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Abstract 

Neurophysiology research has demonstrated that it is possible and valuable to investigate sensory 

processing in the context of scenarios involving continuous sensory streams, such as speech and 

music listening. Over the past 10 years or so, novel analytic frameworks for analysing the neural 

processing of continuous sensory streams combined with the growing participation in data sharing 

has led to a surge of publicly available datasets involving continuous sensory experiments. However, 

open science efforts in this domain of research remain scattered, lacking a cohesive set of 

guidelines. As a result, numerous data formats and analysis toolkits are available, with limited or no 

compatibility between studies. This paper presents an end-to-end open science framework for 

the storage, analysis, sharing, and re-analysis of neural data recorded during continuous 

sensory experiments. The framework has been designed to interface easily with existing toolboxes 

(e.g., EelBrain, NapLib, MNE, mTRF-Toolbox). We present guidelines by taking both the user view 

(how to load and rapidly re-analyse existing data) and the experimenter view (how to store, analyse, 

and share). Additionally, we introduce a web-based data browser that enables the effortless 

replication of published results and data re-analysis. In doing so, we aim to facilitate data sharing 

and promote transparent research practices, while also making the process as straightforward and 

accessible as possible for all users.   
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Introduction 

In our daily life, we navigate complex sensory environments containing overlapping streams of 

information, such as auditory, visual, and somatosensory signals. The human brain processes these 

signals, while integrating and interpreting them based on our prior knowledge and expectations, and 

it does so in real time1. Decades of impactful discoveries have shed light on the neural architecture 

of sensory processing one piece at a time through ingenious, well-controlled, laboratory-based 

experiments2-4. The extensive literature on sensory processing with such controlled methods led to 

increased interest in testing whether these findings generalise to more ecologically-valid tasks 

involving sensory signals that occur over long (> 1 second) periods of time – what we refer to as 

continuous experiments5,6. These continuous experiments are designed and analysed differently 

from protocols that rely the presentation of more discrete stimuli. Extending the time course of the 

experiment expands the kinds of questions that can be addressed. For example, would the findings 

on the neural processing of isolated syllables and words apply to natural speech?7 Furthermore, 

tasks involving continuous stimuli enable the study of neural processes that would be otherwise 

inaccessible, such as the connection between sound statistics and music enjoyment.  

There is a growing body of studies involving continuous speech and music8,9, with data and 

analysis code being shared more frequently within the community10-13. However, in contrast to 

scientific fields with a more evolved open-science framework (for example, bioinformatics – Box 1), 

clear open-science guidelines and tools are missing when working with continuous sensory 

experiments, making the current literature fragmented into lab-specific procedures for data storage, 

analysis, and sharing. We aim to improve the degree to which results can complement each other 

by suggesting a framework for continuous human auditory neurophysiology experiments. This paper 

presents a cohesive end-to-end open science framework, with user-friendly guidelines and 

tools for the storage, analysis, and sharing of continuous sensory neural data and analysis 

code. We also demonstrate how this framework enables immediate access to existing datasets, 

offering libraries and tools for the rapid replication of published results, re-analysis (e.g., power 

analysis) with different configurations, and hypothesis formulation through a new data simulation 

toolkit. Finally, we present a first-of-its-kind web-based data browser that enables effortless 

replication of results and data re-analysis.  

Investigating sensory processing with continuous sensory stimuli.  

In neurophysiology, the nature of the sensory stimuli influences the experience of the listener and 

what sensory processes are recruited in the experiment. Sensory-based experimental protocols can 

be categorised into two groups based on their presentation design. Sensory inputs can be presented 

continuously over a long stretch of time or discretely over the course of many short trials (Figure 1). 

‘Continuous sensory experiments’ refers to tasks involving uninterrupted auditory, visual, or tactile 
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sensory streams14,15,11,16,17-19,20. By contrast, discrete sensory experiments involve presentation 

streams that are based on brief, separate items, such as oddball paradigms involving sequences of 

isolated syllables. Music and speech streams are considered continuous, despite being composed 

of a sequence of well-defined individual items (i.e., music notes). For example, in monophonic 

melodies, the listener does not perceive the separate disconnected notes, but instead experiences 

a continuous melody where each note is meaningfully placed within a broader context. It should be 

noted that one can extract discrete features from continuously presented sensory streams. Some 

experiments are continuous in sensory presentation but are designed to investigate both continuous 

and discrete features embedded in continuous streams (e.g., the sentence onsets of continuous 

speech; switching of attention in multi-talker scenarios) (Figure 1). In this work, continuous 

sensory experiment refers to the temporal nature of the sensory experience. The analysis that 

follows may involve the examination of continuous, discrete, or mixed features, providing us with 

experiments where a variety of methodologies can be utilised to study more ecologically relevant 

research questions. 

The temporal nature of the sensory experience (i.e., discrete vs. continuous) can change 

how the brain processes the input7 and change the analyses techniques used to characterise these 

processes. In experiments involving discrete events, the only pieces of stimulus-related information 

necessary are the timestamps indicating the start of each event (e.g., syllable onsets, button-click) 

and the categorical labels indicating how to classify that event (e.g., frequent vs. infrequent, syllable 

identity). This information can be used to conduct the well-known Event-Related Potential/Field 

analysis (ERP/ERF). Timestamps are used to segment the electroencephalography, 

electrocorticography, or magnetoencephalography data (EEG, ECoG, and MEG, respectively) and 

the categorical labels are used to group epochs according to the labels. Conversely, the absence of 

carefully designed discrete events makes continuous sensory experiments less suitable for ERP 

analyses (although some previous work attempted to run ERP analyses on EEG responses to 

continuous speech21), and instead system identification analyses involving the estimation of the 

input-output relationship are more appropriate. This type of analysis has typically been conducted 

using continuously varying properties of the stimulus, such as the speech envelope, but it can also 

be carried out using event timestamps, which are represented using a binary mask i.e., sequences 

of zeros and ones, where the latter indicate the onset or the entire occurrence of a given event (e.g., 

word onset). Note that some properties are represented in a manner that is discrete in time but 

continuous in magnitude, such as semantic dissimilarity and lexical surprise22-24. 
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Figure 1: Investigating sensory processing with discrete versus continuous events and features. (A) 
An EEG experiment involving listening to individual syllables that are presented discretely. The discrete 
syllable timestamps can be used to epoch the data.  (B) An EEG experiment involving natural speech listening. 
The stimulus was continuous speech, hence there is no isolated, discrete event in the traditional experimental 
sense that can be used to epoch the data. (C) A continuous experimental stream is rich in information and can 
be described using both continuous and discrete features. Some stimulus features are encoded continuously 
by the participant so the feature of interest is continuous in time and value, such as the sound envelope (top 
panel). Events of interest in the continuous stream can be described using discrete timestamps. For example, 
phonemic surprisal describes points in time where surprisal differs during continuous speech listening (middle 
panel). Additionally, a binary mask can be used to indicate discrete events over the continuous experiment, 
such as phoneme onsets (third panel). 

