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Abstract

Background: Regulated secretion of specialized neuropeptides in the vertebrate neuroendocrine system
is critical for ensuring physiological homeostasis. Expression of these cell-specific peptide markers in the
differentiating hypothalamus commences prior to birth, often predating the physiological demand for
secreted neuropeptides. The conserved function and spatial expression of hypothalamic peptides in
vertebrates prompted us to search for critical neuroendocrine genes in newly hatched zebrafish larvae.

Results: We screened mutant 5 days post-fertilization zebrafish larvae that fail to undergo visually
mediated background adaptation for disruption in hypothalamic pomc expression. To our surprise, the
ATPase N-ethylmaleimide sensitive factor (nsf) was identified as an essential gene for maintenance of
neuroendocrine transcriptional programs during the embryo-to-larva transition. Despite normal
hypothalamic development in nsft53 mutants, neuropeptidergic cells exhibited a dramatic loss of cell-
specific markers by 5 days post-fertilization that is accompanied by elevated intracellular neuropeptide
protein. Consistent with the role of NSF in vesicle-membrane fusion events and intracellular trafficking,
cytoplasmic endoplasmic reticulum-like membranes accumulate in nsf’- hypothalamic neurons similar to
that observed for SECI8 (nsf ortholog) yeast mutants. Our data support a model in which unspent
neuropeptide cargo feedbacks to extinguish transcription in neuropeptidergic cells just as they become
functionally required. In support of this model we found that gnrh3 transcripts remained unchanged in pre-
migratory, non-functional gonadotropin-releasing hormone (GnRH) neurons in nsf- zebrafish.
Furthermore, oxytocin-like (oxtl, intp) transcripts, which are found in osmoreceptive neurons and persist in
mutant zebrafish, drop precipitously after mutant zebrafish are acutely challenged with high salt.

Conclusion: Our analyses of nsf mutant zebrafish reveal an unexpected role for NSF in hypothalamic
development, with mutant 5 days post-fertilization larvae exhibiting a stage-dependent loss of
neuroendocrine transcripts and a corresponding accumulation of neuropeptides in the soma. Based on our
collective findings, we speculate that neuroendocrine transcriptional programs adapt dynamically to both
the supply and demand for neuropeptides to ensure adequate homeostatic responses.
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Background

The hypothalamus participates in the maintenance of
homeostasis through the synthesis and release of neu-
ropeptides. The neuroendocrine system appears to be
highly conserved between mammals and teleosts, as evi-
denced by shared programs found for pituitary develop-
ment [1-4] and the spatial patterns and functional roles of
hypothalamic neuropeptides [5-11]. In teleosts, much of
the neuroendocrine system becomes functional between
48 and 72 hours post-fertilization (hpf), when the
embryo hatches from its chorion and becomes fully
exposed to an external environment [12]. By 5 days post-
fertilization (dpf) this newly hatched embryo has devel-
oped into a free-swimming larva that must respond and
adapt to external and internal cues. Thus, this embryo-to-
larva transition (3 to 5 dpf) is a distinct developmental
stage, somewhat analogous to mammalian birth when the
newborn integrates sensory input and initiates regulated-
secretion to maintain homeostasis.

While the demand for neuroendocrine signaling and reg-
ulated neuropeptide secretion increases dramatically
when a newborn is exposed to an external environment,
cell-specific transcriptional programs appear to initiate
much earlier [13-16]. Indeed, birthdating experiments in
rodents show that hypothalamic neurons originate from
the third ventricular neuroepithelium beginning at
embryonic day (E)12 and are largely differentiated by E16
[17,18], as judged by expression and translation of cell
type-specific neuropeptide transcripts and protein, respec-
tively. That the onset of hypothalamic transcriptional pro-
grams predates function is perhaps best illustrated by the
ontogeny of gonadotropin-releasing hormone (GnRH)
neurons (also known as luteinizing hormone-releasing
hormone (LHRH) neurons). In both mammals and
zebrafish this subpopulation of neurons migrates from
the olfactory placode into the hypothalamus and eventu-
ally orchestrates germ cell maturation at the onset of sex-
ual maturity [6,19-23]. However, during embryonic
development and prior to their migration, immature
GnRH neurons express their signature neuropeptide
[6,21,22]. These and other studies suggest that the neu-
roendocrine system develops early in the fetus and
remains primed to secrete neuropeptides at later time
points [24,25].

