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Abstract: As a cellular protease, transmembrane serine protease 2 (TMPRSS2) plays roles in various
physiological and pathological processes, including cancer and viral entry, such as severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, we conducted expression, mutation,
and prognostic analyses for the TMPRSS2 gene in pan-cancers as well as in COVID-19-infected
lung tissues. The results indicate that TMPRSS2 expression was highest in prostate cancer. A high
expression of TMPRSS2 was significantly associated with a short overall survival in breast invasive
carcinoma (BRCA), sarcoma (SARC), and uveal melanoma (UVM), while a low expression of TM-
PRSS2 was significantly associated with a short overall survival in lung adenocarcinoma (LUAD),
demonstrating TMPRSS2 roles in cancer patient susceptibility and severity. Additionally, TMPRSS2
expression in COVID-19-infected lung tissues was significantly reduced compared to healthy lung
tissues, indicating that a low TMPRSS2 expression may result in COVID-19 severity and death.
Importantly, TMPRSS2 mutation frequency was significantly higher in prostate adenocarcinoma
(PRAD), and the mutant TMPRSS2 pan-cancer group was significantly associated with long overall,
progression-free, disease-specific, and disease-free survival rates compared to the wild-type (WT)
TMPRSS2 pan-cancer group, demonstrating loss of functional roles due to mutation. Cancer cell
lines were treated with small molecules, including cordycepin (CD), adenosine (AD), thymoquinone
(TQ), and TQFL12, to mediate TMPRSS2 expression. Notably, CD, AD, TQ, and TQFL12 inhibited
TMPRSS2 expression in cancer cell lines, including the PC3 prostate cancer cell line, implying a
therapeutic role for preventing COVID-19 in cancer patients. Together, these findings are the first to
demonstrate that small molecules, such as CD, AD, TQ, and TQFL12, inhibit TMPRSS2 expression,
providing novel therapeutic strategies for preventing COVID-19 and cancers.

Keywords: TMPRSS2 gene; SARS-CoV-2; prostate adenocarcinoma; susceptibility; cordycepin (CD);
adenosine (AD); thymoquinone (TQ); TQFL12
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1. Introduction

Transmembrane serine protease 2 (TMPRSS2, OMIM: 602060) encodes a 492 amino
acid protein with a molecular weight of 53,859 Da, which contains a functional serine
protease domain [1]. TMPRSS2 has been reported to be involved in various pathological
and physiological processes [2–4]. Recurrent fusions at the TMPRSS2 5′ UTR (untranslated
region) to ETV1 (ETS variant transcription factor 1) or ERG (ETS-related gene) lead to
outlier expression and drive progression of prostate cancer [5].

Serine proteases proteolytically cleave and activate viral S proteins (spike glycopro-
teins), thereby facilitating fusion of the virus with the cell membrane. Two independent
mechanisms are involved in human severe acute respiratory syndrome coronavirus (SARS-
CoV) infection entering host cells: (1) proteolytic cleavage of angiotensin converting enzyme
2 (ACE2), which promotes viral entry; and (2) cleavage of coronavirus S protein, which
activates itself. Proteolytic cleavage and activation of the S protein is required for infection
of human coronavirus 229E (HCoV-229E) and human coronavirus EMC (HCoV-EMC), as
well as the F0 fusion glycoprotein of Sendai virus (SeV), human metapneumovirus (HMPV),
and human parainfluenza viruses (HPIVs) 1, 2, 3, 4a, and 4b.

As a cellular serine protease, TMPRSS2 is a genetic risk factor [6,7] as it facilitates
viral entry, including HCoV-229E, HMPV, Middle East respiratory syndrome coronavirus
(MERS-CoV), and SARS-CoV, through cleaving and activating viral envelope glycoproteins,
thereby facilitating the fusion of virus with cell membranes, or through proteolytically
cleaving of ACE2, which promotes viral uptake in a cathepsin L (CTSL)-independent
manner [8–11].

