
ential equation such as a Fokker–Planck equation). A
prominent advantage of PDM is that if the master equa-
tion can be easily solved in analytical or numerical ways,
precise estimates of the quantities of interest can be
obtained much faster than MCS.

Because of the significant impact of synaptic dynamics
on network dynamics, PDMs must ultimately include ac-
curate descriptions of synaptic kinetics to be widely ap-
plicable. Unfortunately, incorporating more synaptic
dynamics increases the dimension of density functions,
leading to a catastrophic decline in computational effi-
ciency because of the increasing difficulty of solving high-
dimensional master equations. How to incorporate
realistic synaptic dynamics in a computationally efficient
manner therefore becomes an outstanding problem in the
field of PDMs (Apfaltrer et al., 2006; Tranchina, 2009).

Although many previous studies addressed this issue
(Haskell et al., 2001; Nykamp and Tranchina, 2001; Ap-
faltrer et al., 2006; Rangan and Cai, 2006; Ly and
Tranchina, 2007; Rangan et al., 2008), they left out some
unsolved problems (section 7.10 in Tranchina, 2009). Re-
cently, Ly (2013) developed a principled dimension-
reduction method, called modified mean-field method
(MMFM), that could deal with those unsolved problems.
Nevertheless, we found that the MMFM might not be a
robust method and not suitable for nonlinear spiking neu-
ron models. The previous studies concentrated, to the
best of our knowledge, only on synaptic dynamics with
finite decay and neglected another important synaptic
attribute, the short-term plasticity (STP; Markram and
Tsodyks, 1996; Markram et al., 1998; Zucker and Regehr,
2002) that also played an important role in certain specific
network dynamics, such as reverberatory bursting activity
in in vitro and in vivo neuronal networks (Volman et al.,
2007; Gritsun et al., 2011), self-organized criticality
(Levina et al., 2007), anticipative neural responses (Fung

et al., 2012), and sustained population activity related to
working memory (Barak and Tsodyks, 2007; Mongillo
et al., 2008). Therefore, our goal in the present study is to
develop a new solution that allows the PDM to include
realistic synaptic dynamics of both finite decay and STP in
a computationally efficient manner.

In this study, we present a novel and efficient PDM,
called colored-synapse PDM (csPDM), to achieve our
goal. The strategy behind the csPDM is also to take
advantage of dimension-reduction methods, relying on
the following scheme: (1) synaptic dynamics are assumed
to operate in the diffusive limit so that the dynamic equa-
tions of neuronal dynamics are converted into Langevin
equations with colored driving noise and all synapse-
associated state variables are transformed into input
terms (Moreno-Bote and Parga, 2004; Richardson and
Gerstner, 2005; Destexhe and Rudolph-Lilith, 2012), and
(2) the probability density function method for this dy-
namic system is then employed (Wang et al., 2013;
Barajas-Solano and Tartakovsky, 2016). As such, the
synapse-associated state variables are not viewed as the
system state variables of the resulting Langevin equa-
tions, leading to the reduction of the dimension of density
functions. As a consequence, incorporating realistic syn-
aptic dynamics does not decrease the computational ef-
ficiency when adopting csPDM, because it does not
increase the dimension of master equations.

We compare the simulated network activities from the
csPDM with those from MCSs, original full-dimensional
PDMs (fdPDMs), and MMFMs. The numerical results
show that the results of the csPDM reveal good agree-
ment with those of the MCS and fdPDM in both the
steady-state and dynamic regimes. The csPDM provides
more accurate simulations than the MMFM and remains
more computationally efficient than the fdPDM. We hope
that the csPDM will be valuable to computational neuro-
scientists who seek accurate and efficient network mod-
eling tools to explore effects of synaptic dynamics with/
without STP properties on macroscopic behaviors of
neural networks.

Materials and Methods
Here, we describe the equations and parameters used

for neuronal, synaptic and network modeling. We present
the model (master) equations of the fdPDM, csPDM, and
MMFM. The corresponding closed-form solutions for
evaluating firing rate responses (network activities) are
also described. At the end of this section, we present the
numerical method used to solve the model equations of
the csPDM as well as the methods used to quantify
simulation errors. A summary of the notation for all the
main dynamical variables and physiological parameters is
given in Table 1.

Network models
The large-scale network considered here is a neuronal

population of N uncoupled exponential integrate-and-fire
(EIF) neurons (Fourcaud-Trocmé et al., 2003) receiving
only synaptic inputs from the outside. We choose the EIF
model mainly because it can offer better prediction of
spiking times for a given current input than the leaky

This work was supported by the National Cheng Kung University Hospital
and funded by a grant (MOST 105-2314-B-006-080-MY3) from the Ministry of
Science and Technology, Taiwan.

Correspondence should be addressed to Chou-Ching K. Lin, Department of
Neurology, National Cheng Kung University Hospital, 138 Sheng Li Road,
Tainan, Taiwan 70403, E-mail: cxl45@mail.ncku.edu.tw.

https://doi.org/10.1523/ENEURO.0002-18.2018
Copyright © 2018 Huang and Lin
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

Methods/New Tools 2 of 21

November/December 2018, 5(6) e0002-18.2018 eNeuro.org

mailto:cxl45@mail.ncku.edu.tw
https://doi.org/10.1523/ENEURO.0002-18.2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


integrate-and-fire models and quadratic ones (Fourcaud-
Trocmé et al., 2003). In addition, its adaption version, i.e.,
the adaptive EIF model (Brette and Gerstner, 2005), is
capable of reproducing various firing patterns observed in
in vivo recordings of cortical cells (Naud et al., 2008;
Touboul and Brette, 2008). In fact, the csPDM derived in
the present study can be directly applied to simulate
neural networks of adaptive EIF neurons.

In this network, the external synaptic inputs to each
neuron are assumed to be mediated by m different types
of neurotransmitter receptors. For the sth type of recep-
tors, there are presumably cs synaptic connections. In

other words, each neuron has totally �
s�1

s�m

cs external syn-

aptic connections. The synaptic input on each connection
is a set of unitary spiking events whose random arrival

Table 1 List of notation and symbols

Name Symbol SI unit
Average membrane voltage across population �V� V
Average error ratio of csPDM on marginal conductance density function �g

csPDM Dimensionless
Average error ratio of csPDM on marginal voltage density function �V

csPDM Dimensionless
Average error ratio on population firing rate �r

� Dimensionless
Autocorrelation function of synaptic conductance Cs

Conductance probability flux Jgs
Conductance probability flux vector J̃g

Conductance state vector g̃
Cutting voltage Vc V
Facilitation time constant �s,f s
Fluctuation velocity on neuronal Langevin equation �1�V, �̃g, g�̃ �
Initial utilization parameter Us Dimensionless
Instant voltage jump �Vs V
Leak conductance gl S
Leak reversal potential El V
Lower bound on voltage direction Vlb V
Marginal conductance density function �s�gs, t�
Marginal conductance probability flux J� s

Marginal voltage density function �V�V, t�
Marginal voltage probability flux J� V

Mean-field velocity on neuronal Langevin equation �0�V, �̃g�
Mean of conductance state vector �̃g

Mean of running utilization parameter �us
Dimensionless

Mean of running fraction of available neurotransmitters �xs
Dimensionless

Mean of synaptic conductance �gs
S

Mean rate of external Poisson input 	s Hz
Membrane voltage V V
Membrane capacitance C F
Neuronal velocity component along voltage direction FV�V, g̃�
Number of synaptic connections cs
Population density function ��V, g̃, t�
Population firing rate r�t� Hz
Recovery time constant �s, r s
Refractory period �ref s
Resetting voltage Vr V
Running fraction of available neurotransmitters xs Dimensionless
Running utilization parameter us Dimensionless
Sharpness factor 
 V
Standard deviation of synaptic conductance �gs

S
Standard deviation of synaptic conductance state vector �̃g

Steady firing rate for a conductance vector r��g̃� Hz
Stochastic diffusion tensor D�V, �̃g�
Stochastic Ornstein–Uhlenbeck conductance g� s

Stochastic Ornstein–Uhlenbeck conductance state vector g�̃
Synaptic current Isyn�V, t� A
Synaptic conductance gs S
Synaptic reversal potential Es V
Synaptic time constant �s s
Threshold voltage VT V
Total variation of synaptic conductance �s S
Voltage probability flux JV
White Gaussian noise with unit variance ��t�
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times are assumed to be governed by an inhomogeneous
Poisson process. 	s(t) denotes the mean rate of the Pois-
son process for the input through the sth-type receptor. to
satisfy basic premises of the PDM, two arbitrary synaptic
inputs are assumed to be statistically independent if they
are mediated by different types of receptors and to be
statistically identical if mediated by the same type.