To identify genes that might be critical for hypothalamic
development during this embryo-to-larva transition, we
re-screened mutant 5 dpf zebrafish larvae that fail to
undergo visually mediated background adaptation (VBA)
for disruption in neuropeptide transcription. VBA is a well
characterized neuroendocrine reflex that occurs in fish,
reptiles, and amphibians (reviewed in [26]). When placed
on a dark, light-absorbing background, pituitary melano-
tropes release o-melanocyte-stimulating hormone; this
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neuropeptide mediates dispersion of black pigment gran-
ules in dermal melanophores and causes a darkening of
skin color in fish. Conversely, when placed on a light
background, a drop in a-melanocyte-stimulating hor-
mone levels results in the aggregation of melanin and a
loss of this 'dark' phenotype or an overall blanching.
Because o-melanocyte-stimulating hormone is directly
regulated by hypothalamic inputs, we reasoned that criti-
cal developmental neuroendocrine genes might be dis-
covered in VBA-mutant zebrafish [27] with altered
proopiomelanocortin (pomc) expression.

From our screen, one mutant line showed a complete and
specific loss of pomc expression in the presumptive arcuate
nucleus of the hypothalamus. To our surprise, this
mutated gene was identified as N-ethylmaleimide sensitive
factor (nsf, SEC18), which is an ATPase and functions in
membrane fusion events as well as acting as a structural
chaperone (reviewed in [28,29]). These functional roles of
NSF are important for regulated secretion [30-32] and for
intracellular trafficking [33]. Our analysis of nsf mutant
zebrafish led us to examine how hypothalamic develop-
mental programs respond to a major secretory defect. We
report that nsf-deficient hypothalamic neurons exhibit a
marked accumulation of neuropeptide proteins with a
corresponding stage-dependent loss of mRNA, suggesting
that neuropeptide stores in the cytoplasm feedback to reg-
ulate transcriptional programs in the nucleus.

Results

Loss of hypothalamic pomc expression in nsf mutant
zebrafish

To identify genes critical to neurosecretory cell function,
we screened a collection of 50 VBA-deficient zebrafish
mutants for disrupted pomc expression. These mutants
have been described previously in a forward genetic screen
employing the chemical mutagen ethyl-nitroso urea [27].
Five mutants with a range of hypothalamic defects were
identified in our screen, one of which (s364) is reported
here. s364 mutant zebrafish display a dark appearance on
light background and lack an inflated swim bladder (Fig-
ure 1A). Additionally, mutant zebrafish have a listless star-
tle response, become paralyzed, and eventually die by 8
dpf (data not shown). The mutation was mapped to chro-
mosome 3 of the zebrafish genome using polymorphic
microsatellite markers (HB, unpublished data). This posi-
tion matched that of the highly conserved AAA ATPase nsf,
for which two alleles (st25 and st53) have been identified
previously in an unrelated screen [34]. The st25 and st53
alleles harbor nonsense and missense nsf mutations car-
boxy-terminal to the ATPase domain (D1) and in the oli-
gomerization domain (D2), respectively [34] (Figure 1).
The 5364 and previously reported nsf mutants [34] exhibit
similar locomotor and VBA phenotypes.
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The s364 phenotype is due to mutation in nsf. (A) Mutant and wild-type (WT) zebrafish (5 dpf) are shown on a white
background. Mutant zebrafish display a dark appearance on the white background from dispersed melanin (red arrowhead).
Wild-type zebrafish have an inflated swim bladder (black arrowhead) but mutant zebrafish do not. (B) Loss of pomc expression
in the arcuate nucleus (ARC) of the hypothalamus (arrowheads) of mutant alleles but not wild-type at 5 dpf is shown. pomc
expression is maintained in the anterior pituitary (ap) and posterior pituitary (pp) in both wild-type and mutant alleles. s364/
st53 or s364/st25 transheterozygotes display the same pomc phenotype as s364, st53, and st25 homozygotes. Images are repre-
sentative of at least three independent crosses of fifteen or more fish each. (C) Relative transcript levels are shown for nsf and
nsfb in wild-type and st53 zebrafish heads at 5 dpf (n = 8 each). Fold induction is relative to one wild-type head for each primer
set and taken to be 1.0 (horizontal dashed line). All other samples, including additional control and experimental samples, are
normalized to this one wild-type sample with variation shown by error bars (standard error of the mean). (D) The linear
growth of 5 dpf wild-type or st53 zebrafish is shown (wild-type = 3.6 mm, st53 = 3.8 mm; n = 10 each group). Length was
measured from nose to tip of tail. Wild-type fish were temporarily paralyzed using ice. Results are expressed as mean * stand-
ard deviation, and statistical analyses were done by unpaired t-test. ***P < 0.001. A schematic representation of NSF protein
motifs. The st53 mutation introduces a nonsense mutation just prior to D2, whereas st25 introduces a missense mutation in
D2. Two distinct amino-terminal domains (N1, N2) mediate substrate recognition.

