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mDia proteins are members of the formin family of actin
nucleating proteins that polymerize linear actin filaments.
Such filaments form the core of thin, tubular, membrane-
bound cell surface protrusions known as filopodia, which are a
major feature of mammalian cell morphology. Filopodia are
dynamic structures that help cells sense environmental cues,
and play a role in cell migration, axon guidance, angiogenesis
and other processes. RhoGTPases bind to and control the
activity of mDia proteins, and several other binding partners of
the three mDia1 isoforms—mDia1, mDia2 and mDia3—have
been documented. Two independent pathways controlling
mammalian filopodium formation have emerged, with one
driven by the RhoGTPase Cdc42, and the other by Rif. While
mDia2 has been the main formin implicated in forming
filopodia, mDia1 has recently surfaced as the key formin
utilized by both the Cdc42 and Rif pathways to drive filopodial
protrusion.

mDia Domain Organization and Interacting Proteins

When cells migrate, they extend dynamic membrane-bound
actin-rich tubular protrusions known as filopodia.1 Formins are a
family of large multi-domain proteins that nucleate and
polymerize actin to form linear actin filaments like those found
within filopodia.2 In this review we will focus on the formins
mDia1–3 and their role in filopodium formation. Formins
function as dimers and nucleate actin by means of a formin
homology 2 (FH2) domain that binds globular actin monomers.
Interaction of the adjacent formin homology 1 (FH1) domain
with profilin effectively recruits actin monomers to the formin
dimer, facilitating the polymerization process.3 A subset of
formins, known as Diaphanous-related formins (Drfs), bind to
and are regulated by RhoGTPases.3 Drfs are rendered inactive by
interaction of a C-terminal Diaphanous autoregulatory domain
(DAD) with an N-terminal Diaphanous inhibitory domain
(DID) (Fig. 1). The binding of a RhoGTPase to the N-terminal
GTPase binding domain (GBD) contributes to disruption of this

autoinhibitory interaction, which results in the activation of
the Drf.2 In the case of the Drf FHOD1, phosphorylation of
C-terminal serine and threonine residues by ROCK also
overcomes the autoinhibition.4 Other domains found in Drfs
include a a dimerization domain (DD) and a coiled coil (CC)
region, and some groups believe that the DD and DID together
constitute a loosely defined formin homology 3 (FH3) domain.3

An N-terminal phospholipid-binding basic domain (BD) has
also been identified in the Drfs mDia1 and mDia2. mDia1 has
three stretches of basic amino acids in this domain, which allows
it to localize to the plasma membrane, while mDia2 has two.5

In contrast, the Drf DAAM1 has only one stretch of basic
amino acids in its N-terminal, and the distribution of con-
stitutively active DAAM1 is restricted to the cytoplasm.6 This
might explain why only mDia1 and mDia2 have been implicated
in the formation of membrane-bound cell surface protrusions
like filopodia and lamellipodia,7-9 while mDia3—lacking this
BD—has only been reported to generate cytoplasmic actin
structures.10 Several RhoGTPases and other proteins have
been reported to bind to mDia1-3. These are summarized in
Figure 1.

mDia Proteins in Actin-Based Cellular Structures

mDia1-3 form several types of actin-based cellular structures.
Within the cytoplasm, mDia1 gives rise to stress fibers,11,12 and
mDia2 drives the actin dynamics that power vesicle movement13

and creates the actin scaffold for constriction of the contractile
ring during cytokinesis.14 At the plasma membrane, both mDia1
and mDia2 have been shown to form lamellipodia8,15 and
filopodia.7,16 A role for formins in lamellipodial protrusion is not
surprising—once thought to be structures comprised of dendritic
networks of branched microfilaments, lamellipodia have recently
been reported to contain linear actin filaments as well.17 We have
found mDia3 to be capable of inducing filopodia in N1E115
neuroblastoma cells, despite not being able to detect the presence
of endogenous mDia3 protein in this particular cell line.16 All
three mDia isoforms have also been linked to invadopodia
protrusion,18 while mDia2 alone plays a role in forming the
filopodial precursors of dendritic spines.19 Actin dynamics leading
to the formation of the phagocytic cup in macrophages are
believed to involve mDia1 and mDia2 too.20
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mDia Proteins and Filopodium
Formation in Mammalian Cells

Previous studies have pointed to a role for
mDia2 in mammalian filopodia. A decrease in
filopodial protrusion was seen in mouse
fibroblasts overexpressing constitutively active
Cdc42 and microinjected with anti-mDia2
antibodies, as well as cells cotransfected with
activated Cdc42 and a non-functional mDia2
mutant.21 In NIH3T3 fibroblasts, mDia2
localized to the tips of filopodia in cells over-
expressing constitutively active Rif.9 Constitu-
tively active mDia2, when overexpressed alone
in B16F1 melanoma cells, also accumulated at
filopodial tips.22 Furthermore, knockdown of
mDia2 protein in mouse hippocampal neurons
reduced the formation of the filopodial pre-
cursors of dendritic spines.19 In more recent
work, mDia1-3 have been shown to induce
filopodia in neuronal cells when overexpressed
on their own.7,16 However, only mDia1 was
seen within filopodia, as observed by time lapse
imaging of live cells.7,16 The lack of mDia2 and
mDia3 in neuronal filopodia implies that these
Drfs might be involved in the initiation of
filopodium formation but not the elongation of
the structures. One possibility is that mDia2
and mDia3 generate short microfilaments that
are subsequently elongated by mDia1 to form
mature filopodia. This would tie in with the
suggestion that mDia2 is a relatively strong
nucleator but poor elongator of microfila-
ments,23 based on observations that it elongates
microfilaments at a slower rate than mDia1.24