Single neuron models
For each neuron, the dynamics of its membrane volt-

age, V (t), is described by

C d
dt

V � �gl�V � El� 
 gl
e
V�VT


 
 Isyn�V, t� , (1)

where Isyn�V, t� is the total synaptic current generated by
the external synaptic inputs, C is the membrane capaci-
tance, gl is the leak conductance, El is the leak reversal
potential, 
 is the sharpness factor, and VT is the threshold
voltage. The spiking mechanism is the following: a spike is
triggered at ts when V (ts) reaches a cutting voltage, Vc (in
general, Vc � VT). Afterward, V is immediately reset to a
resetting voltage, Vr, and, then, clamped for a refractory
period, �ref.

Synapse models
Specifically, Isyn�V, t� is the sum of all postsynaptic cur-

rents mediated by various types of neurotransmitter re-
ceptors:

Isyn�V, t� � �
s�1

m

Is�V, t� � � �
s�1

m

gs�t��V � Es� , (2)

where gs(t) is the (collective) synaptic conductance for the
input mediated by the sth type of receptors, and Es is the
corresponding synaptic reversal potential. Equation 2 re-
fers to conductance-based synaptic models.

The synaptic dynamics means the dynamics of the gs(t).
In our treatment, the synaptic conductance follows first
order kinetics, where the rise in conductance at the arrival
of a unitary synaptic event is instantaneous and the de-
cline is exponential. Therefore, the dynamic equation for
the synaptic conductance has the following form:

�s
d
dt

gs � �gs 
 �
j

�s��t � tj
s� , (3)

where �s is the decay or synaptic time constant and �s is
the total variation of the synaptic conductance induced by
a single event. The size of the instantaneous jump in
conductance equals to �s/�s. tj

s is the arrival time of the jth
synaptic event, and �

j
��t � tj

s� refers to the spike train

consisting of synaptic events summed from all synaptic
connections through the sth-type receptor.

In our numerical examples, the value of �s is set ac-
cording to the following equation:

�s � Cln�1 �
�Vs

Es � El
� , (4)

where �Vs is a free parameter defined as the instant

voltage modulation provoked by a single synaptic event
when the membrane voltage is El just before the event
arrives in cases where 
 (in Eq. 1) is in the limit of 
 ¡
0 and the synaptic dynamics has a zero-order kinetics,
i.e., �s ¡ 0.

Short-term plastic synapses
What stated above does not consider STP property on

synaptic connections. In the following, we concentrate on
how to add it into the synaptic dynamics. A typical dy-
namic model of STP was the one proposed by Barak and
Tsodyks (2007). They introduced two running parameters
to describe the change of the connection weight of a
synaptic coupling in a phenomenological way. Following
the same idea, the �s in Equation 3 is replaced by

�s ¡ �sus�t�xs�t� , (5)

where the running parameters, us and xs, are governed by

d
dt

us �
Us � us

�s,f

 �

j

Us·�1 � us���t � tj
s� , (6)

d
dt

xs �
1 � xs

�s,r
� �

j

xsus��t � tj
s� (7)

at the level of a single synapse. The jump size of the
synaptic conductance caused by a spike now depends on
us and xs. us is the running utilization parameter and xs is
the running fraction of available neurotransmitters. The
dynamic value ranges from Us to 1 for us and from 0 to 1
for xs. Us refers to the base level of us. us � 1 means a
presynaptic spike is allowed to use all available neu-
rotransmitters, and xs � 1 means all neurotransmitters are
available.

Briefly, the Equations 6, 7 depict a phenomenon, where
when a synaptic spike arrives, us increases by an amount
of Us·�1 � us�, and, afterward, decays to its baseline level,
Us, with the facilitation time constant, �s,f, and, meanwhile,
xs decreases by an amount of xsus and recovers to its
baseline value of 1 with the recovery time constant, �s,r,
afterward. In general, �s,f and �s,r are short, ranging from
hundreds of milliseconds to seconds (Markram and Tso-
dyks, 1996; Markram et al., 1998). Besides �s, Es, and �s,
each synaptic connection with the STP property is also
characterized by three additional parameters: Us (initial
utilization parameter) and �s,f as well as �s,r (facilitation and
recovery time constants, respectively), which control the
type of the STP property from strong depression (�r � �f

and relatively large values of Us) to strong facilitation
(�f � �r and small values of Us; Barak and Tsodyks, 2007).

Note that we keep the subscript s in the Equations 5–7
above, because it is likely that the synaptic connections
through different types of transmitter receptors have dif-
ferent STP types.

MCS
We are interested in the network activity, i.e., the output

population firing rate, of such a neuronal population in
response to a given set of 	s�t� (s�	1, 2, �, m
) as a whole.

Methods/New Tools 4 of 21

November/December 2018, 5(6) e0002-18.2018 eNeuro.org



This quantity can be computed by the direct use of the
MCS, where states of all neurons and synapses are ex-
plicitly traced according to Equations 1–3 or Equations
1–7 if STP properties are involved. For all our simulation
examples, MSC is performed with the brian2 simulator
(Stimberg et al., 2014). In all simulations, the network
composes of N � 10,000 EIF neurons, and cs � 200 for all
receptor types.

In the MCS, the output population firing rate is calcu-
lated by

r�t� �
ns�t, t 
 �t�

N�t
, (8)

where ns�t, t 
 �t� is the total number of spikes produced
by all neurons in the population within the time period of
�t, t 
 �t�, and �t is a small time window. � t is always set
to 1 ms in our simulation examples.

fdPDM
The assumptions and conditions, under which the fd-

PDM provides an exact description of network activity,
have been previously discussed (Nykamp and Tranchina,
2000; Omurtag et al., 2000).

Specifically, the fdPDM is a density-based modeling
approach to directly estimate r(t) with a known distribution
of states of neurons, which is described by a joint prob-
ability density function, ��V, g̃, t�, defined by

��
��V, g̃, t�d� � Pr	�V�t�, g̃�t�� � �
 , (9)

where g̃ � �g1, g2, �, gm
 is the conductance state vector
composed of m synaptic conductance variables. � is a
subdomain within the state space bounded by the defini-
tion domains of all state variables. In general, the defini-
tion domain of 	gs�s�	1, 2, �, m

 ranges from 0 to �.
About the membrane voltage V, its upper bound is Vc, and
its lower bound is given by min�El, Vr, Es��s�	1, 2, �, m
.
Equation 9 states that the integration of the density func-
tion over � is the probability of finding neurons whose
states are within that subdomain in a large neuronal pop-
ulation. Note that, here, we do not consider STP proper-
ties on synaptic connections to illustrate our main ideas in
the present study in a simple way. We will consider these
properties only for the csPDM later.