Multiple complementation crosses revealed that s364 rep-
resents a novel loss-of-function allele of nsf. Similar to
5364, both st53 and the s364/st53 and s364/st25 tran-
sheterozygotes showed disrupted pomc staining in the
arcuate nucleus of the hypothalamus in mutant zebrafish,
whereas expression was maintained in the anterior and
posterior pituitary (Figure 1B). Low, but persistent pomc
expression was observed in the arcuate nucleus of the mis-
sense nsf allele st25 and in the s364/st25 transheterozy-
gotes (Figure 1B). Sequencing of the exons and the exon-
intron junctions of s364 revealed no obvious mutations,
suggesting that this nsf allele contains a non-coding muta-
tion (data not shown). Because the genetic lesion generat-
ing the 5364 allele remains unknown, we used nsf53
mutant zebrafish for all subsequent analyses so that
mutant embryos could be identified by genotyping, prior
to the appearance of the 'dark' phenotype.

Disruption of nsf is partially compensated by upregulation
of nsfb

The zebrafish genome contains duplicates of an ancestral
nsf gene, annotated as nsf and nsfb [34]. nsf is ubiquitously
expressed in the central nervous system throughout devel-
opment [34] and in early larval stages (Additional file 1
Figure S3A). As might be predicted by the nonsense muta-
tion in nsf'53, nsf transcript levels are nearly absent in
nsft53 zebrafish (Figure 1C). However, quantitative PCR
revealed that nsfb is upregulated nearly two-fold in the
heads of nsf mutant zebrafish (Figure 1C). Thus, compen-
sation by nsfb may account for the survival of nsf53
zebrafish to 8 dpf given that combined nsf and nsfb mor-
pholino injections result in prominent and early lethality
(Additional file 1 Table S1). Interestingly, nsf>3 zebrafish
were noted to be longer than wild-type siblings (3.8 mm
versus 3.6 mm; Figure 1D), and while the molecular basis
of this phenotype is unclear, others have found that dis-

ruption of POMC-melanocortin signaling increases linear
growth in both zebrafish and mice [35,36].

Hypothalamic cell markers are absent in nsfst33 mutant
larvae

We next determined if loss of pomc expression in nsfs53
zebrafish extended to other hypothalamic markers,
including transcription factors and neuropeptides that are
highly conserved between teleosts and mammals (Figure
2A). Indeed, nearly all hypothalamic transcripts were lost
by 5 dpf in nsf53 zebrafish (Figure 2B, C; Additional file 1
Figure S5). Loss of hypothalamic markers in these secre-
tory-defective zebrafish was stage-dependent as evidenced
by the normal expression observed at earlier developmen-
tal time points (24 hpf; data not shown) and just prior to
hatching (48 hpf; Figure 2B). A time course through the
embryo-to-larva transition revealed that expression of
these hypothalamic markers begins to decrease at 4 dpf,
and is completely absent by 5 dpf in nsft>3 zebrafish (Fig-
ure 2B, C; Additional file 1 Figure S1). These data suggest
that the neuroendocrine system in nsft53 zebrafish under-
goes normal development but loses differentiated cell
markers between 3 and 5 dpf. In contrast, expression of
emx] in the forebrain (Additional file 1 Figure S2), pomc
in the pituitary (Figure 1B), and gnrh3 in the nasal region
(Figure 3) are all maintained at normal levels, suggesting
that this nsf mutation selectively reduced expression of
transcripts in the hypothalamus proper.