Hoffmann et al. first demonstrated that the SARS-CoV-2 S protein is primed via the
TMPRSS2 protease, indicating that TMPRSS2 inhibitors may block viral invasion [9,12],
SARS-CoV-2 entry, and coronavirus disease 2019 (COVID-19) outcomes [13]. These findings
suggest that the inhibition of TMPRSS2 expression may protect against cancer progress
as well as SARS-CoV-2 invasion. Variants in the TMPRSS2 gene seem to regulate TM-
PRSS2 expression and affect SARS-CoV-2 infection [14–16]. Gene mutations in cancer could
cause gene expression, malignancy, prognostics, recurrence, and therapeutic resistance
of patients. TMPRSS2 expression, mutation, and prognostics in pan-cancers are unclear.
Some potential inhibitors of TMPRSS2 have been revealed to possibly defeat SARS-CoV-2
entry [17–19]. It is unknown whether small molecules, such as cordycepin (CD), adenosine
(AD), thymoquinone (TQ), and TQFL12, inhibit TMPRSS2 expression.

Herein, we conducted expression, mutation, and prognostic analyses for the TMPRSS2
gene in pan-cancers as well as in COVID-19-infected lung tissues. Cancer cell lines were
treated with the small molecules CD, AD, TQ, and TQFL12 to inhibit TMPRSS2 expression
in cancer cell lines.

2. Results
2.1. TMPRSS2 Expressions and Prognostics in Pan-Cancers

Previous bioinformatics analysis of TMPRSS2 expression profiles in 32 different tumor
tissues has indicated that TMPRSS2 is significantly upregulated in six cancer tissues, includ-
ing prostate adenocarcinoma (PRAD), and significantly downregulated in six cancer tissues
compared to corresponding normal tissues [20]. We further analyzed TMPRSS2 mRNA ex-
pression in pan-cancers and found that TMPRSS2 mRNA expression was highest in prostate
cancer with 234.4 fragments per kilobase of exon model per million mapped fragments
(FPKM) (Figure 1A). TMPRSS2 protein expression was highest in prostate cancer followed
by urothelial cancer, renal cancer, and pancreatic cancer, and TMPRSS2 was expressed at
low levels in lung cancer; TMPRSS2 expression was undetected in the remaining cancer
tissue types, including breast cancer (Figure 1B). Moreover, immunohistochemistry (IHC)
showed weak to moderate membranous and/or granular cytoplasmic immunoreactivity in
lung and breast cancer tissues (Figure 1C–H).
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We next conducted survival analysis in the pan-cancers. A high expression of 
TMPRSS2 was significantly associated with a short overall survival in breast invasive car-
cinoma (BRCA), sarcoma (SARC), and uveal melanoma (UVM), as well as with a long 
overall survival in lung adenocarcinoma (LUAD) (Figure 2A–D).  

 

Figure 1. TMPRSS2 expression in pan-cancers. (A) TMPRSS2 mRNA expression in pan-cancers.
(B) TMPRSS2 protein expression in pan-cancers. (C,D) IHC of TMPRSS2 in lung cancer tissues.
(E) IHC of TMPRSS2 in lung cancer tissues. (F,G) IHC of TMPRSS2 in breast cancer tissues. (H) IHC
of TMPRSS2 in breast cancer tissues. (D,G) Enlarged images of (C,F), respectively.

We next conducted survival analysis in the pan-cancers. A high expression of TM-
PRSS2 was significantly associated with a short overall survival in breast invasive carci-
noma (BRCA), sarcoma (SARC), and uveal melanoma (UVM), as well as with a long overall
survival in lung adenocarcinoma (LUAD) (Figure 2A–D).
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2.2. TMPRSS2 Mutations and Prognostics in Pan-Cancers

Mutation analysis of the pan-cancers demonstrated that the mutation frequency was
significantly high in PRAD (42.71%) and low in uterine corpus endometrial carcinoma
(UCES) (4.73%), and 7 of the 32 types of cancer had no mutations (Figure 3A). The plots
for the TMPRSS2 mutation types are shown in Figure 3B, and an overview of mutations in
TMPRSS2 is shown in Figure 3C. Different types of TMPRSS2 mutations were found, and
missense mutations were the dominant mutation type.
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Further survival analysis was conducted with and without TMPRSS2 mutations in
the pan-cancers, which demonstrated that the mutated TMPRSS2 group was significantly
associated with long overall (Figure 4A), progression-free (Figure 4B), disease-specific
(Figure 4C), and disease-free (Figure 4D) survival rates compared to the wild-type (WT)
TMPRSS2 group (Table 1). Thus, these findings indicate that TMPRSS2 mutations may be a
prognostic marker for long survival rates in pan-cancers.

Table 1. Survival of cancer patients with TMPRSS2 mutations.