Unlike in the MCS, where one has to track every neuron
individually, in the fdPDM, one just track one density
function for each population. As explained in details in
previous papers (Nykamp and Tranchina, 2000; Haskell
et al., 2001; Apfaltrer et al., 2006; Ly, 2013), the master
equation governing the evolution of ��V, g̃, t� forms a (1�
m)-dimensional (in space) partial-integral differential
equation:

�
� t

��V, g̃, t� � �
�

�V
JV �

�

� g̃
J̃g , (10)

where the voltage probability flux, i.e., the probability flux
along the voltage-direction, JV, is given by

JV�V, g̃, t�

�
1
C��gl�V � El� 
 gl
e

V�VT


 � �
s�1

m

gs�V � Es����V, g̃, t�

�FV�V, g̃���V, g̃, t�, (11)

and J̃g � �Jg1
, Jg2

, �, Jgm

 is the conductance probability

flux vector composed of m conductance probability
fluxes. The conductance probability flux, Jgs

, is given by

Jgs
�V, g̃, t� � �

gs

�s
��V, g̃, t� 
 cs	s�t� �

gs��s/�s

gs

�

�V, g1, �, gs�1, g�, gs
1, �, gm, t�dg� . (12)

The population firing rate, r(t), is obtained by integrating
the voltage probability flux across Vc over conductance,
yielding

r�t� � ��g�

JV�Vc, g̃, t�dg̃ . (13)

�g� denotes the subdomain where JV�Vc, g̃, t� � 0,
meaning that neurons at Vc intend to cross the boundary
from below to generate spikes in this domain. As seen, for
a given set of inputs, 	s(t) (s�	1, 2, �, m
), we need to
solve the Equation 10 to obtain the output response of the
neuronal population, i.e., the output population firing rate,
r(t). For solving that equation, the boundary conditions
are:

JV�Vr

, g̃, t� � JV�Vr

�, g̃, t� � JV�Vc, g̃, t � �ref� ,

JV�Vlb, g̃, t� � 0 ,

Jgs
�V, g1, �, gs�1, 0, gs
1, �, gm, t� � 0 ,

Jgs
�V, g1, �, gs�1, �, gs
1, �, gm, t� � 0 ,

where Vlb denotes the lower bound of the membrane
voltage. The former boundary condition results from the
resetting mechanism of spiking, meaning that the voltage
probability flux across Vc, accounting for the generation of
action potentials, re-enters the state space on Vr after the
refractory period. The latter ones mean no probability
fluxes flow outward the domain through other boundaries.
As stated, the boundary conditions result in the conser-
vation of the number of neurons. That is to say, the
integration of the density function over the domain always
equals to one in the absence of refractory period.

The computational time required for solving the master
equation depends on the number of its dimensions. Gen-
erally, solving a high-dimensional master equation is
highly time consuming. Previous studies (Apfaltrer et al.,
2006; Tranchina, 2009) have suggested that the fdPDM
cannot be considered as a time-saving alternative to the
MCS if the dimension of the master equation exceeds
three. In the following, two other methods used to tackle
this issue are described. MMFM is a documented
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method, and csPDM is a new method proposed in this
paper.

MMFM
MMFM is proposed by Ly (2013) for speeding up the

estimation of the population firing rate. In this method, g̃ in
the Equation 10 is viewed as a deterministic parameter so
that the master equation becomes a one-dimensional
partial differential equation:

�
� t

��V, g̃, t� � �
�

�V�FV�V, g̃���V, g̃, t�
 . (14)

In this case, a steady-state firing rate for a given g̃ is
obtained by using the mean-field model, given by

r��g̃� � �0 if FV�VT, g̃� � 0,
1

�ref 
 �
Vlb

Vc 1
FV�V, g̃�

dV otherwise.
(15)

Recall that the synaptic inputs for different types of
neurotransmitter receptors are assumed to be indepen-
dent mutually; therefore, synaptic conductances for dif-
ferent receptor types are also independent with each
other. Furthermore, they only depend on their individual
inputs. So, it is realized that the value of gs evolves
isolatedly. For a large neuronal population, one can define
a marginal conductance density function, �s�gs, t�, for gs by
analogy with ��V, g̃, t�. Also, the integration of �s�gs, t� over a
certain space on gs is the probability of finding neurons
whose values of gs are located in that space. According to
what derived by Ly (2013), the master equation governing
the time evolution of �s�gs, t� is yielded as

�
� t

�s�gs, t� � �
�

�gs
J� s�gs, t� , (16)

where

J� s�gs, t� � �
gs

�s
�s 
 cs	s�t� �

gs��s/�s

gs

�s�g�, t�dg� . (17)

The boundary conditions for solving Equation 16 are
J� s�0, t� � J� s��, t� � 0. Assuming that the values of all
elements of g̃ are drawn from the marginal conductance
density functions individually, MMFM estimates the time-
varying firing rate, r�t� , with expected value of r��g̃� con-
ditioned on g̃, that is,

r�t� � � r��g̃� �
s�1

m

�s�gs, t�dg̃ . (18)

As such, instead of solving a (1 � m)-dimensional
partial-integral differential equation in the fdPDM, one
only needs to solve m one-dimensional partial differential
equations simultaneously for estimating r(t) in the MMFM.
Ly suggested that MMFM had higher computational effi-
ciency than fdPDM, especially when the values of r� at all

possible points of g̃ could be computed before simula-
tions.

Colored-synapse population density method
(csPDM)

This section presents the derivation of the csPDM.
csPDM is inspired by the probability density method for
Langevin equations with colored noise (Wang et al., 2013;
Barajas-Solano and Tartakovsky, 2016). So, we start by
presenting how to transform the Equation 1 into a sto-
chastic Langevin equation through the diffusion approxi-
mation of gs.

In the diffusion limit, under the condition that the mean
rate of synaptic input received by each neuron, cs	s, is
sufficiently high and the jump size �s/�s for each synaptic
spike is small enough, the random synaptic conductance
gs�t� can be treated as the Ornstein–Uhlenbeck process
(Uhlenbeck and Ornstein, 1930; Risken, 1996), whose
dynamics is given by (Richardson, 2004)

�s
d
dt

gs � �gs 
 �
j

�s��t � tj
s� � �gs 
 �gs




�2�s�gs
��t� , (19)

where �gs
is the mean value of gs�t� and �gs

is the standard
deviation of gs�t�. ��t� is a �-correlated white-noise pro-
cess of unit variance. Introducing a new variable g� s �
1 / �gs

�gs � �gs
� and substituting for gs in the equation

above, we obtain a new Ornstein–Uhlenbeck process for
g� s:

�s
d
dt

g� s � �g� s 
 �2�s��t� . (20)

g� s has zero mean and unit variance (Risken, 1996); and
its autocorrelation function is

Cs��� � �g� s�0�g� s���� � e�
�

�s
. (21)

As a result, g� s is a colored noise due to the exponential form
of Cs��� and finite synaptic time constant, i.e., �s � 0. Replacing
gs�t� in the Equation 1 with �gs


 �gs
g� s, we obtain

dV
dt

�
1
C��gl�V � El� 
 gl
e

V�VT


 � �
s�1

m

�gs
�V � Es�� 


�
s�1

m
1
C

�gs
�Es � V�g� s�t� � �0�V, �̃g�
�1�V, �g, g�̃�t��(22)

as the new dynamic equation for the membrane voltage,
where �̃g � ��g1

, �g2
, �, �gm


, �̃g � ��g1
, �g2

, �, �gm

, and

g�̃ � �g� 1, g� 2, �, g� m
. So, as shown in Equation 22, the
fluctuation of V�t� now is characterized by a Langevin
equation with m independent colored noises 	g� s�s�
	1, 2, �, m

 resulting from synaptic dynamics with finite
synaptic time constants (Destexhe and Rudolph-Lilith,
2012). That is why we use “colored-synapse” as the prefix
of this method.

Barajas-Solano and Tartakovsky (2016) proposed a
closed-form quasi-Fokker–Planck equation as the master
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equation for Langevin equations driven by colored noise.
They considered a dynamic system characterized by the
stochastic Langevin equation in n dimensions

d
dt

xi � vi�x, t� � �vi�x, t��0 
 vi��x, t� (23)

for i � 1, 2, �, n, where x � �x1, x2, �, xn
T. Each vi�x, t� is
decomposed into a deterministic function or “mean-field
velocity” �vi�x, t��0 and a stochastic fluctuation term
vi��x, t�. The authors proposed a quasi-Fokker–Planck
equation:

�p
� t

� ��·��v�0p� 
 �·�D�p� (24)

as the master equation governing the temporal evolution
of the joint probability density function of the system
states, p�x, t�. The stochastic diffusion tensor, D, is cal-
culated by

D � lim
t¡� �

0

t

�v��0�v�T����exp��JT�x�
d� (25)

if fluctuation velocity components are exponentially auto-
correlated and mutually uncorrelated, i.e.,

�vi��0�vi����� � �i
2exp���/�i� ,

�vi��0�vj����� � 0, i � j .