Loss of hypothalamic markers is not due to apoptosis

The comprehensive loss of neuroendocrine markers at 5
dpf in nsft53 zebrafish was not explained by obvious
defects in gross anatomy of the hypothalamus or sur-
rounding areas (Figure 4A, B, G-1). For example, DAPI
staining showed a distinct and well-formed hypothala-
mus in nsfi53 zebrafish without any obvious evidence of
nuclear condensation or apoptosis (Figure 4A, B; Addi-
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Figure 2

Loss of hypothalamic markers occurs during embryo-to-larva transition. (A) Cartoon depicting the spatial pattern-
ing of known hypothalamic markers in the zebrafish (48 hpf) and mouse (P0) brain. A dorsal view, ventral side down is shown
for zebrafish and a horizontal plane is shown for mouse of several conserved hypothalamic transcription factors and neuropep-
tides. Other anatomical landmarks include the eyes, yolk sac, third ventricle (3V), and on the mouse cartoon, amygdala (A), (B)
Whole mount expression patterns are shown for nkx2.la, nr5a (ff1d), hcrt, avpl, and crh for both 48-hpf (n = 15) and 5-dpf (n =
20) wild-type (WT) and nsfst33 zebrafish. The expression of hypothalamic markers is lost by 5 dpf (right panel). The 48-hpf nsfst>3
zebrafish were identified by genotyping. (C) Relative transcript levels of neuroendocrine markers are shown in wild-type and
nsf*t53 zebrafish heads at 5 dpf (n = 8 each). Fold induction is relative to 1.0 with results from a single wild-type head chosen for
each primer set. Samples variation is shown by error bars (standard error of the mean).
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gnrh3 transcripts persist and protein levels are normal in nsft53 zebrafish. Whole-mount in situ hybridization for
gnrh3 expression in the olfactory placode in 5 dpf wild-type (WT) and nsf’33 control or morpholino-injected larva is shown
(top panels). Immunocytochemistry for GnRH peptide levels is shown (bottom panels). Images are representative of at least
four animals per genotype per treatment. Anatomical landmarks include the olfactory epithelium (OE) and the eye.

tional file 1 Figure S4A, B). In fact, TUNEL (terminal deox-
ynucleotidyltransferase-mediated ~dUTP  nick end
labeling) staining on sections (Figure 4B) and whole-
mounted (Additional file 1 Figure S3B) nsf!53 zebrafish
fixed at 12 h intervals between 48 hpf through 5.5 dpf
failed to reveal hypothalamic cell death at all time points.
On the other hand, in nsf®3 mutants one easily observes
classic hallmarks of cell death in the hindbrain (Addi-
tional file 1 Figure S4C, D) and in several sensory neuro-
nal populations such as the olfactory neurons (Figure 4B;
Additional file 1 Figure S4F), otic neurons (Additional file
1 Figure S4H), and photoreceptors (Additional file 1 Fig-
ure S4J). Moreover, we found that nsft53 hypothalamic
neurons differentiated and organized normally, as judged
by staining for HuC/D (Figure 4C, D) and synaptic vesicle
protein 2 (SV2; Figure 4E, F). The slight decrease in SV2
staining (Figure 4F) coupled with Dil tracing studies (data
not shown) suggested that nsf>3 neurons have lowered
vesicle pools, but retain normal projections. More impor-
tantly, electron microscopy (EM) analysis confirmed that
nsft53 hypothalamic neurons exhibit relatively normal
morphology with evidence of synapse formation (Figure
4G, H). Taken together, our data suggest that nsf mutant
neurosecretory cells are able to differentiate correctly and

remain viable through early larval stages, but fail to main-
tain cell-specific transcriptional programs at later stages.