Survival Type No. Patients p-Value q-Value

Overall 10,803 8.71 × 10−11 3.49 × 10−10

Disease-specific 10,258 5.66 × 10−9 1.13 × 10−8

Progression-free 10,613 1.17 × 10−7 1.56 × 10−7

Disease-free 5383 1.24 × 10−5 1.24 × 10−5
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2.3. CD, AD, TQ, and TQFL12 Inhibit TMPRSS2 Expression in Cancer Cell Lines

Molecular docking analysis has predicted that small molecules have functional in-
hibitory effects on TMPRSS2 [21]. Thus, we investigated whether small molecules (CD, AD,
TQ, and TQFL12) regulate TMPRSS2 expression. The results indicate that CD inhibited
TMPRSS2 expression in H460 (Figure 5A), MCF7 (Figure 5B), PC3 (Figure 5C), and 22RV1
(Figure 5D) cells at the protein level in a dose-dependent manner. Moreover, TQ inhibited
TMPRSS2 expression in MCF7 cells (Figure 5E) and 22RV1 cells (Figure 5F) at the protein
level in a dose-dependent manner, and TQFL12 inhibited TMPRSS2 expression in 22RV1
(Figure 5G) and PC3 cells (Figure 5H) at the protein level in a dose-dependent manner.
Further, AD inhibited TMPRSS2 expression in H460 (Figure 5I) and 22RV1 cells (Figure 5J)
at the protein level in a dose-dependent manner. However, the small molecules did not
significantly change TMPRSS2 mRNA levels, except for CD treatment of 22RV1 cells.

2.4. Treatment with CD Inhibits the Translation and Promotes the Degradation of
TMPRSS2 Protein

We next investigated the protein stability of TMPRSS2 protein using cycloheximide
(CHX) treatment in the presence or absence of CD treatment in 22RV1 cancer cells. The
results showed that CD treatment increased the protein stability of TMPRSS2 compared to
the control with an increase in the half-life from ~3 h to >8 h (Figure 6A,B). To further verify
whether CD decreases the protein level of TMPRSS2, we quantitated TMPRSS2 protein
levels and found that CD treatment decreased the TMPRSS2 protein levels by more than
30% (Figure 6C). Overall, these results indicate that CD treatment inhibits the translation
and promotes the degradation of TMPRSS2 protein.
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inhibited TMPRSS2 expression in H460 cells. (B) CD inhibited TMPRSS2 expression in MCF7 cells.
(C) CD inhibited TMPRSS2 expression in PC3 cells. (D) CD inhibited TMPRSS2 expression in 22RV1
cells. (E) TQ inhibited TMPRSS2 expression in MCF7 cells. (F) TQ inhibited TMPRSS2 expression in
22RV1 cells. (G) TQFL12 inhibited TMPRSS2 expression in 22RV1 cells. (H) TQFL12 inhibited TMPRSS2
expression in PC3 cells. (I) AD inhibited TMPRSS2 expression in H460 cells. (J) AD inhibited TMPRSS2
expression in 22RV1 cells.
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Figure 6. Treatment with CD inhibits the translation and promotes the degradation of TMPRSS2 in
22RV1 cancer cells. (A) TMPRSS2 protein stability after CHX treatment with or without CD treatment.
The left panel shows CD treatment, and the right panel shows without CD treatment. (B) Quantitative
results from A. The red line shows CHX treatment only, and the blue line shows CHX + CD treatment.
Please note that the amount of TMPRSS2 protein in CD+ treatments remained lower over the entire
period than that in CD−. (C) Quantitative results’ comparison of TMPRSS2 protein levels without
and with CD treatments but without CHX treatments in Figure 6A. Left column shows without CD
treatments (CD−), while right column shows with CD treatments (CD+). The final concentration of
CHX was 40 µg/mL. h, hour (s) of CHX treatment. In the left panel of Figure 5A, all the lanes were
added CD for 1 h prior adding CHX treatments.
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2.5. TMPRSS2 Expression in COVID-19-Infected Lungs and Control Lungs