JT�x� is the Jacobian of the mean-field velocity with compo-
nents Jij�x, t� � ��vi�x, t��0/�xj. Considering V, �0�V, �̃g�, and
�1�V, �̃g, g�̃� in Equation 22 as x, �vi�x, t��0, and vi��x, t� in Equa-
tion 23, respectively, we can yield the master equation for the
marginal voltage density function, �V�V, t�, by using Equation
24, as the following:

�
� t

�V�V, t� � �
�

�V��0�V, �̃g��V
 

�

�V�D�V, �̃g�
�

�V
�V
 �

�
�

�V
J� V�V, �̃g, �̃g, t� , (26)

where

J� V�V, �̃g, �̃g, t� � �0�V, �̃g��V � D�V, �̃g�
�

�V
�V . (27)

By using Equation 25, we obtain

D�V, �̃g� � lim
t¡� �

0

t

��1�V, �̃g, g�̃ �0���1�V, �̃g, g�̃ �����exp

��
�

�V
�0�V, �̃g�
d�

� �
s�1

m ��gs
�Es � V�

C
�2

·lim
t¡� �

0

t

Cs���exp���
�eff

�d� (28)

� �
s�1

m ��gs
�Es � V�

C
�2

·lim
t¡� �

0

t

exp���
�s

�exp���
�eff

�d�

� �
s�1

m ��gs
�Es � V�

C
�2

·
�s�eff

�s 
 �eff
(29)

where

�eff �
C

gl � gle
�V��VT


 
 �
s�1

m

�gs

, (30)

and �V� denotes the average membrane voltage across
the population.

What remains in Equation 26 are equations for evaluat-
ing �gs

and �gs
. To derive the equation for evaluating

�gs
� �0

� gs�s�gs, t�dgs, we multiply Equation 16 by gs and
integrate gs from 0 to �:

d
dt

�gs
� � �

0

�

gs
�

�gs
J� s�gs, t�dgs

��gsJ� s�gs, t��gs�0
gs�� 
 �

0

� ��gs�s�gs, t�
�s


 cs	s

�t� �
gs��s/�s

gs

�s�g�, t�dg��dgs

� �
0

� �gs�s�gs, t�
�s

dgs 
 cs	s�t� �
0

� � �
gs��s/�s

gs

�s

�g�, t�dg��dgs (BCs)

��
1
�s

�gs

 cs	s�t� �

0

� � �
g�

g�
�s/�s

dgs��s�g�, t�dg� (Fubini)

��
1
�s

�gs

 cs	s�t�

�s

�s
�

0

�

�s�g�, t�dg�

��
1
�s

�gs

 cs	s�t�

�s

�s
. (31)

Similarly, one can derive the equation for evaluating
�gs

2 � �0
� gs

2�s�gs, t�dgs, yielding

d
dt

�gs
2 � �

2
�s

�gs
2 
 cs	s�t��2�s

�s
�gs



�s

2

�s
2 � . (32)

For �gs
, we use the identity, �gs

� ��gs
2��gs

2 .
In the csPDM, the population firing rate is directly esti-

mated by the probability flux across Vc:

r�t� � J� V�Vc, �̃g, �̃g, t� . (33)

The average membrane voltage, �V�t��, is computed by
using its definition:

�V�t�� � �
Vlb

Vc

V�V�V, t�dV . (34)
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The boundary conditions for solving Equation 26 are
assigned as:

J� V�Vr

, �̃g, �̃g, t� � J� V�Vr

�, �̃g, �̃g, t� � r�t � �ref� ,

J� V�Vlb, �̃g, �̃g, t� � 0 ,

�V�Vc, t� � 0.

They are similar to what used in the fdPDM except for
the last boundary condition, which means that no neuron
locates at Vc because the neurons whose voltages reach
Vc are reset to Vr immediately.

When the STP property is included, we replace �s and
�s

2 with

�s ¡ �s�us
�xs

, (35)

�s
2 ¡ �s

2�us

2 �xs

2 , (36)

in Equation 31, Equation 32 for evaluating �gs
and �gs

,
where �us

and �xs
are mean values of us and xs across the

neuronal population, respectively. Following mean-field
equations proposed by Barak and Tsodyks (2007), we use
the same equations for tracking �us

and �xs
(i.e., Eq. 1 in

Barak and Tsodyks, 2007):

d
dt

�us
�

1
�s,f

�Us � �us� 
 	s�t�Us·�1 � �us� , (37)

d
dt

�xs
�

1
�s,r

�1 � �xs� � 	s�t��xs
�us

. (38)

To sum up, unlike in the fdPDM, the network dynamics
in the csPDM is described by a system consisting of a
one-dimensional quasi-Fokker–Planck equation for track-
ing the marginal density, �V�V, t�, and 2m ordinary differ-
ential equations for tracking the first two statistical
moments of all synapse-associated variables, 	gs
, or 4m
equations for statistical moments of 	gs, us, xs
 if STP is
included. csPDM is expected to be more computationally
efficient than fdPDM because solving one-dimensional
quasi-Fokker–Planck equation undoubtedly takes less
time than high-dimensional partial differential equations.
Basically, they are solved numerically. In the next section,
we present the numerical method used for solving the
quasi-Fokker–Planck equation.

Numerical method for solving quasi-Fokker–Planck
equation

To solve Equation 26, we use local Galerkin method
(LGM; Cockburn and Shu, 1998; Xu and Shu, 2010). This
method belongs to the discontinuous Galerkin methods
and focuses on the solutions of partial differential equa-
tions with high order derivatives. We select it as the
proposed numerical method because it has superior abil-
ity to handle discontinuous solutions (Huang et al., 2015)
and parallelizability in computations (Biswas et al., 1994).
First, in the LGM, an auxiliary variable, q�V, t�, is intro-
duced to rewrite the Equation 26 as followings:

�
� t

�V�V, t� � �
�

�V��0�V, �̃g��V�V, t� � D�V, �̃g�q�V, t�
 ,

(39)

q�V, t� �
�

�V
�V�V, t� . (40)

As a consequence, the Equation 26 is transformed to a
conservative hyperbolic equation.

Discretization of space domain and basic notations
For a given bounded V-domain I � �Vlb, Vc
, we divide it

into M meshes with an identical length as follows:

Vlb � v1

2
� v3

2
� ��vM


1

2
� Vc , (41)

so that Vr and Es are exactly certain grid points. We
denote the subspace Ik � �vk� 1 / 2 , vk
 1 / 2� (k �
1, 2, �, M) and its length L � �Vc � Vlb�/M. Using first-order
polynomials as shape functions, the approximated values
of �V�V, t� and q�V, t� within Ik are defined by:

�̃V�v, t� � �1�v��̃
k�

1

2


 �t� 
 �2�v��̃
k


1

2

� �t� , (42)

q̃�v, t� � �1�v�q̃
k�

1

2


 �t� 
 �2�v�q̃
k


1

2

� �t� , (43)

v � Ik, �1�v� �

vk

1

2
� v

L
, �2�v� �

v � vk�
1

2

L
,

in which �1 and �2 are shape functions. �̃k
 1 / 2
� �t� and

�̃k
 1 / 2

 �t� refers to the value of �̃V at vk
 1 / 2 from the left

mesh Ik and from right mesh Ik�1, respectively. Due to the
discontinuity at the interface of adjacent meshes,
�̃k
 1 / 2

� � �̃k
 1 / 2

 is thus possible. q̃k
 1 / 2

� �t� and q̃k
 1 / 2



�t� are defined in the same way.