When considering tasks such as speech and music listening, continuous stimuli enable the 

design of more ecologically-valid experiments. But why is it so important to study sensory 

processing in ecologically-valid scenarios? One reason is to test whether findings from artificially 

controlled paradigms mirror brain processing during natural, real-world conditions. Secondly, more 

realistic scenarios can increase participant comfort and engagement, allowing testing of individuals 

who typically struggle with traditional experiments (e.g., children, individuals with neurocognitive 

deficits). Thirdly, continuous sensory tasks – such as speech listening – engage many neural 

processes, allowing us to assess them and their interaction simultaneously, rather than studying 

those processes in isolation (e.g., syllables in the context of a sentence vs. a syllable oddball 

paradigm). Finally, there is one additional advantage that does not necessarily impact the 

experimenter, but rather the research community at large. Namely, unlike controlled experiments, 

which are designed with specific objectives and analysis methods in mind, more naturalistic 

neurophysiology experiments have the benefit of producing data that can be shared for purposes 

that extend beyond results replication. In fact, it is possible to re-analyse the data with objectives 

and methods that the experimenter may not have initially considered, which can be particularly useful 

for hypothesis design and preliminary results generation as well as for methodological development. 

Indeed, a word of caution is necessary here, as this new possibility comes with risks such as “p-

hacking” or, similarly, “fishing” for results. Nevertheless, the tools for mitigating such risks exist and 

should be adopted, such as the careful use of cross-validation within and between datasets, and by 

replicating the results on a new dataset.  
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Figure 2: The multivariate temporal response function 
(TRF) framework. Neural signals are recorded as 
participants are presented with sensory stimuli, such as 
speech. A specific task may be part of the experiment 
(e.g., answering comprehension questions). Speech and 
language features are extracted from the stimulus and are 
simultaneously related to the neural signal with methods 
such as lagged linear regression. The weights of the model 
inform us about the spatio-temporal relationship between 
each stimulus feature and the neural signal.  

 

Processing neural data acquired to continuous sensory stimuli. 

The past few years have seen a surge in the use of ecologically-valid tasks, largely due to the 

development of recent methods for neural data analysis that are suitable for continuous sensory 

events. This report primarily focuses on a particular analytical framework, the Temporal Response 

Function (TRF), which captures how neural signals react to changes in a sensory input (Figure 2). 

The TRF is a quantitative estimate of the stimulus-response relationship, assuming that such a 

relationship exists, that it is approximately linear and measurable, and that it is reasonably consistent 

over time (i.e., time-invariant). TRF analyses rapidly gained popularity primarily due to the fact they 

can be used to study how our brains track, encode, and build expectations of continuous stimuli, 

such as speech and music. For example, the envelope TRF estimates the relationship between the 

sound envelope, a key property for speech processing25,26, and from the neural response as 

measured using EEG/MEG for example. For implementation, we refer to the mTRF-Toolbox23, a 

library for estimating multivariate TRFs based on regularised time-lagged regression. Please see 

Crosse et al.,27,28 for detailed information on the multivariate TRF methodology and interpretation 

Box 1: Data sharing in Bioinformatics: What have we learnt? 

Is data sharing worth it? Yes, when it’s done right! The field of Bioinformatics has implemented an open science 
framework since the very beginning. In a way, the field itself is a large open science initiative. The scientific publication 
pipeline includes strict rules for data and code sharing, which is similar but much more rigorous and standardised than 
in neuroscience at present. 
 

In terms of data, the deposition of omics data in public community repositories is mandated by most funding agencies 
and journals. Data deposition includes the release in public repositories of raw data, meta data, and (optionally) pre-
processed data. Public repositories offer guided procedures that help authors upload both data and metadata, requiring 
the adoption of specific file formats, and providing both automatic and manual checks of the validity of the uploaded 
data. Data released in such public repositories obtain a persistent identifier, and can be queried and downloaded by 
other users using dedicated APIs or through an interactive web interface. The effort of managing such large public 
repositories is typically handled by the collaborative support of several national, international and interoperative 
research agencies, such as National Center for Biotechnology Information (NCBI), National Institutes of Health (NIH) 
and European Bioinformatics Institute (EMBL-EBI). 
 

In terms of code, the release of source code in public code repositories is mandatory for most journals, as well as the 
specification of the software version and the release of the chunks of code used to obtain the main results/figures. For 
example, one of the leading methodological journals in the field, i.e. Bioinformatics, requires that authors provide a 
self-contained and easy-to-use implementation of the developed software together with test data and instructions on 
how to install and run the software. Software source code must be freely available on a stable URL, such as GitHub. 
Both submitted software version and test data must also be archived on dedicate repositories, such as Zenodo. 
 
In summary, while this may mean more is required at the time of publication submission, this additional effort has an 
invaluable positive impact on scientific research, especially on transparency, result replication, and data re-analysis. 
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and Obleser and Kayser29 for a perspective on the neural mechanisms that may generate speech 

TRF results. Of course, alternative approaches exist for relating neural data to ongoing stimuli, such 

as Canonical Correlation Analysis (CCA)30, or even other types of recording, such as human and 

non-human intracranial EEG, which will not be discussed here for simplicity. More recently, the 

substantial leap in machine learning methodologies, especially deep learning models (e.g., GPT-4), 

have further increased interest in studying ecologically-valid stimuli, by providing us with new ways 

to investigate continuous sensory processing. In particular, such large language models can be 

related to neural data directly by considering the weights in their hidden layers31, or they can be used 

to estimate specific linguistic aspects of a speech stream, such as lexical surprisal, which can then 

be related to neural responses with TRF methods24.  