The filopodia induced by full-length wild-type
mDia2 appeared cylindrical and of even
thickness along their length,7,16 and so did
the filopodia formed by FH1FH2-mDia2, a
fragment of mDia2 that consists of only the
FH1 and FH2 domains.8 This is unlike the
club-shaped filopodia obtained by transfecting

Figure 1. Domain organization and interacting
partners of mDia1-3. The shortest fragment(s) known
to bind the respective mDia isoforms is shown for
each interacting protein. Excluded from this diagram
are YWK-II, which binds a 223 aa fragment of hDia1
that shares 96% aa sequence identity with mDia1
(903-1125 aa),56 and INF2, which binds to aa 1181-
1262 and aa 1051-1193 of what might be longer
splice variants of mDia1 and mDia3 respectively.50

Domain architecture diagrams were created using
MyDomains Image Creator (prosite.expasy.org/cgi-
bin/prosite/mydomains/).
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B16F1 cells with constitutively active mDia2,8,22 where the
structures are packed with shorter microfilaments at their distal
ends but contain relatively few long microfilaments that extend
toward the base of the protrusions.22 The high overexpression of
constitutively active mDia2 could have resulted in endogenous
mDia1 protein becoming a limiting factor on the process of
filopodial microfilament elongation, giving rise to the club-shaped
morphology of the filopodia. In addition, both full-length mDia2
and FH1FH2-mDia2 localized mostly to the cytoplasm7,8—in
these experiments it is likely that less of the protein was present in
filopodia, and there was enough endogenous mDia1 to elongate
the smaller number of short microfilaments generated, thus
resulting in filopodia of even thickness along their shafts. These
interpretations of the findings would further implicate mDia1 as
the key mDia isoform that elongates microfilaments to form
mature filopodia. It would be interesting to see if knocking out
mDia1 affects mDia2-driven filopodial protrusion—will the
resulting mDia2-induced filopodia be shorter in length?

mDia1 was seen throughout the shafts of filopodia when
overexpressed alone or together with IRSp53 or constitutively
active Rif in neuronal cells.7,16 This is in contrast to the ‘tip
nucleation’ model of filopodium formation,1 where formins are
expected to be found only at the tips of the protrusions. One
possible explanation is that mDia1 dimers play a dual role in
filopodium formation and are involved in not just polymerising
the actin filaments but bundling them together as well. Another
possibility is that filopodia consist of short, discontinuous actin
filaments that do not span the entire length of the filopodial shaft.
This has been shown by cryo-electron tomography studies to be
the nature of the actin filaments that constitute Dictyostelium
filopodia.25 Superresolution microscopy studies would be able to
reveal detail at the nanometre scale and help elucidate the specific
locations of mDia1 and mDia2, as well as other proteins
associated with filopodial protrusion, within the structures with
much greater accuracy. This would help in establishing a better
understanding of the roles of these proteins in the various stages of
filopodium formation.

mDia Proteins in Filopodia Induced by Cdc42 and Rif

The Rho GTPases Cdc42 and Rif regulate distinct pathways to
filopodium formation. Cdc42 works through IRSp53, which
recruits to the plasma membrane the following proteins that
modulate actin dynamics: N-WASP, Mena, WAVE2 and Eps8.26

The Rif pathway to filopodia does not require IRSp53, N-WASP,
Mena or WAVE2.7 As for the mDia proteins, mDia1 appears to
be the only isoform common to both pathways. In the filopodia of
neuronal cells overexpressing IRSp53, mDia1 but not mDia2 was

present, and was observed to interact with IRSp53 within the
structures.16 While both mDia1 and mDia2 were present in Rif
filopodia, only mDia1 interacted with the RhoGTPase.7 In
addition, knockdown of either of these two isoforms resulted in a
decrease in Rif-driven filopodium formation,7 while IRSp53
filopodia were affected only by the silencing of mDia1
expression.16 Taken together, it appears that mDia2 is not
required for IRSp53 to form filopodia, and we have found that
coexpressing mDia2 with IRSp53 leads to a loss of filopodia
instead.16 It remains to be seen as to why cells need two or even
more-yet-undiscovered pathways to form filopodia, and why
IRSp53 requires only mDia1 when Rif appears to require both
mDia1 and mDia2. Also, Rif has been shown to bind the GBD of
mDia3, however the significance of this interaction has yet to be
investigated.27

mDia111,27 and possibly mDia228 are involved in stress fiber
formation in addition to filopodial protrusion. These two types of
actin-based cellular structures appear to be linked—in fish
fibroblasts, microfilaments in filopodia can become incorporated
into stress fibers,29 and it has been suggested that the reverse
might occur in rat embryonic fibroblasts, with the actin freed up
by the dissolution of stress fibers facilitating the protrusion of
filopodia.30 Rif interacts with both mDia1 and mDia227 and is
able to trigger the formation of both filopodia7,9 and stress fibers.27

The dual role of these three proteins might point to a major role
for them in controlling the balance between these two types of
actin structures in cell migration.

Conclusions

It is clear that mDia proteins play an important role in
mammalian filopodium formation. mDia2 appears to be specific
for the Rif-mediated pathway whereas mDia1 is required for the
pathways controlled by Cdc42 and Rif. It remains to be seen
how exactly Rif utilizes two different formins, mDia1 and
mDia2, to form filopodia. How Rif couples membrane deforma-
tion with actin dynamics to give rise to these structures has also
yet to be resolved. Apart from mDia1 and mDia2, are there
other proteins specific to the Rif pathway to filopodium
formation? What potential roles do IRSp53 family proteins
(IRTKS, MIM, ABBA and PinkBar) play in filopodial protru-
sion? These are some of the important questions to address in
future studies on mammalian filopodia.
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