Element equations and numerical fluxes
Substituting �V�V, t� and q�V, t� with approximated val-

ues �̃V�V, t� and q̃�V, t�, respectively, multiplying shape
functions and integrating with respect to v over the mesh
Ik, we then obtain element equations for cell Ik, given by

L�
1
2

0

0
1
2

���̇̃
k�

1

2




�̇̃
k


1

2

� � �
1
L �� �Ik �0�v, �̃g��̃dv

�Ik �0�v, �̃g��̃dv �



1
L � �Ik D�v, �̃g�q̃dv

� �Ik D�v, �̃g�q̃dv � 
 � f̂k�
1

2

� f̂k

1

2

�

 ��D�vk�

1

2
, �̃g�q̂k�

1

2

D�vk

1

2
, �̃g�q̂k


1

2

� , (44)
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�q̃
k�

1

2




q̃
k


1

2

� � �
1
L� 1 1

�1 �1 ���̃
k�

1

2




�̃
k


1

2

� � 

2
L���̂k�

1

2

�̂k

1

2

� , (45)

in which the notation “^” means numerical fluxes at the
interfaces between cells. We set �̂k � 1 / 2 � �̃k � 1 / 2


 and
q̂k � 1 / 2 � q̃k � 1 / 2

� , and employ upwind fluxes for f̂k � 1 / 2 ,
yielding

f̂k�
1

2
� ��0�vk�

1

2
, �̃g��̃

k�
1

2

� if �0�vk�
1

2
, �̃g� � 0

�0�vk�
1

2
, �̃g��̃

k�
1

2


 if �0�vk�
1

2
, �̃g� � 0

. (46)

According to the boundary conditions, we set f̂1 / 2 �
q̂1 / 2 � �̂N
 1 / 2 � 0, corresponding to J� V�Vlb, t� �
0, � / �V�V�Vlb, t� � 0, �V�Vc, t� � 0, respectively, and
enforcedly assign f̂r� 1 / 2 as f̂r� 1 / 2 
 r�t � �ref� if
vr� 1 / 2 � Vr. The firing rate r(t) is given by f̂N
 1 / 2 � D
�vN
 1 / 2 , �̃g�q̂N
 1 / 2 . We use the backward Euler method
(Cheng and Shu, 2007) to solve element equations as well
as Equations 31–38 to ensure numerical stability. Note
that one needs to re-calculate element equations at each
time step because �0 and D are functions of time-
dependent parameters, �ge

and �ge
, respectively.

Slope limiters
A slope limiter is employed to guarantee the positivity of the

density function (Huang et al., 2015). After progressing one time
step with the backward Euler method, the across all meshes go
through a slope limiter ��, which is defined by

�����̃
k�

1

2




�̃
k


1

2

� �� �

��k � ���̃
k�

1

2



� �k, �k � �k�1, �k
1 � �k�

�k 
 ���̃
k


1

2

�
� �k, �k � �k�1, �k
1 � �k�� , (47)

where �k is set as 1 / 2 ��̃k� 1 / 2

 
 �̃k
 1 / 2

� �. The � is the
“minmod function” defined as:

��a1, a2, a3� �

�s·min
i

�ai� if s � sign�a1� � sign�a2� � sign�a3�
0 otherwise

.

(48)

Generally, Equations 10, 16 are also solved numerically.
We adopt the so-called discontinuous Galerkin method to
solve them. The details of this method are not stated here.
Please refer to Huang’s paper (Huang et al., 2015) for
details about the numerical method.

Quantification of simulation errors
MCSs are considered as the ground-truth of all simu-

lation examples in this study; thereby, the differences of
the fdPDM, MMFM, and csPDM in simulation results with
the MSC are used to explore their performances. The

following two quantities are used to quantify the simula-
tion errors of the csPDM on the estimations of marginal
conductance and voltage density functions, given by

�g
csPDM �

�
�gs

�6�gs

�gs

6�gs

��s
MCS�gs� � N�gs��gs

, �gs��dgs

�
�gs

�6�gs

�gs

6�gs

�s
MCS�gs�dgs

,

(49)

�V
csPDM �

�
Vlb

Vc

��V
MCS�V� � �V

csPDM�V��dV

�
Vlb

Vc

�V
MCS�V�dV

, (50)

to check the validity of diffusion approximation on synap-
tic dynamics. �g

csPDM describes the average error ratio on
the marginal conductance density function, which is esti-
mated only over the interval ��gs

� 6�gs
, �gs


 6�gs
�. It is

noted that the marginal conductance density function in
the csPDM is characterized by a Gaussian distribution,
here denoted by N�gs��gs

, �gs
�, whose mean and standard

deviation are �gs
and �gs

. �V
csPDM is the average error ratio

on the marginal voltage density function.
The third quantity is

�r
� �

�
t1

t2

�rMCS�t� � r��t��dt

�
t1

t2

rMCS�t�dt

, (51)

where ��	fdPDM, MMFM, csPDM
. It is used for compar-
ing performances of the fdPDM, MMFM, and csPDM. �r

�

means the average error ratio on the population firing rate
obtained from fdPDM, MMFM, or csPDM. rMCS�t� is cal-
culated from Equation 8. r��t� is calculated from Equation
13 for fdPDM, Equation 18 for MMFM, and Equation 33
for csPDM.

Results
We will present four simulation examples: (1) steady-

state analyses, (2) dynamic population responses to ex-
citatory input only, (3) dynamic population responses to
multiple inputs, and (4) STP population responses. Using
the former two examples, we aim to compare the perfor-
mances of fdPDM, MMFM, and csPDM and focus on the
accuracy and efficiency of csPDM. We show the applica-
bility of csPDM to more complicated neuronal activities by
the latter two examples. Thus, in both the examples, only
the simulation results of MCS and cdPDM are presented. The
parameters required for simulations are listed inTable 2.
The values of neuronal properties are assigned according
to previous studies (Fourcaud-Trocmé et al., 2003;
Destexhe, 2009; Hertäg et al., 2014), and all of them are
within in the physiologic ranges. The parameters relevant
to synaptic dynamics and STP are regarded as free pa-
rameters which are freely tuned to let �s correspond to the
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time scales of common transmitter receptors or to make syn-
aptic interactions exhibit short-term facilitation/depression if
necessary. The input rate, 	s, shown in this section is normal-
ized by the minimum constant input rate that drives EIF neu-
rons to produce spikes under fluctuation-free conditions (i.e.,
mean-field models), except for the third and fourth simulation
examples. Such a minimum input rate is gl�VT � El � 
�/�
�Es � VT��scs
. Next, we start to show simulation results by first
checking the validity condition of diffusion approximation of
synaptic dynamics.

Validation of diffusion approximation of synaptic
dynamics

For the correct use of the csPDM, to explore the validity
condition of diffusion approximation of synaptic dynamics
is necessary. To do so, we check steady-state values of
�g

csPDM and �V
csPDM of a single neuronal population receiving

only constant excitatory inputs with respect to different 	s

and �Vs. The synaptic time constant �s is set as 5 or 100
ms to match the time scale of AMPA-receptors or NMDA-
receptors (Dayan and Abbott, 2001), and Es is set as 0 mV
for both cases. Basically, small �g

csPDM reflects the validity
of diffusion approximation. As shown in Figure 1A, larger
	s or smaller �Vs results in smaller �g

csPDM for both �s � 5
and �s � 100 ms, in agreement with the fact that the
diffusion approximation is valid when the input rate is
large and the jump size is small. As seen, increasing �s

produces small �g
csPDM because of the decreased variation

of gs (�gs
� 1/��s at steady states). Three distributions of

gs under different sets of (	s, �Vs) are shown in Figure
2A–C. As shown, the distribution of gs, �s�gs�, approaches
a Gaussian distribution when �g

csPDM is �0.2 (Fig. 2C). That
is, the diffusion approximation of synaptic dynamics is
valid if �g

csPDM � 0.2. Figure 1B shows �V
csPDM. The ampli-

tude of �V
csPDM is proportional to that of �g

csPDM, meaning
that the error of csPDM in �V�V� in large part comes from
the failure of the diffusion approximation. But, surpris-
ingly, the value of �V

csPDM is much lower than that of �g
csPDM

under the same set of (	s, �Vs). As seen in Figure 2A,D,
under the case where 	s � 0.1, �Vs � 1 mV, and �s � 5
ms, �V

csPDM is only 0.174 whereas �g
csPDM is as high as 0.653.