 

Figure 3: Continuous experiment neural data acquisition and analysis pipeline. The figure focuses on 
the typical continuous speech listening scenario. (A) EEG/MEG is recorded as the participant listens to speech 
segments. Synchronisation triggers are used to epoch data into trials of continuous speech, in contrast to 
being used to epoch data around discrete stimulus tokens. The value of each trigger corresponds to the index 
of the audio file (e.g., 1: audio1.wav, 2: audio2.wav). Stimulus features (e.g., sound envelope) are extracted 
for every audio-file and paired with each corresponding EEG/MEG epoch. (B) Neural data and stimulus feature 
pairs are organised into data structures, X and Y, that are time synchronized. Trials of continuous responses 
can be used as the folds for a leave-one-fold-out cross-validation. (C) X and Y can be used to investigate the 
EEG/MEG encoding of the input features of interest using a forward model or multivariate Temporal Response 
Function (mTRF)32 approach. Conversely, X and Y can be used to build decoding models or backward 
models33. While mTRF-based forward and backward models are limited to multivariate-to-univariate mappings, 
relationships where both X and Y are multivariate can be studied with methods like canonical-correlation 
analysis(CCA)30. 
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Given the importance and power of experiments based on continuous, naturalistic stimuli, 

there has been a marked increase in the number of available datasets recorded using such stimuli. 

However, these datasets have been severely underexploited given the lack of any coherent set of 

data storage and sharing protocols across the community. This has meant that data are stored in 

idiosyncratic ways particular to each research team, or even inconsistent within the same team – 

making it inefficient and sometimes impossible for other researchers to use those data to answer 

new questions. Nonetheless, while these inconsistencies extend to aspects such as data formatting, 

naming of variables and files, and the fine details of the analysis, there exist strong procedural 

similarities that can be codified. Figure 3 attempts to depict these consistent procedural steps by 

considering a widely used and particularly simple scenario involving listening to natural speech 

segments (e.g., chapters of an audio-book). In that case, the first part consists of a) extracting the 

features of interest from the stimulus (e.g., speech envelope); b) segmenting the neural data 

(epoching); and c) resampling and aligning the speech features with the corresponding neural 

segments (pairing). The resulting stimulus and neural segments are precisely synchronised (same 

start sample and number of samples). The combination of all stimulus and neural signal segments, 

which we refer to as X and Y respectively, can then be used to fit input-output models, such as TRFs 

and CCA. This manuscript also discusses how the typical key steps to obtain X and Y, which are 

depicted in Figure 3, can also be adapted to scenarios involving multiple experimental tasks or 

conditions (e.g., listening vs. imagery).  

The proposed end-to-end framework. 

Here we present the first end-to-end specifications and resources for the analysis of neural data 

acquired to continuous sensory stimuli,  including data storage specifications, standardised datasets, 

learning resources, and analysis tools. One of the key motivations of having a cohesive procedure 

is to simplify and expedite all operations from data storage to analysis. To this end, we define a new 

domain-specific data structure, called Continuous-event Neural Data (CND), offering well-

defined how-to guidelines on storing new data. Doing that will enable the immediate use of all 

resources produced by this project, from preprocessing scripts, analysis scripts and GUIs 

for running TRFs and CCA analyses, as well as a simulation toolkit. CND can be loaded directly 

by other widely used toolkits such as NapLib and EelBrain. Furthermore, we provide import/export 

functions connecting CND with general-purpose toolkits relevant to neurophysiology and 

neuroimaging research at large (e.g., MNE, EEGLAB). This work has been carried out by an 

interdisciplinary, international team that was initially assembled in 2020 with the goal of propelling 

open science and thus supporting basic and translational research in this domain. The resulting open 

science initiative, named Cognition and Natural Sensory Processing (CNSP), is an ongoing 

international research collaboration with headquarters in Trinity College Dublin.  
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Figure 4: An end-to-end experimental pipeline for hypothesis formulation and testing. Hypotheses are 

preliminarily tested and refined by re-analysing existing data. This step can either be carried out by using a 

publicly available dataset that is similar to the target scenario, or via data simulation. The refined hypotheses 

are then tested on a new experiment. Data stored in a standardised format can then be analysed with the 

same procedure used with the preliminary data. The proposed standardised data structure connects these 

steps into a cohesive end-to-end pipeline, enabling the immediate use of the resources in this project, such as 

analysis tools and simulation toolkit. 

This report is organised by considering the view of an experimenter that is conducting a new 

neurophysiology investigation from scratch and intends to formulate precise hypotheses supported 

by existing data, and then run a new experiment (Figure 4). First, we present the CND standard for 

data storage (Storage and sharing). Second, we detail a standardised analysis pipeline for 

neurophysiology data analysis, from minimal preprocessing, TRF, CCA, and cross-correlation 

analyses, including libraries and learning resources such as video-tutorials (Analysis pipeline). 

Third, a new data browser is presented that allows for rapid result replication and re-analysis of 

previous datasets, as well as the performance of comparisons between datasets, models, and 

methodologies; all with a user-friendly environment (Data browser GUI). Next, we present a 

simulation toolkit and describe its value for experimental design and hypothesis formulation 

(Simulating). Finally, we discuss the limitations of the current framework, ongoing work, and future 

directions, including pointing at areas of development where the research community is encouraged 

to contribute (Limitations and future directions). 
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Storage and sharing 

Sharing data and analysis scripts is key for advancing science and promoting transparency in 

research. However, the lack of clear guidelines can lead to a frustratingly heterogeneous set of 

publicly-available resources. Shared datasets and scripts in the field of auditory neuroscience are 

often difficult to use without additional help from the authors. In some cases, the authors may no 

longer be available or may not remember how to run their own code, which can further complicate 

the process. On the other hand, overly rigid guidelines for data sharing can also be problematic, as 

they can make the sharing process overcomplicated and become counterproductive. The framework 

described here aims to strike a balance between these two extremes, providing guidelines that are 

specific enough to be useful but not so complex as to be burdensome. Unlike general-purpose tools 

such as EEGLAB and MNE, our objectives are domain-specific as they target continuous sensory 

experiments only and are built by focusing on the growing audio and audio-visual literature on 

speech and music perception. This allowed us to design guidelines that keep the methods as 

straightforward as possible for both the experimenters (who save their data) and future users (who 

load and re-analyse the data).  