Because SARS-CoV infection downregulates TMPRSS2 expression in cultured cells [22],
we investigated the changes in TMPRSS2 expression in COVID-19-infected lungs. By ana-
lyzing the single-cell RNA-sequencing dataset (GSE171524) of COVID-19-infected lungs
and control lungs [23], the expression levels of TMPRSS2 in COVID-19-infected lungs were
significantly reduced compared to the control lungs (Figure 7A). By further analyzing dif-
ferent cell types, we found that the expression levels of TMPRSS2 in SARS-CoV-2-infected
lungs were reduced in epithelial cells but significantly increased in myeloid cells compared
to control lungs (Figure 7B). Consistent with these results in Figure 7A, analysis of the
GSE152075 dataset indicates that nasopharyngeal swabs of SARS-CoV-2-infected patients
show significantly lower TMPRSS2 expression in virus-infected individuals compared to
healthy individuals [24]. Moreover, the expression levels of TMPRSS2 were very high in
epithelial cells of both SARS-CoV-2-infected lungs and control lungs (Figure 7B).
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TMPRSS2 in SARS-CoV-2-infected lungs and control lungs. (B) Expression of TMPRSS2 in different
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3. Discussion

Highly expressed viral entry factors may play critical roles in the invasion of SARS-
CoV-2 [25–28]. A TMPRSS2-expressing cell line has been shown to have high susceptibility
for SARS-CoV-2 invasion [29,30]. In the present study, we conducted expression, mutation,
and prognostic analyses for the TMPRSS2 gene in pan-cancers and in COVID-19-infected
lung tissues. TMPRSS2 expression was highest in prostate cancer followed by urothelial
cancer, renal cancer, and pancreatic cancer. In addition, TMPRSS2 expression was low in
lung cancer, and was not detected in other cancer tissues, including breast cancer. IHC
revealed weak to moderate membranous and/or granular cytoplasmic immunoreactivity
in lung and breast cancer tissues, which was supported by a previous study reporting that
prostate cancer patients have a high risk for SARS-CoV-2 infection compared to non-cancer
patients [31]. A high expression of TMPRSS2 was significantly associated with a short
overall survival in BRCA, SARC, and UVM, while a low expression of TMPRSS2 was
significantly associated with a short overall survival in LUAD. These results demonstrate
a role of TMPRSS2 in SARS-CoV-2 invasion, cancer susceptibility, and cancer severity in
patients with PRCA, BRCA, SARC, and UVM. We further analyzed TMPRSS2 expression
using a dataset containing COVID-19-infected lungs and control lungs, and we found that
the levels of TMPRSS2 in COVID-19-infected lungs were significantly reduced compared to
the control lungs. Considering that a low expression of TMPRSS2 is significantly associated
with a short overall survival in LUAD, low TMPRSS2 expression may result in severity
and death of LUAD cancer patients infected with COVID-19 or SARS-CoV-2.
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Mutation analysis of the pan-cancers revealed that the TMPRSS2 mutation frequency
was significantly higher in PRAD and that the mutated TMPRSS2 group was significantly
associated with long overall, progression-free, disease-specific, and disease-free survival
compared to the WT TMPRSS2 group, demonstrating a loss of function roles for TMPRSS2
mutations as prognostic markers in pan-cancers. However, it remains unknown whether
TMPRSS2 mutation affects COVID-19 severity, thereby indicating the need for additional
studies to understand the causation roles of TMPRSS2 mutation in COVID-19.

Targeting SARS-CoV-2 entry factors, including TMPRSS2, may be a therapeutic
strategy against COVID-19 [32–34]. Molecular docking analysis has predicted that small
molecules have a functional inhibitory effect on TMPRSS2 [21]. Many dietary flavonoids
show promising multitarget activities against SARS-CoV-2 [35]. A small-molecule com-
pound, N-0385, has recently been reported to act as a pan-SARS-CoV-2 prophylactic and
therapeutic agent with TMPRSS2 inhibitory activity [36]. Thus, the present study investi-
gated whether small molecules (CD, AD, TQ, and TQFL12) regulate TMPRSS2 expression.
We found that CD inhibited TMPRSS2 expression in H460, MCF7, MDA-MB-231, and PC3
cells. Moreover, we found that TQ inhibited TMPRSS2 expression in MCF7 and 22RV1
cells and that TQFL12 inhibited TMPRSS2 expression in PC3 and 22RV1 cells. Further, AD
inhibited TMPRSS2 expression in H460 and 22RV1 cells. Notably, AD is a natural nucleotide
from an intermediate product of metabolism in the human body, and has been reported to
play roles in COVID-19 pathogenesis and therapeutic opportunities [37]. Moreover, CD
treatment inhibited the translation and promoted the degradation of TMPRSS2. CD, TQ,
and TQFL12 have anti-cancer suppressive roles both in vitro and in vivo [38–41]. Natural
product CD is a derivative (analog) from AD, while TQFL12 is a novel synthetic derivative
from TQ [38,42]. Taken together, these results imply that CD, AD, TQ, and TQFL12 may
have therapeutic roles in preventing COVID-19 and cancers.