However, the reason why �V
csPDM is smaller than �g

csPDM is

unclear. Through the observation of �V�V� (Fig. 2D–F), it is
found that csPDM gives an adequately accurate estima-
tion of �V�V� comparable to MCS when �V

csPDM is �0.2. To
offer a quantitative and universal validity condition for
diffusion approximation of synaptic dynamics, we also
check the value of �gs

/�gs
(i.e., the coefficient of variation

of gs; Fig. 1C). In fact, it has been argued that the diffusion
approximation is valid only when �gs

/�gs
� �1, meaning

that the conductance mean �gs
should be much larger

than the standard deviation �gs
(Richardson and Gerstner,

2005; Cai et al., 2012). It is however an impractical con-
dition. Based on our observations of �g

csPDM and �V
csPDM, it

can be conclusively said that the validity condition of
diffusion approximation for the application of csPDM is
�gs

/�gs
� 0.6, under which �g

csPDM and �V
csPDM are approxi-

mately �0.2. As a result, �Vs should be �1.5 mV for the
case of �s � 5 ms such that this criterion can be satisfied
in the range of 	s � 0.6. In the following simulations, we
choose �Vs as 1 mV for the excitatory inputs.

Steady-state analyses
The performances of fdPDM, MMFM, and csPDM are

first examined via steady-state analyses of population
firing rates in response to fixed excitatory inputs. Here, we
also consider two cases, �s � 5 and �s � 100 ms, and set
�Vs � 1 mV and Es � 0 mV. Figure 3 displays input-output
curves computed by MSC, fdPDM, csPDM, and MMFM.
Results show that csPDM gives an estimation of input-
output curves that are close to those from MSC and
fdPDM with errors �1 Hz for both �s � 5 and �s � 100 ms.
These results indicate that csPDM can accurately esti-
mate steady-state output population firing rates although
it just tracks the marginal voltage density function. In
contrast, MMFM gives accurate estimations of steady-
state output firing rates only under the condition of �e �
100 ms. It overestimates the actual firing rate in the
fluctuation-driven regime (i.e., 	s � 1) and underestimates
the actual firing rate in the mean-driven regime (i.e., 	s 	
1) in the case of �s � 5 ms (Fig. 3A, bottom panel, pink
dashed line with triangle markers). The overestimation or
underestimation of the MMFM in the case of �e � 5 ms
was also observed by Ly (2013). However, the demon-

Table 2 List of values of model parameters

Neuronal properties
C 1 �F gL 0.05 mS EL –65 mV
VT –50 mV 
 2 mV Vc –40 mV
Vr –65 mV �ref 3 ms

AMPA-mediated synaptic dynamics
�Vs 1 mV �s 5 ms Es 0 mV

GABAA-mediated synaptic dynamics
�Vs 0.25 mV �s 10 ms Es –80 mV

GABAB-mediated synaptic dynamics
�Vs 0.25 mV �s 100 ms Es –100 mV

Short-term facilitation
�Vs 2 mV Us 0.05 �s, f 700 ms
�s, r 100 ms

Short-term depression
�Vs 2 mV Us 0.2 �s, f 50 ms
�s, r 300 ms
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stration that such overestimation or underestimation dis-
appears when the synaptic time constant increases has
not been reported.

Dynamic population responses to excitatory input
only

In addition to the steady-state analyses described in the
above, the comparison between csPDM and MMFM is
also made by investigating their ability to capture dynamic
population firing rates in response to time-varying inputs.
This is the most essential test to reveal whether they are
adequate as dimension-reduction methods. Similar to the
previous cases, excitatory inputs with �s � 5 and �s � 100
ms are considered here. The time-varying input rate is
shown in Figure 4A, which varies in time and takes values
that guarantee the validity of diffusion approximation, i.e.,
	s � 0.6. Figure 4B shows the output population firing
rates r(t) computed by MCS, fdPDM, csPDM, and MMFM

and the corresponding errors in r(t) for �s � 5 ms. Figure
4C is similar to Figure 4B except �s � 100 ms. As shown
in these two panels, whatever synaptic time constant is,
csPDM accurately captures all the qualitative features
of the output firing rates, leading to small average error
ratios, which are 0.048 and 0.043 for �s � 5 and �s �
100 ms. It also gives comparable simulation results to
those of fdPDM (similar average error ratios between
fdPDM and csPDM). However, like in the steady-state
analyses, MMFM gives accurate output firing rates only
when �s � 100 ms. It overestimates the low output firing
rates (at about t � 820 ms) and underestimates the high
output firing rates (at about t � 730 or t � 850 ms) when
�s � 5 ms, leading to a large error ratio �r

MMFM of
0.179.

To show how robust the csPDM is, we explore whether
the accuracy of csPDM depends on the values of model
parameters. Four parameters, �Vs, gl, 
 and Vr, are cho-

Figure 1. Steady-state values of �g
csPDM, �V

csPDM and �gs
/�gs

of a single population with respect to different 	s and �Vs A, �g
csPDM B, �V

csPDM

C, �gs
/�gs

. Black dashed lines indicate the sets of (	s, �Vs) where �gs
/�gs

� 0.6. Blank areas in A, B indicate the error ratio of 	0.2.
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sen for this test. The same input rate as shown in the
Figure 4A is considered as the input. As shown in Figure
5A, augmenting the jump size �Vs increases �r

csPDM, mean-
ing that the accuracy of csPDM is decreased. This is due
to the fact that diffusion approximation becomes invalid
when �Vs is too large (as shown in Fig. 1). As expected,
�r

fdPDM is less sensitive to the change of �Vs than �r
csPDM

because �Vs is arbitrary in the fdPDM. Surprisingly, al-
though MMFM does not have limitations on �Vs, in the
case of �s � 5 ms, �r

MMFM severely fluctuates over a range
of 0.2 when changing �Vs. Figure 5B–D unravel that
changing gl, 
 and Vr almost does not affect the accuracy
of csPDM (�r

csPDM is below 0.1 in most parameter sets),
implying that csPDM is a robust method. Importantly,
simulation results from csPDM are comparable to those
from fdPDM. MMFM can give comparable results to
csPDM only when �s � 100 ms. However, in the case of �s

� 5 ms, reducing gl enlarges the error ratio �r
MMFM with an

increasing magnitude of 0.3 (from 0.07 to 0.38). So does
increasing 
 (from 0.1 to 0.4). In other words, MMFM is not
a robust method for EIF models. Figure 6 shows the
computational time spent by fdPDM and csPDM subject
to different numbers of meshes employed in numerical
methods for a simulation of 1 s. The numerical simulation
used in this test is the same as shown in Figure 4. Re-
markably, the computational efficiency of csPDM is

1000 times better than fdPDM. Low computational effi-
ciency of fdPDM certainly comes from the existence of
the gs-dimension in the master equation because, except
for the requirement of more grid meshes along this di-

mension (We set 120 meshes along this dimension), its
existence leads to the necessity of extremely small time
steps for satisfying the Courant–Friedrichs–Lewy condi-
tion to ensure numerical stability of discontinuous Galer-
kin methods (Huang et al., 2015). In this case, the time
step is 0.02 ms for fdPDM but 0.2 ms for csPDM.

In the next two examples, we only use csPDM to esti-
mate the population dynamics and compare the results
with those of MCS to evaluate its performance because,
via the examples above, it has been demonstrated that,
compared to fdPDM and MMFM, only csPDM can provide
simulation results efficiently and accurately.

Dynamic population responses with excitatory and
inhibitory inputs

To highlight the outstanding ability of csPDM to achieve
dimension reduction, here, we consider a real case where
a population of cortical pyramidal neurons receives excit-
atory inputs from the neighboring pyramidal neuronal
population mediated by AMPA receptors and, meanwhile,
inhibitory inputs from the interneuron population medi-
ated by two types of receptors, GABAA and GABAB (Suf-
fczynski et al., 2004; Cona et al., 2014). To mimic this
situation, we consider a single uncoupled population of
EIF neurons, representing pyramidal neurons, which re-
ceive external excitatory inputs mediated by AMPA-type
receptors, which have �s � 5 ms and �Vs � 1 mV, and
inhibitory inputs mediated by GABAA-type receptors,
which have �s � 10 ms and �Vs � 0.25 mV, as well as
GABAB-type receptors, which have �s � 100 ms and �Vs

Figure 2. Examples of steady-state marginal conductance density functions �s�gs� and marginal voltage density functions �V�V�. A, D,
�s�gs� and �V�V� under 	s � 0.1 and �Vs � 1 mV. B, E, �s�gs� and �V�V� under 	s � 0.3 and �Vs � 1 mV. C, F, �s�gs� and �V�V� under
	s � 0.5 and �Vs � 1 mV. As shown, the estimations of �s�gs� and �V�V� by csPDM are similar with those by MCS if the input rate 	s
is increased. �s is set as 5 ms in all examples. Shaded area: MCS. Black thick line: csPDM.
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� 0.25 mV. Each neuron is assumed to have 200 excit-
atory and 200 inhibitory synaptic connections.