Firstly, experimenters should ensure that they have the right to share all data, including 

the original stimulus files (e.g., audio files); and this should be verified before data collection, 

at the experimental design stage. This trivial yet sometimes neglected point is key to avoiding a 

reliance on the “available upon request” statement, which translates to multiple time-consuming 

direct interactions between users and those who shared the data. Secondly, it is extremely important 

that experimenters adopt a standardised data structure. Here, standardised refers to the presence 

of a clear protocol on data types, folder structure, and naming, with documentation and how-to 

guidelines. Crucially, it also indicates the existence of import/export scripts allowing for the effortless 

translation of the stored data from one standardised data structure to another. As such, the 

Box 2: Open-science resources used in this report 

• The online documentation consists of datasets, analysis pipelines, libraries, tutorial scripts, video-tutorials, video-

lectures, and example scripts which are publicly available here https://cnsp-resources.readthedocs.io/ and on the 

Cognition and Natural Sensory Processing (CNSP) workshop website https://cnspworkshop.net ; 

• The code for the CNSP data browser, including the scripts used for neural data preprocessing, TRF model 

estimation, stimulus feature extraction, and simulation toolkit are available on the CNSP website and on the 

CNSP GitHub page (https://github.com/CNSP-Workshop/); 

• The multivariate Temporal Response Function (mTRF)-Toolbox is used for demonstrating Temporal Response 

Function (TRF) analysis, but the same considerations apply to other compatible toolboxes, such as the Eelbrain-

Toolkit and NapLib; 

• All datasets were stored according to the Brain Imaging Data Structure – Continuous-event Neural Data (BIDS-

CND) format, whose specifications are also available on the CNSP initiative website 

(https://cnspworkshop.net/cndFormat.html). 

• The GitHub page of the CNSP resources: https://github.com/CNSP-Workshop/CNSP-resources  

 

https://cnsp-resources.readthedocs.io/
https://cnspworkshop.net/
https://github.com/CNSP-Workshop/
https://cnspworkshop.net/cndFormat.html
https://github.com/CNSP-Workshop/CNSP-resources
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experimenter can adopt the data structure that best fits their project and expertise, and then export 

to a different data structure when needed. 

The data structure that is most widely adopted for data sharing in neuroimaging and, more 

recently, neurophysiology is the Brain Imaging Data Structure, or BIDS. This data structure is 

general-purpose, as it can be used to store virtually any kind of experiment involving fMRI, EEG, 

MEG, and other recording modalities. BIDS and its extensions are also compatible with widely used 

toolboxes such as EEGLAB (through a specific plugin) and MNE (via the extension MNE-BIDS), 

supporting science by providing tested analysis scripts and pipelines, reducing the risk for analysis 

errors due to bugs in the code for example. To fulfil the goal of being general-purpose, BIDS focuses 

on storing raw data, while it lacks guidelines and constraints that may be necessary in particular 

domains of research. The input-output models used in continuous sensory neurophysiology require 

the extraction of stimulus features and the alignment of stimulus and neural signals, as depicted in 

Figure 3. However, the lack of domain-specific detailed specifications on how experimenters should 

store their stimuli (e.g., raw audio files or midi files, sound envelopes, note onsets), led to disparate 

interpretations that have to be addressed in each specific toolbox and custom script.  

While BIDS can indeed be used for saving continuous sensory neurophysiology data, the 

literature lacks clarity on how that should be done. Here, we define a new domain-specific data 

structure that is tailored to continuous sensory experiments, called the Continuous-event Neural 

Data structure (CND). This data structure provides a more tailored approach for data storage and 

sharing, greatly simplifying result replication and re-analysis, as input-output models such as TRF 

and CCA can be run directly on the CND structure. The domain-specific constraints and guidelines 

ensure consistency across datasets, as well as simplifying the data storage procedure. Crucially, we 

connected CND and BIDS via specific import/export functions, enabling the use of general-purpose 

toolkits when useful. Next, we present a summary of the CND data structure. Please also refer to 

the CNSP website (https://cnspinitiative.net/) and CNSP documentation (https://cnsp-

resources.readthedocs.io/) for more detailed specifications.  

Continuous-event Neural Data (CND) 

CND is a domain specific data structure tailored to continuous sensory neurophysiology 

experiments. In contrast to BIDS, the data structure was designed to feed directly into input-output 

analysis methods, such as encoding models (e.g., TRFs), decoding models, and CCA. To so do, 

CND stores input (e.g., speech features) and output (e.g., neural signal) as numerical matrices, 

already epoched (i.e., segmented) and synchronised (i.e., the first sample of each epoch 

corresponds to the same time-stamp in both input and output). In addition to the raw stimulus files, 

CND must include a data structure with the stimulus features (e.g., the sound envelope). This way 

the features that are key in a given study are already included and are readily-available for analysis, 

https://cnspinitiative.net/
https://cnsp-resources.readthedocs.io/
https://cnsp-resources.readthedocs.io/


12 

 

while future users will additionally have access to the raw data for their preferred preprocessing 

pipeline. Figure 5A depicts the folder structure, with folder and file names that should be used 

exactly as reported here. This will ensure compatibility with CNSP resources such as tutorials, Data 

Browser, and Simulation toolkit. 

A main folder structure is provided containing all the experimental files, organised into ‘code’, 

‘tutorials’, ‘datasets’, and ‘libs’ (libraries) folders. For simplicity, we advise users to have one main 

folder for each study. If multiple experiments are being considered, such as when using the Data 

Browser, it is also possible to include many datasets in the ‘datasets’ folder. Each dataset includes 

a ‘dataCND’ folder, containing as many ‘dataStimX.mat’ (stimulus files) and ‘dataSubX.mat’ (neural 

data) files as the number of participants. If all participants were exposed to identical stimuli, then a 

single ‘dataStim.mat’ file can be used. In that case, stimuli might have been presented in different 

orders for distinct participants (e.g., [1,2,3,…], [2,3,1,…]) and, as such, the neural data segments in 

‘dataSubX.mat’ will have to be sorted to match the order of the single stimulus file. The ‘rawStimuli’ 

and ‘rawNeural’ data folders contain the unstructured original data and custom processing code 

(e.g., raw2cnd, feature extraction in Fig. 2A). Both folders are optional but recommended. For 

example, in the case of relatively large datasets (>10 GB), we suggest experimenters share two 

versions of the data, with and without the original raw files. A how-to guide is provided on converting 

raw data into CND (see bids2cnd function).  
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Figure 5. The Continuous-event Neural Data (CND) structure. (A) CND folder structure. 
‘dataStim.mat’ refers to the stimulus features, while ‘dataSubX.mat’ refers to the neural data. In the 
example, all participants were presented with the same stimuli. It is also possible to associate a 
‘dataStim’ file to each participant if needed e.g., dataStim1.mat, dataStim2.mat. (B) Conceptual data 
preprocessing and analysis pipeline. In addition to the CNSP resources, Eelbrain-toolkit and NAPLib 
can also process CND data structures. It is also possible to export the CND data structure into Brain 
Imaging Data Structure (BIDS), enabling the use of general-purpose toolboxes such as MNE-Python. 
(C) Example of dataStim and dataSub structures. dataStim contains the stimulus data matrices 
(stim.data) for each of the four stimulus features and for each of the 88 experimental trials. ‘names’  
specified what the four stimulus features are i.e., envelope, note expectation, note onset, 
metronome. ‘stimIdxs’ indicate the stimulus index of each trial. The ‘rawStimuli’ folder should include 
documentation regarding what stimulus file corresponds to each index. Here, indices 1-4 refer to 
pieces named ‘chor-096’, ‘chor-038’, ‘chor-101’, and ‘chor-019’ respectively. ‘condIdxs’ refers to the 
task that was carried out in each trial i.e., music listening or imagery. The EEG data structure is 
straightforward in that it simply contains basic meta-data, such as the ‘deviceName’, and  a data 
matrix (neural.data), with a [samples x channel] data matrix per trial.  
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Interoperability: Interconnecting CND with existing resources 