Hypothalamic neuropeptides accumulate in nsfst53
mutants

Having shown that transcriptional programs are damp-
ened in neuroendocrine cells in nsf>3 zebrafish, we next
determined if protein levels were also diminished. Unex-
pectedly, 5 dpf nsf>3 zebrafish exhibited prominent accu-
mulation of hypocretin and neuropeptide Y (NPY)
protein in the cell soma (Figure 5A-D; Additional file 1
Figure S5) with a concomitant decrease of neuropeptide
in peripheral projections (Additional file 1 Figure S5). By
contrast, only moderate (hypocretin) or faint (NPY) stain-
ing was observed in wild-type cell bodies (Figure 5A, C;
Additional file 1 Figure S5) with higher protein levels
observed in cell projections (Additional file 1 Figure S5;
data not shown). We noted that levels of another medially
expressed protein, tyrosine hydroxylase, were equivalent
in wild-type and mutant hypothalami (Additional file 1
Figure S2E, F). Correlating with this finding, EM analysis
showed increased cytoplasmic endoplasmic reticulum
(ER)-like membranes in mutant hypothalamic neurons.
These morphological structures are decorated with ribos-
omes, but lack other secretory organelles, such as the
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nsft53 hypothalamus undergoes normal development and does not appear to initiate apoptosis. Apoptosis in (A)
wild-type (WT) and (B) nsfs33 5 dpf zebrafish (12 um horizontal sections) is shown. Cell death is not observed in the hypotha-
lamus (B), but is observed in olfactory terminals (B, white arrowhead). Photoreceptor auto-fluorescence in wild-type zebrafish
is lost in mutant (B, white arrow). DAPI staining of wild-type (A, C, E) and nsf53 zebrafish (B, D, F) at 5 dpf is shown. Immuno-
cytochemistry for (C, D) Hu family proteins and (E, F) SV2 are shown for wild-type and nsf*33 5 dpf zebrafish. All images are
representative of at least |5 animals assayed. (G-l) Electron microscopy images from nsfst33 hypothalamic sections (n = 3). Cell
bodies (G) and vesicle-filled synapse (H) resemble wild-type neurons (data not shown). Anatomical landmarks and (l) the pres-
ence of dark-cored secretory vesicles (red arrowhead) were used to confirm the location of the hypothalamus. N = nucleus.
Note that the medially located cell bodies (Figure 4C, D, G) are framed on either side by lateral projections (Figure 4E, F, H) in

both cryosection and EM images.

Golgi or mature secretory granules (Figure 5E, F).
Although the exact identity of these ER-like membranes
remains to be determined, their gross morphology is rem-
iniscent of ER accumulation observed in mutant SEC18
yeast, suggesting that the initial steps in ER-to-golgi traf-
ficking are blocked in nsf mutants.

Transiently blocking secretion in wild-type zebrafish
mimics the nsfst33 phenotype

We then asked if impairing general secretion in wild-type
fish would induce a similar transcriptional dysregulation,
as observed for the nsf mutants. Injections of botulinum
toxin B, which prevents membrane fusion in the presyn-
aptic plasma membrane [37] were performed at different
doses (0.1 to 1 pg) into wild-type embryos at the one-cell
stage. Zebrafish that were still paralyzed at 4 dpf, 5 dpf or
7 dpf were analyzed, and at all stages we noted a marked
reduction in hypothalamic transcripts tested, except for
oxytocin-like expression, which remained unchanged
(Figure 6 and data not shown). These data bolster the
notion that the nsft>3 neuroendocrine phenotype arises
from a general secretory defect.

A physiological challenge silences persistent oxtl
transcripts in nsfst53 mutants

Of the nine hypothalamic markers tested, two neuropep-
tides were consistently maintained in 5 dpf nsft3
zebrafish - the zebrafish ortholog of oxytocin, oxytocin-like
(oxtl; formerly known as isotocin [10]) and the GnRH iso-
form, gnrh3; both transcripts remained unchanged (Fig-
ures 3 and 7). For gnrh3, we also found that the
corresponding protein levels were unaffected in mutant
zebrafish (Figure 3). At this developmental stage gnrh3-
expressing neurons are still immature and have not
migrated from the olfactory placode to the medial
hypothalamus to become fully functional [6]. Compensa-
tion by nsfb fails to account for the persistence of oxtl and
gnrh3, with little or no reduction of either transcript
observed after a dose-dependent knockdown of nsfb in
mutant embryos using sequence-specific morpholino oli-
gonucleotides (MOs; Figures 3 and 7). Control MO injec-
tions were without effect (data not shown). Interestingly,

MO knock down of nsf resulted in a slight but noticeable
reduction in oxtl and gnrh3 expression in nsft>3 zebrafish
(Figures 3 and 7), suggesting that maternally deposited nsf
mRNA and/or a partially active truncated NSF protein
accounts for full expression of oxtl and gnrh3 in the nsft53
allelic background.