Figure 7A, top panel, shows the time-varying input rates
on excitatory and inhibitory synaptic connections. It
should be noted that the inputs gated by GABAA and
GABAB receptors share the common input rate in statis-

tical sense. The Figure 7A, second panel from top, is the
raster plot of output spikes from 200 neurons in MCS.
With respect to the output population firing rate, as seen
in Figure 7A, third panel, csPDM is able to capture the
salient features of the population firing rate. The average
error ratio �r

csPDM is 
 0.067 (below 0.1). It is 
 4 Hz of error

Figure 3. Input-output curve comparison. The top panels in A, B show the input-output curves computed in four ways: MCS (black
solid line with diamond markers), fdPDM (blue solid line with square markers), csPDM (orange dashed line with circle markers), and
MMFM (pink dashed line with triangle markers). Synaptic time constant (�s) is 5 ms in A and is 100 ms in B. r�	s� is the steady-state
population firing rate as a function of a fixed input rate 	s. The bottom panels in A, B show the errors of fdPDM, csPDM, and MMFM
in r�	s� from MCS. �Vs � 1 and Es � 0 mV in this example.
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in the high output firing rate (such as at t � 1900 ms; Fig.
7A, forth panel) on average. csPDM also can accurately
estimate the average membrane voltage across the pop-
ulation (Fig. 7A, fifth panel). Figure 7B shows the snap-
shots of the marginal density function �V�V, t� at t � 1700,

1800, and 1900 ms. As seen, the density functions com-
puted by MCS and csPDM match well in all three snap-
shots. The corresponding values of �V

csPDM are 0.065, 0.07,
and 0.122, respectively. These results indicate that �V�V, t� can
be correctly captured by csPDM.

Figure 4. Dynamic population responses to a time-varying excitatory input. A, Time-varying input rate 	s. B, top panel, Population
responses r(t) in response to 	s computed by MCS (shaded area), fdPDM (blue solid line with square markers), csPDM (orange dashed
line with circle markers), and MMFM (pink dotted line with traiangle markers) under �s � 5 ms. Bottom panel, Corresponding errors
of fdPDM, csPDM, and MMFM in r(t) from MCS. C, Similar to B except for �s � 100 ms. Average error ratios �r

� were computed over
the interval from 600 and 1000 ms. �r

fdPDM, �r
csPDM, and �r

MMFM are 0.058, 0.048, and 0.179 under �s � 5 ms, respectively. They are 0.042,
0.043, and 0.056 for �s � 100 ms. �Vs � 1 and Es � 0 mV in this example.
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STP population responses
In this part, we test the effects of the synaptic STP on

population responses to see if csPDM can capture these
effects. We consider a single population of EIF neurons

receiving only excitatory inputs through plastic synapses
with short-term facilitation or depression. For the facilita-
tive synapses, we adopt �s � 5 ms, �Vs � 2 mv Es � 0 mV,
�s,f � 700 ms, �s,r � 100, and Us � 0.05. They are the

Figure 5. Average error ratios of fdPDM, csPDM, and MMFM in population responses under different parameter sets. A, Subject to
varying �Vs. B, Subject to varying gl. C, Subject to varying 
. D, Subject to varying Vr. Blue solid line with square markers: fdPDM.
Orange dashed line with circle markers: csPDM. Pink dotted line with traiangle markers: MMFM. �r

� means average error ratios
corresponding to fdPDM, csPDM, and MMFM.
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same except �s,f � 50 ms, �s,r � 300, and Us � 0.2 for the
depressive synapses. Figure 8A shows the time-varying
input rate, which consists of a fixed baseline of 500 ms
and, afterward, a sinusoidal fluctuation of 1 s. The popu-
lation responses and ensemble averages of us and xs

obtained from MSC and csPDM for the case of short-term
facilitation are plotted in Figure 8B. As seen, the popula-
tion response gradually increases in the latter cycles in the
sinusoidal fluctuation (800–1500 ms). The facilitative re-
sponse actually stems from the sharp increase in �us

from
0.05 to 
0.29. Meanwhile, the value of �xs

remains at a
high level (�xs

� 0.76, eventually). Figure 8C is similar to
Figure 8B except that depressive synapses are used. As
shown, the population response is depressed along the
sinusoidal input, resulting from the large decrease in �xs
roughly by 0.4, during which �us

remains almost fixed.
Note that, different to the above example, where csPDM
can give quantitatively accurate estimates of population
responses, in this case, csPDM just captures STP prop-
erty of population responses qualitatively. As seen in
Figure 8C, the output firing rate obtained from csPDM
drops but does not vanishes, while it vanishes in MCS.
This difference is caused by the mismatch of �xs

between
MSC and csPDM. In summary, the population response
can inherit the STP property from synapses, and csPDM
captures such property qualitatively.

Discussion
In this study, we present a principled and straightfor-

ward dimension-reduction method for PDM to handle
realistic synaptic dynamics and compare it with another
dimension-reduction method, called MMFM proposed by
Ly (2013). We name the newly proposed reduction
method csPDM. The csPDM does not assume specific
limits on synaptic time constants so that we can consider
synaptic dynamics mediated by all kinds of common
receptors, including AMPA, GABAA, GABAB, and even
NMDA. Through our examples, it is demonstrated that
csPDM can accurately capture the firing rate responses in
both the steady-state and dynamic regimes over a large

range of synaptic time constants from milliseconds to
hundreds of milliseconds.

As seen in Equation 24, the resulting quasi-Fokker–
Planck equation leaves out all synapse-associated di-
mensions and just tracks the marginal density function of
membrane voltages across the population. As a result,
csPDM is extremely computationally efficient even when
many types of receptors are included in the network
model. The computational speed of csPDM is much faster
than that of the original fdPDM by an order of three under
the case where one type of receptors is incorporated (Fig.
6). If three types of receptors are incorporated, like in the
third example in this study, fdPDM can never be consid-
ered as a computationally efficient modeling tool to sim-
ulate neural networks because of the inherent difficulty of
solving a four-dimensional master equation. Actually, pre-
vious studies have argued that solving a master equation
with more than three dimensions may spend much more
time than MCS (Apfaltrer et al., 2006; Ly and Tranchina,
2007). However, csPDM can efficiently and correctly pro-
vides simulations of network activities in this case (Fig. 7).
On the other hand, increasing the number of receptor
types in the network model does not reduce the accuracy
of csPDM considerably. �r

csPDM is 0.048 when one type of
receptors is included (Fig. 4) and is 0.067 when three
types are included (Fig. 7).

When csPDM is compared with MMFM, some interest-
ing findings are observed. First, it is found that MMFM
gives quantitatively accurate simulation results only for
long synaptic time constants in the steady-state and dy-
namic regimes (Figs. 3, 4). A possible explanation is that
the membrane time constant (C/gl) is longer than the
synaptic time constant (�s) so that the use of the expected
value of the steady-state firing rates for estimating the
output firing rate (Eq. 18) becomes unreasonable because
the neuronal dynamics cannot reach a steady state before
synaptic dynamics does. This idea is also evidenced by
the decline in �r

MMFM when gl is increased, i.e., reducing the
membrane time constant (Fig. 5B).

Figure 6. Comparison of computational time between fdPDM and csPDM. As shown, the computational speed of csPDM is almost
1000 times faster than fdPDM.
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Figure 7. MCS and csPDM for a single population receiving excitatory and inhibitory inputs gated by three types of neurotransmitter
receptors. A, The panels from top to bottom show (1) time-varying excitatory and inhibitory input rates (	e denotes the excitatory input
rate, and 	i denotes the inhibitory one); (2) raster plot of output spikes from 200 neurons in MCS; (3) the population firing rates r(t)
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By robustness analysis, we found that the accuracy of
MMFM is sensitively influenced by the value of 
 (Fig. 5C),
which controls the nonlinearity of EIF neuronal dynamics
by adjusting the strength of exponential currents (Eq. 1).