In the last decade or so, the importance of adopting open science strategies in our field has 

progressively become clearer. As a result, several lab-specific toolboxes have been released, each 

based on custom code written by individual scientists for their own work (e.g., NoiseTools34, mTRF-

Toolbox35,36, EelBrain-toolkit37, NapLib38). In some cases, distinct toolkits run similar (but not 

identical) analyses. Therefore, they cannot be easily compared because they are not directly 

compatible. Interconnecting these tools can be time-consuming for scientists skilled in computer 

programming and inaccessible to others. As such, one key output of the present work is that we 

have established an infrastructure to connect such resources. Specifically, our approach consists of 

replacing lab-specific custom data structures with CND, while BIDS serves as a go between, 

connecting this work with general-purpose analyses resources such as MNE-Python (Fig. 2C)39. 

Finally, domain-specific toolboxes such as EelBrain and NapLib have also been extended by their 

respective authors to support the CND data structure. 

Storing raw data in CND format: practical considerations 

We provide guidelines, a video-tutorial, as well as simple MATLAB/Octave script (bdf2cnd.m) for 

converting EEG BioSemi datasets into CND. Similar considerations apply for data from other devices 

or recording modalities. Note that the pipeline is experiment and device specific, so the script will 

have to be modified to fit the specific neurophysiology recording device and synchronisation trigger 

protocol. Indeed, we encourage researchers to contribute by sharing a conversion script for other 

devices and technologies. 

Here, we discuss a bdf2cnd conversion for a scenario where EEG signals were recorded 

during speech listening, with audio segments presented in a random order (different order for distinct 

participants). The synchronisation protocol is simple, as it involves only one type of trigger indicating 

the start of an audio segment (as in Figure 3). The code of that trigger corresponds to the index of 

the audio file (e.g., audio1.wav). To save a new dataset into CND, the first step is to create a folder 

structure as in Figure 5A. We strongly recommend the naming of files as ‘audio1.wav’, ‘audio2.wav’, 

and so on, while also including the original source of those stimuli or corresponding conditions in the 

documentation, but not in the filename. The simplest way to build a CND dataset is to create a 

‘dataStim’ and ‘dataSub’ file for each participant. ‘dataSub’ contains a structure with the epoched 

neural data and meta-data, such as the sampling frequency (‘fs’) and the channel location 

information (‘chanlocs’; see Figure 5B). The epoching simply consists of chunking the neural data 

into segments, where each segment paired and synchronised with a specific audio input. This data 

matrix will correspond to the stimulus data matrix in ‘dataStim’, which will have the same number of 

trials and start samples. Note that the CND files can contain raw epoched EEG data, which may be 

at a different sampling rate than the stimuli. That will necessarily be corrected at the preprocessing 
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stage, where it is ensured that the same sampling rate and number of samples are present in the 

stimulus and neural data. Stimulus features are stored as data vectors (when univariate) or data 

matrices (when multivariate), such as the sound envelope (timeSamples x 1) and spectrogram 

(timeSamples x numberOfBands) respectively. Rather than adopting a sparse representation, CND 

requires a vector/matrix representation preserving all datapoints, including the zeroes, which is 

necessary for toolboxes such as the mTRF-Toolbox and NoiseTools. A full list of specifications is 

available on https://cnsp-resources.readthedocs.io, with example scripts and video-tutorials. 

Analysis pipeline 

One of the core goals of the CNSP Initiative is to facilitate analysis, sharing, and reanalysis of 

continuous sensory event neural data. To this end, a library of scripts has been shared with the 

CNSP community as part of a workshop series. These scripts, which include preprocessing, 

analysis, and plotting routines as well as numerous low-level support functions (e.g., filtering, down-

sampling) were intended to serve as a blueprint for standardising future analysis pipelines. A 

standardised approach allows for easy sharing, reanalysis, and comparison across datasets and 

methodologies. We don’t see these scripts as a finished product. Instead, we encourage users to 

contribute additions or corrections through the CNSP repository on GitHub 

(https://github.com/CNSP-Workshop/CNSP-resources)40. These scripts were written to require 

minimal or no customisation when analysing a new dataset in CND format. As such, they allow for 

easy interfacing with many toolboxes (such as the mTRF-Toolbox) used for the analysis of 

continuous neural signals. This is possible by restricting the domain of interest to continuous sensory 

perception scenarios, or other scenarios that can be coded similarly. For example, although not 

optimal, a typical mismatch-negativity scenario could be stored and analysed according to these 

same guidelines. 

Preprocessing 

One benefit of analysing continuous neural data is that analysis often requires minimal preprocessing 

if the dataset is not excessively noisy. For a typical experiment, preprocessing involves at least a 

high-pass filter or detrending step to remove potential drift, down-sampling data to a more 

manageable size (but be wary of anti-aliasing filters in functions such as MATLAB’s resample), and 

epoching the neural recording into manageable segments28. These preprocessing steps are included 

in the shared CNSP libraries and example scripts. Minimalism in preprocessing has added benefits 

with respect to open science policies. Firstly, secondary users have access to potentially informative 

aspects of the data that might have been removed or altered by extra preprocessing steps (e.g., 

dimensionality reduction, filtering) and which are spared from potential sources of contamination 

(e.g., filtering41). And secondly, the minimalist, natural structure of many continuous-events stimulus 

https://cnsp-resources.readthedocs.io/
https://github.com/CNSP-Workshop/CNSP-resources
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paradigms (e.g., participant listens to an excerpt of narrative speech) makes replication of findings 

across different datasets highly convenient so long as there is some consistency in preprocessing. 

Indeed, when sharing minimally preprocessed data, users have maximum freedom to make choices 

and include additional preprocessing steps to suit the needs of their analysis pipeline. At the very 

least, preprocessing steps should be documented so that the secondary user can be aware of what 

has been done to the data. The CND specifications allow space to document preprocessing steps 

and the CNSP scripts implement this functionality. Finally, in addition to the minimally preprocessed 

data, we encourage researchers to share the raw data files and the minimal preprocessing scripts 

used to generate the CND data. 