4. Materials and Methods
4.1. Expression Analysis in Databases

The human TMPRSS2 gene expression levels in cancers were evaluated in The Can-
cer Genome Atlas (TCGA) database (accessed on date for this link, e.g., https://www.
proteinatlas.org/ENSG00000184012-TMPRSS2/pathology, accessed on 1 September 2022),
and the correlation of TMPRSS2 gene expression levels with cancer survival was evaluated
by Gene Expression Profiling Interactive Analysis (GEPIA 2, http://gepia2.cancer-pku.
cn/#analysis, accessed on 1 September 2022) [43–45]. Mutation and survival analyses for
TMPRSS2 in pan-cancers were performed using cBioPortal (https://www.cbioportal.org/
results/cancerTypesSumary?case_set_id=all&gene_list=TMPRSS2&cancer_study_list=5c8
a7d55e4b046111fee2296, accessed on 1 September 2022) in TCGA [46,47].

4.2. Reagents, Antibodies, and Cell Lines

CD and TQ have been previously described [48], and TQFL12 is a new synthetic TQ-
derivative [38]. AD was purchased from Macklin Inc. (Shangai, China, A6218-25 g). The
TMPRSS2 antibody for Western blotting and immunohistochemistry (IHC) was purchased
from Sigma-Aldrich (cat #: HPA035787, Burlington, MA, USA). The indicated cancer cell
lines and culture conditions have been previously described [47,48].

4.3. Immunohistochemistry (IHC)

The IHC protocol has been previously described [47,48]. In brief, formalin-fixed
paraffin-embedded tissues from Chinese breast cancer and lung cancer patients were sub-
jected to antibody staining with the TMPRSS2 antibody (1:100 dilution) for IHC. Informed
consent forms were obtained for the cancer patient tissues [47].

4.4. Western Blotting

The PC3 and 22RV1 prostate cancer cell lines, the H460 lung cancer cell line, and the
MCF7 breast cancer cell line were utilized in the present study. Western blotting for TMPRSS2

https://www.proteinatlas.org/ENSG00000184012-TMPRSS2/pathology
https://www.proteinatlas.org/ENSG00000184012-TMPRSS2/pathology
http://gepia2.cancer-pku.cn/#analysis
http://gepia2.cancer-pku.cn/#analysis
https://www.cbioportal.org/results/cancerTypesSumary?case_set_id=all&gene_list=TMPRSS2&cancer_study_list=5c8a7d55e4b046111fee2296
https://www.cbioportal.org/results/cancerTypesSumary?case_set_id=all&gene_list=TMPRSS2&cancer_study_list=5c8a7d55e4b046111fee2296
https://www.cbioportal.org/results/cancerTypesSumary?case_set_id=all&gene_list=TMPRSS2&cancer_study_list=5c8a7d55e4b046111fee2296
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was performed using cells treated with or without CD, AD (0, 10, 20, and 40 µm), TQ, or
TQFL12 (0, 5, 10, and 20 µm) for 24 h. β-actin antibodies were used as the internal controls.
Assays for cycloheximide (CHX)-based protein stability were performed as previously
described [49]. The 22RV1 cells were treated with and without CD and with indicated CHX,
followed by Western blotting. All experiments were repeated three times.

4.5. Semi-Quantitative RT-PCR for TMPRSS2

The semi-quantitative RT-PCR assays were conducted using the above-described
treated cancer cells. The following primers for RT-PCR were used: RT-TMPRSS2-L, 5′-
caccaccagctattggacct-3′; and RT-TMPRSS2-R, 5′-acacgccatcacaccagtta-3′. The PCR product
size was 390 bp. The ACTB and GDPDH genes were used as the internal controls. All
experiments were repeated three times.

5. Conclusions

The TMPRSS2 gene is highly expressed in cancer tissues, specifically in PRAD tumors,
implying susceptibility to SARS-CoV-2 and severity for COVID-19. TMPRSS2 mutations
may be a prognostic marker for long survival rates in pan-cancers. This is the first study
to demonstrate that the small molecules CD, AD, TQ, and TQFL12 inhibit TMPRSS2
expression, which may have therapeutic roles via targeting TMPRSS2 to prevent SARS-
CoV-2 invasion in cancer patients during the COVID-19 pandemic.
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