Increasing 
, i.e., increasing the nonlinearity, decreases
the accuracy of MMFM. Actually, MMFM relies on the
assumption that the membrane voltage inherits random-
ness entirely from the stochastic conductance variables,

continued
computed by MCS (gray solid line) and csPDM (black dashed line); (4) the error in r(t) between MCS and csPMD; and (5) average
membrane voltages across the population r(t) computed by MCS (gray thick solid line) and csPDM (black thick dashed line). Gray thin
solid lines: voltage traces from 10 neurons in MSC. B, Three snapshots of the marginal density function �V�V, t� at t � 1700 , 1800,
and 1900 ms from left to right. Shaded area: MCS. Black thick line: csPDM.

Figure 8. STP population responses. A, Time-varying excitatory input rate. B, Population responses under short-term facilitation. The
population response is facilitated during the sinusoidal input, resulting from the sharp increase in the running utilization parameter,
�us

As shown, the csPDM can capture the STP property of the population responses not only qualitatively but also quantitatively. C,
Population responses under short-term depression. The population response is depressed, resulting from the sharp decrease in the
running fraction of available neurotransmitters, �xs

. In this case, csPDM only captures the STP property of the population responses
qualitatively. The larger error in population responses is due to the overestimation of �xs
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and the conductance variables evolve independently of
the membrane voltage (Ly, 2013). However, the author
claimed that such an assumption might only be reason-
able for linear models such as leaky integrate-and-fire
neurons. So, MMFM may not be suitable to simulate
network dynamics of nonlinear spiking neurons, like the
EIF neurons used in this study. On the contrary, csPDM
only assumes that the conductance variables evolve iso-
latedly, which is true no matter what neuron models are
used. Accordingly, it is more general for the type of neu-
ronal models. Furthermore, in the csPDM, the membrane
voltage is allowed to be influenced by other random
sources, for example, the random release of neurotrans-
mitters (Faisal et al., 2008; Destexhe and Rudolph-Lilith,
2012), which may just add extra noise terms into the
stochastic diffusion tensor in the quasi-Fokker–Planck
equation without increasing its dimension.csPDM relies
on the diffusion approximation of conductance variables.
Physiologically, the assumption of diffusion approxima-
tion is quite reasonable in that the number of synaptic
contacts covering a typical cortical pyramidal cell is in-
deed very high, in the range of 103–104 (Braitenberg and
Schüz, 1991). Each spike at a synaptic contact only alters
a post-synaptic potential of �1 mV on average (Markram
and Tsodyks, 1996; Markram et al., 1998). So, in our
cases, each excitatory or inhibitory spike is designed to
cause a maximum change of �1 mV in the membrane
potential.

Our study is similar to the work of Rudolph and
Destexhe (2003), in which the authors employed Ito^
calculus to formulate the Fokker–Planck equation for Lan-
gevin equations and, then, to obtain an analytic expres-
sion for the membrane potential distribution at the steady
state. They found that steady-state solutions are only
available under a limited range of parameter sets. To
correct this problem, they used an extended analytic
expression for the membrane potential distribution (Ru-
dolph and Destexhe, 2005), by which new solutions be-
came available for a wider range of parameter sets,
although the parameters resided in the nonphysiological
extreme limits. The major difference of our approach with
theirs is the method used to derive the Fokker–Planck
equation. In our study, it is based on a modified large-
eddy-diffusivity closure method proposed by Barajas-
Solano and Tartakovsky (2016), and a quasi-Fokker–
Planck equation, i.e., Equation 24, governing the temporal
evolution of the membrane potential distribution, is then
derived. Although we do not test whether Equation 24 is
valid for any parameter sets, by means of our examples in
this study, it is found that it at least provides a good
solution for parameter sets in physiologic ranges. How-
ever, surprisingly, when we apply the same derivation
procedures to the neuronal model adopted by them (i.e.,
Eq. 4.1 in Rudolph and Destexhe, 2005), we obtain the
same Fokker–Planck equation as what they derived, in
which the diffusion coefficient is also rescaled by 2�m�e/
��m 
 �e� (�m is the membrane time constant at rest). This
fact implies that Equation 24 might be adequate for an
even wider range of parameter sets.

It is theoretically possible to extend our method to any
neuron models because no premises are put on the neu-
ronal dynamics. We have tested it on adaptive EIF models
(Brette and Gerstner, 2005) and leaky integrate-and-fire-
or-burst models (Smith et al., 2000) and find that csPDM
works well (data not shown). Such an extension to adap-
tive EIF neurons is important for the development of PDM
in computational neuroscience because the adaptive EIF
model has been shown to reproduce a variety of spiking
patterns observed in in vivo thalamic or cortical neurons
(Naud et al., 2008; Touboul and Brette, 2008) and well
predict spike times in response to external inputs (Jolivet
et al., 2008). csPDM with adaptive EIF models therefore
will be a critical research subject in computational neuro-
science. We suggest that the synaptic dynamics should
be restricted to the first-order kinetics because the cal-
culation of the diffusion tensor, D or D�V, �gs

�, is based on
an assumption that fluctuation velocity components are
exponentially autocorrelated. The calculation becomes
more difficult if higher-order synaptic dynamics is used.
csPDM only captures STP property of population re-
sponses in a qualitative way due to incorrect estimation of
�xs

. This poor estimation is caused by a wrong assump-
tion that us and xs are statistically independent for deriving
mean-field equations for �us

and �xs
(Tsodyks et al., 1998).

In fact, us is independent of xs because xs does not appear
in the Equation 6, but, by contrast, xs has a negative
correlation with us. As a consequence, the mean-field
equation for �xs

should include higher-order statistics of
both us and xs. However, such an equation is unclosed.
Before a closure method is available, the assumption of
independence between us and xs is a compromised solu-
tion (Tsodyks et al., 1998). Note that it is possible to
replace the phenomenological model of STP used here
with another elaborating model where state variables are
independent with each other. If so, the STP property of
population responses can be quantitatively captured by
csPDM. This is one of the directions of our future work for
improving csPDM.

The derivations of csPDM and numerical examples
used for testing are based on a single uncoupled popu-
lation. Of course, what we derived in this study can be
extended to the applications of simulating larger neural
networks consisting of multiple coupled populations.
However, for the correct use of csPDM, synaptic connec-
tions must be sparse, because a large number of synaptic
connections can result in the violation of basic assump-
tions of PDM–Poisson and statistically uncorrelated in-
puts received by each neuron (Brunel, 2000; Nykamp and
Tranchina, 2000; Huertas and Smith, 2006; Augustin
et al., 2013). These basic premises can be violated when
two neurons share many common pre-synaptic neurons,
that is, when there are a huge number of connections
between presynaptic and postsynaptic populations. We
found that the number of synaptic connections depends
on the size of �Vs. If �Vs is large, the number of connec-
tions has to be small because postsynaptic neurons have
to receive statistically independent inputs. Postsynaptic
neurons are more likely to receive exactly the same inputs
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if �Vs is large and the number of synaptic connections is
huge.

Conclusions
When including many state variables, such as synaptic

conductance variables for different types of receptors and
synaptic facilitation and depression state variables, the
original PDM becomes impractical because of the incred-
ible increase in the computational load. In this study, this
critical issue is solved by the probability density function
method for Langevin equations with colored driving noise.
The newly proposed method, termed csPDM, gives quan-
titatively accurate firing rate responses in both the steady-
state and nonequilibrium regimes and highly qualified
estimations of time-varying marginal density functions of
membrane voltages. Importantly, csPDM is able to qual-
itatively manifest STP in an easy way almost without
increasing computation demands. It appears that csPDM
is generally applicable as a time-saving tool for modeling
large-scale neural networks. We hope that our work will
inspire further progress in the development of PDM and
benefit computational and theoretical studies of synaptic
dynamics in network dynamics.
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