Analysis 

The CND specifications were designed so that data can be easily input into several toolboxes 

(mTRF-Toolbox, EelBrain-toolbox, NapLib) with very little or no reshaping. The mTRF-Toolbox 

follows the same format and thus no changes are necessary for it, and several conversion functions 

have already been written to facilitate loading data saved in CND format into the users’ preferred 

toolbox format. Once data have been loaded, we advocate for a standardised general approach to 

fitting and testing temporal response functions. Broadly speaking, TRFs should be cross-validated. 

In other words, evaluation should be done on data unseen by the fitting procedure. This is most 

typically accomplished by splitting data into training and testing partitions, fitting TRFs on the former 

partition, and evaluating their ability to predict data from the withheld partition. More conservatively, 

when optimising the regularisation parameter, we recommend carrying out a nested loop cross 

validation – that is, three partitions: one for fitting the model, the second one for determining the 

optimal value for the regularisation parameter, and a third partition for evaluating the final model. 

TRF results can be visualised with the functions in the tutorials and example scripts, showing 

regularisation tuning curves, temporal response functions, and scalp maps. Again, we look to the 

community to contribute new plotting functionality via the git repository. 

Tutorials 

The CND data format was developed alongside the CNSP workshop. Several tutorial scripts have 

also been developed that read in data in CND format and implement the abovementioned analysis 

pipeline. These scripts and video recordings of the tutorial sessions have been shared on the CNSP 

website (https://cnspworkshop.net) to serve as a blueprint for novice users wishing to utilise these 

resources and use the CND format. They additionally serve to standardise analyses and reduce the 

risk of coding errors. We don’t see these scripts as a finished product – instead we encourage 

members of the CNSP community to contribute changes and corrections so that we can reach a 

broader consensus on a standard approach to analysing continuous neural data. 

https://cnspworkshop.net/
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Data browser GUI 

The tutorials and example scripts described in the previous sections aim to serve both as a learning 

resource and as a blueprint for conducting new analyses. Despite our recommendations on the 

analysis pipeline, there remain a number of analytic choices that depend on the specific assumptions 

and objectives of the study. For example, preprocessing choices involving data filtering, as well as 

analytic choices on the specific methodology (e.g., mTRF, cross-correlation) and parameters (e.g., 

TRF lag-window) to use. To simplify the process, we used MATLAB-software to develop a graphical 

user interface (GUI) where those choices and the specific options in a given dataset are clearly 

presented to the user. This GUI, which is referred to as the CNSP Data Browser, enables the rapid 

and effortless re-analysis of existing datasets, guiding the users through parameter selection. 

We expect this GUI to be particularly useful when getting familiar with the CNSP resources for the 

first time or when teaching, and well as serving as a tool for expert users when needing to rapidly 

re-analyse existing data. While all MATLAB code is shared, we have also made available an 

executable version of the Data Browser, bypassing the time-consuming process of setting up the 

libraries and dependencies and which, in fact, does not require an installation of MATLAB software 

in the first place.  

In addition to the import/export, preprocessing, and analysis functions presented in the 

previous sections, the Data Browser includes functions for running power analyses, extracting and 

combining stimulus features, and simulating neural data. Power analyses are useful for determining 

an appropriate sample size when planning an experiment. While that analysis can be carried out on 

previous data from the experimenter or based on published results, new studies may involve 

unexplored analyses or parameters that could be run on existing data but would typically be heavily 

time-consuming. The CNSP Data Browser provides access to existing datasets, with rapid re-

analysis functions and a simulation toolkit that can be used to generate results which are as close 

as possible to the new experiment that the user intends to run. In doing so, the Data Browser firstly 

aims to facilitate the design of future experiments, for example by speeding up the estimation of a 

reasonable sample size for the future experiment through the functions for power analysis in the 

GUI. Second, it provides a preliminary set of functions for the extraction of basic stimulus features. 

A function is also provided for generating multivariate features by combining existing features (e.g., 

spectrogram concatenated with lexical surprisal), simplifying the use of multivariate TRF analyses. 

Finally, the Data Browser is also the front end of the new functions for neural data simulation, which 

is discussed in detail in the next section.  

Figure 3 depicts the appearance of the Data Browser GUI. Here we discuss the functions 

that are most commonly used: the preprocessing and TRF analyses. For further details please refer 



18 

 

to the CNSP website (https://cnspworkshop.net), where documentation, tutorials, and video-tutorials 

are available and up-to-date. The GUI offers basic preprocessing functions: Data re-referencing 

(e.g., global average referencing), band-pass filtering, envelope extraction (e.g., for high-gamma or 

spiking data), downsampling, and bad-channel removal. Filters were designed to minimise the 

impact of their artifacts on the data41. Specifically, zero-phase shift Butterworth filters of order 2 are 

used. Encoding and decoding (i.e., forward and backward) TRF analyses can be run with different 

selections of parameters (e.g., time-lag window, stimulus features). Interestingly, there is a function 

for limiting the number of participants and the amount of data per participant (in minutes). This 

functionality can be used for testing how much data is needed for the effect of interest to emerge. 

For ease of use, we also include a separate Stats tab with a power analysis calculator, which can 

be used to formally determine the minimum sample size needed to detect an effect of a given size. 

Figure 6. The Cognition and Natural Sensory Processing (CNSP) Data Browser. (A) Screenshot 
of the Data Browser (left). There are five tabs coresponding to experimental analysis steps (data 
browser, stimulate data, feature design, import/export, and stats). Under the ‘Data Browser’ tab, the 
drop down menu permits dataset selection. There are four tabs corresponding to data browser 
settings (pre-processing, TRF, cross-correlation, MCCA). Under these settings, a user can select a 
specific band-pass filtering bandwidth, downsampling ratio, and TRF model hyperparameter values. 
There are also tabs for feature selection, data exporting, and statistical testing. (B) The GUI can 
visualize results across datasets or parameter configurations .The plots in the top and middle panels 
are the typical visualisations for forward TRF models. The top panels show, from left to right, the 
EEG prediction correlations for each participant (average across channels and trials), for each trial 
(average across channels and participants), and for each EEG channel (average across participants 
and trials). The middle panels show the TRF weights of a speech envelope TRF model for each 
channel (average across participants), the Global Field Power of the TRF weight (GFP), and the 
topography of the  TRF weights at the peak latency of the GFP. The bottom plots compare speech 
and music TRFs from different datasets in terms of EEG prediction correlations and GFP. 

A                                                                                   B 

https://cnspworkshop.net/
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Simulating 

One key issue with neural signal analysis is that the ground-truth signal is not available. In other 

words, we do not know what exact neural signal of interest is buried behind the large EEG/MEG 

noisea. The only signal we have access to is the mixture of the neural signals of interest and noise, 

from multiple channels. Estimating the consistent neural response behind the EEG/MEG noise is the 

goal of methodologies such as ERPs/ERFs and TRFs, which allow us to test experimental 

hypotheses on that hidden neural response. However, there are scenarios where the ground-truth 

neural signal must first be known. One such scenario is the development of novel methodologies for 

neural signal analysis. For example, methodologies such as Denoising Source Separation (DSS) 

and Canonical Correlation Analysis (CCA) have been tested by considering various scenarios on 

simulated data, such as different signal-to-noise ratio (SNR), where the ground-truth signal was 

known by construction. Another important scenario where simulated data is necessary is the 

generation of numerical expectations on a given hypothesis. For example, it can be difficult to have 

clear expectations on what a TRF model would capture when considering certain multivariate 

models, especially when the stimulus features are highly correlated with each other. Therefore, 

simulated data can be used to examine the results when considering a specific algorithm, set of 

parameters, and hypothesis.  

Figure 5 depicts the graphical front-end for the simulation toolkit. The simulation consists of 

convolving a ground-truth TRF with a given stimulus feature, and adding a specified amount of noise. 

The noise can either be white noise with a different magnitude, or segments of real EEG/MEG signals 

taken from other time-points, trials, or experiments. The approach can also be expanded to 

multivariate models in an additive manner. For example, EEG signals may be simulated by summing 

EEG noise, neural responses to the speech envelope, and neural responses to word onsets, where 

the neural responses are simulated by convolving each feature with their specific ground-truth TRF. 

The simulation pipeline involves three steps: 1) Design TRF (optional), 2) Select TRF, and 

3) Simulate neural signal. First, a TRF can be designed from scratch by indicating a list x-y values 

(e.g., time and magnitude of a TRF peak). The TRF will then be obtained by fitting a curve based on 

those datapoints (Fig. 5A). Univariate TRFs can be combined into multivariate TRFs through the 

‘combine’ function. In the ‘Select TRF’ step, the user should select a TRF (univariate or multivariate) 

that was either built through step 1, or which was obtained from the analysis of actual EEG/MEG 

data. Finally, the selected TRF (univariate or multivariate) is used to generate simulated neural data, 

with the addition of the selected type of noise with the given SNR. Simulated data can be generated 

 
a Here, “noise” refers to the part of the signal that is not of interest (e.g., cortical activity not relevant to the 

study, motion artifacts, eye-blink artifacts). 
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for a single electrode or for all electrodes, for a single participant or multiple participants, depending 

on the specific requirements. Figure 5B shows selected examples of simulated neural traces based 

on different combinations of parameters. 

 
Figure 7. Simulation toolkit. The simulation front-end is organised into three tabs. (A) First, the 
user can design a new temporal response function (TRF) by interpolating a list of given datapoints. 
A typical speech envelope TRF is designed by indicating datapoints describing the P1, N1, and P2 
components. Datapoints should capture the magnitude and latency of each component as well as 
the time needed for the component to return to baseline. Multivariate TRFs can also be built by 
concatenating pre-built TRF. (B) The user may decide to utilise a TRF they built with the TRF 
designer, or one of the standard TRFs that are included with the simulation toolkit. (C) The user may 
then proceed to the ‘Simulate’ tab. The selected TRF will be convolved with an existing stimulus 
feature time-series (within dataStim.mat), producing a ground-truth EEG/MEG trace. Noise will be 
added with the selected signal-to-noise-ratio (SNR) to simulate more realistic EEG/MEG data. The 
noise can be white noise or real EEG/MEG data, preferably from another experiment. The resulting 
simulated data can then be analysed with the data browser as a dataset. 

Web-based Data Browser 

The work presented above primarily relies on MATLAB software. While the data browser GUI 

eliminates the client-side need for a MATLAB license, the user remains in charge of appropriately 

installing the application and downloading the datasets. However, the rapidly growing number of 

publicly available datasets will likely challenge the use of a GUI in local due to space limitations. 

Here we present the first web-based data browser for continuous sensory neurophysiology. While 

the functionalities will be similar to those of the MATLAB-based GUI, the current version focuses on 

forward and backward TRF models only. This prototype web-application stores datasets and runs 

analyses directly on the cloud, meaning that the user is no longer limited to the computational 

constraints of their own machine. In turn, the use of Python language for implementing the web-
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based data browser, relying on the Python implementation of the mTRF-Toolbox36,42, enhances the 

accessibility of this project. 

The web-based CNSP data browser combines a frontend written in React, a popular user-

interface JavaScript library, and a backend in Flask, a micro web framework for Python. The frontend 

employs React's component-based structure for a dynamic user interface, while Flask handles 

running the analyses and communication. Google App Engine ensures seamless deployment, auto-

scaling, and load balancing while Google Cloud Storage securely manages the stored datasets and 

images from previous analyses,  reducing the computational load. This integrated approach offers a 

scalable, responsive, and reliable web application architecture that holds promise for future 

expansion and improvement. The web-based CNSP Data Browser can be accessed from the 

resource page of the CNSP website: https://cnspworkshop.net/resources.html.   

Figure 8: The Web-based CNSP Data Browser. The web-based data browser aims to serve the 

same functions of the MATLAB GUI, but from an Internet browser. The web-based data browsed, 

which is Python-based, currently supports mTRF forward and backward models i.e., encoding and 

decoding models. One of the key advantages of this innovative piece of software is that it enables 

the use of TRF analyses without the need for local installation or download; expanding accessiblity 

to continous-event neural data. Future browser iterations will add functionalities from other toolkits, 

https://cnspworkshop.net/resources.html
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such as CCA, NapLib, and EelBrain, enabling the use of a large set of methodologies on the same 

dataset.  

 

Discussion 

Here, we provide a comprehensive set of resources for the re-analysis and sharing of neural data 

involving continuous sensory stimuli. The guidelines in this manuscript encompass the entire analytic 

pipeline, from the definition of a new standardised data structure for storing continuous sensory 

neural data, to data analysis, import/export functions connecting the present work with other 

resources in the literature, and simulation functions for the formulation of specific hypotheses. The 

guidelines in this manuscript are complemented with educational resources, such as tutorial scripts 

and video-tutorials, which are available on https://cnspinitiative.net. 

The proposed approach is in line with the FAIR principles (Findable, Accessible, 

Interoperable and Reusable)43. The set of resources and guidelines are built around the principle of 

reusability. Interoperability is ensured in multiple ways. The proposed CND structure and conversion 

mechanisms from/to BIDS ensure that the data can be easily analysed with existing tools across 

various operating systems and programming languages. The CNSP Data Browser provides 

executables for various operating systems, bypassing the need for a MATLAB licence. Finally, the 

web-based data browser is a proof-of-concept front-end for combining and comparing tools from 

different libraries and programming languages, further contributing to interoperability. Regarding the 

‘finding’ and ‘accessible’ principle, while addressing these principles directly was beyond the scope 

of the present article, we encourage the adherence to these principles, for example by relying on 

reliable and findable repositories providing unique identifiers, such as OpenNeuro 

(https://openneuro.org/) and Dryad (https://datadryad.org/).  

The key intention behind this article is to simplify analysis by establishing an appropriate 

pipeline and sharing tools that reduce the amount of work required for new experiments. The 

proposed approach makes it easy to try different methodologies and parameter choices on the same 

dataset which heavily simplifies the direct comparison of methodologies from different teams. 

Functionalities such as the simulation toolkit in the GUI aim to encourage the use of simulations. For 

example, studies with multivariate TRF could greatly benefit from numerical simulations; yet, they 

are seldom availed of. However, one important observation is that offering easily accessible analytic 

functionalities through a GUI carries risks. For example, a user might use the GUI as a black-box, 

without truly understanding what it is doing and, thus, potentially leading to misinterpretation of the 

results. The GUI was designed to mitigate that risk, by putting an emphasis on speeding-up the 

analysis pipeline, but without providing the full range of functionalities in the actual CNSP libraries. 

So, the present version of the data browser offers the necessary tools for running typical TRF (and 

https://cnspinitiative.net/
https://openneuro.org/
https://datadryad.org/stash
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other) analyses, replicating existing results, running simulations and power analyses. But all of that 

is constrained so that only the typical analyses can be carried out, thus minimising the risk of misuse. 

In that sense, the educational resources such as the tutorials, video-tutorials, and workshop are key 

as they empower the users, giving them the tools for fully availing of the CNSP resources.  

The cohesive set of resources presented in this article highlights the importance of truly 

committing to the ‘reusability’ FAIR principle. This is unfortunately not always the case, as the data 

shared in this research domain is often shared just by including information that is necessary for 

result replication. For example, an EEG study involving a speech listening task should ideally be 

shared by including the original audio files and the raw EEG data, so that it can be re-analysed in 

various different ways. Instead, some existing datasets (including early datasets from the authors of 

this manuscript) did not include the raw audio files, for example due to copyright limitations. That 

and other similar issues should be carefully taken into consideration at the experimental design 

stage, now that the possibility and benefits of data reusability are established. As a result, we 

encourage journals and reviewers to take reusability more into consideration in the future. In other 

words, sharing a dataset in a standardised format like BIDS should not be taken as a guarantee in 

itself that the data is shared appropriately. Instead, the data sharing statement should include 

considerations on the possible reusability of the dataset, thus reflecting on the best way of sharing 

data beyond replicability. Another important issue is that the code used for the analyses is often not 

fully shared during the journal publication process. Instead, we encourage journals to be more strict 

on that point, which is essential for result replication i.e., scientific papers should include either the 

custom code used or the exact reference to the tools used, such as a DOI, version number, or at 

least the commit index (e.g., GitHub commit index). 

We expect that future research in this domain will lead to a large set of data that will open new 

possibilities for both theoretical investigations and methodological development, benefiting 

neurophysiology research at large. In these re-analysis scenarios, it is important to stress the key 

role of result replication. In fact, apparently valid results may emerge by chance due to multiple re-

analyses of the same dataset from different individuals. For this reason, it is extremely important to 

replicate the results on another publicly available dataset or, even better, on a new dataset. 

Limitations and future work 

The present work represents the first comprehensive and cohesive set of analytic resources, from 

data standardisation to data analysis and simulation, for continuous sensory neural data. In doing 

so, the main contribution of this work is the attempt to build resources and guidelines that are tailored 

to the specific needs of this field of research. Indeed, the resources provided are constantly improved 

as the field advances, making this specific manuscript not immune to technical limitations. Here, we 

discuss these limitations with the goal of pin-pointing important directions for future work in this area.  



24 

 

One limitation with this work is that the majority of the code and resources shared for neural 

data analysis rely on the MATLAB language, which limits access to these resources to individuals 

with prior expertise with that language, and that hold a MATLAB license. That issue was mitigated 

by producing the executable graphical interface, which was built with MATLAB but can run as a 

stand-alone piece of software. Furthermore, we also developed a Python-based web-based data 

browser. While the web-based data browser only has limited functionalities at the time this was 

written, future work will substantially extend its functions by giving it full access to a variety of relevant 

toolboxes, such as the mTRF-Toolbox, Eelbrain-toolbox, Naplib, and others. In doing so, this tool 

aims to encapsulate the open-science change in sensory neuroscience, implementing the relevant 

FAIR principles and opening new possibilities beyond result replication and re-analysis, such as 

developments involving the availability of big, aggregated datasets. 

The description in this manuscript focuses on speech and music perception datasets. Future 

research should test the validity of the guidelines and resources onto other relevant domains in 

sensory neuroscience, starting from research involving rapid continuous stimuli in other sensory 

modalities, such as visual and tactile modalities44. The work could also be expanded to other 

domains involving motor movements, where methodologies such as TRFs and CCA can be used45. 

As future work will continue developing these tools by incorporating other methodologies and 

additional datasets, the metadata will be expanded to keep track of the version number of the tools 

used for storing and manipulating the data.  

Beyond the specific resources, scripts, and data structures, we contend that the most 

important and long-lasting overarching idea will be facilitating the use of lab specific resources 

(scripts and data) while connecting resources from different teams, so that they are interoperable. 

Important lessons can be learnt from other research fields, such as bioinformatics, guiding future 

development in sensory neuroscience toward more efficient research framework, encouraging the 

use of these domain-specific guidelines for data sharing while avoiding risks such as excessively 

rigid data sharing policies, which could do more harm than good. Indeed, a collective effort is 

necessary to achieve that goal, and we invite the research community to contribute to this endeavour 

by sharing data, well-documented scripts, and tutorials, enriching the CNSP resources with their 

methodologies and data. 
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