We hypothesized that the selective loss of neuropeptide
transcripts in nsfit53 zebrafish might reflect activation of
these particular neurosecretory cells during the embryo-
to-larval transition. This 'use-dependent' transcriptional
hypothesis predicts that gnrh3 and oxtl neurons are func-
tionally silent at 3 to 5 dpf. If true, then activation of either
gnrh3 or oxtl neurons during this developmental stage
should diminish their respective neuropeptide transcripts.
Although activating gnrh3 neurons is technically difficult,
we reasoned that activating oxtl cells by a high-salt chal-
lenge might be feasible given that these neurons are
osmoreceptive, and together with arginine vasopressin-
like (avpl; formerly known as vsnp) neurons are required to
maintain electrolyte homeostasis [38,39]. Indeed, we
found oxtl expression significantly diminished after a
hyperosmolar acute challenge in nsf>3 zebrafish, but not
in wild-type zebrafish (Figure 7A). This result was con-
firmed by quantitative PCR showing a nearly 50% reduc-
tion of oxtl transcripts after a 24 h salt challenge (Figure
7B). We also observed TUNEL-positive cells around the
gills in salt-challenged nsf*53 but not wild-type zebrafish
(Figure 7A). Based on these observations, we suggest that
the demand for oxytocin-like neuropeptide during a high
salt challenge overloads the defective secretory pathway in
nsf53 mutants, resulting in downregulation of oxtl tran-
scripts.

Discussion

Here, we unexpectedly identified nsf as essential for main-
tenance of cell type-specific programs in the zebrafish
hypothalamus during a developmental transition when
the demand for neuroendocrine signaling rises. We show
that despite normal development in nsft53 hypothalami,
neuropeptidergic cells exhibit a dramatic silencing of cell-
specific markers by 5 dpf, with a concomitant accumula-
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Figure 5

Accumulated neuropeptide protein and the buildup of endoplasmic reticulum-like membranes in nsfst53

zebrafish. The levels of (A, B) hypocretin and (C, D) NPY protein in wild-type (WT) and nsft53 zebrafish are shown (n = 8
each). Protein levels are increased in the soma (B, D). DAPI stained nuclei are also shown (A-D). Electron microscopy images
from (E) wild-type and (F) nsft>3 zebrafish (n = 3 each). For EM analysis, neuroanatomical landmarks (obtained from [50]) and
the presence of dense-core vesicles (Figure 41) were used to locate the hypothalamus. The budding of secretory vesicles from

the trans-Golgi network is highlighted (E, red arrowhead). A build up of ribosome-bound ER-like membranes in nsft53 zebrafish
is noted (F, red arrowhead). PM = plasma membrane.
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Injection of botulinum toxin B into wild-type zebrafish mimics the nsf*33 phenotype. Whole-mount in situ hybridi-
zation for wild-type (WT) and WT + botox at 5 dpf is shown (n = 4 each). The expression of neuroendocrine markers in
botox-injected WT fish is highlighted (black arrowheads). Relative transcript levels are shown for the heads of WT and WT +
botox at 5 dpf (n = 8 each). Fold induction is relative to one control sample and taken to be |.0. All other samples, including
additional control and experimental samples, are normalized to this one wild-type sample. Sample variation is shown by error
bars (standard error of the mean). Statistical analyses were done by unpaired t-test. *P < 0.05; **P < 0.01. NS = not significant.

tion of neuropeptides in the soma. Furthermore, while
EM images show that nsfs'53 neuroendocrine cells appear
normal in cell density, axonal growth, and synapse forma-
tion, these cells exhibit a build-up of cytoplasmic ER-like
membranes consistent with the marked cytoplasmic accu-
mulation of hypocretin and NPY neuropeptides in
mutant hypothalami. Taken together, we propose that
neuroendocrine transcription is normally modulated by
cytoplasm-to-nucleus feedback signaling, which becomes

exaggerated in the secretion-defective nsf mutant, as
depicted in Figure 8.

Our results show that loss of hypothalamic cell markers
occurs in all nsf alleles examined, well after neuroendo-
crine neurons initiate expression of their signature mark-
ers. Indeed, expression patterns of all assayed
neuropeptides and transcription factors were indistin-
guishable in wild-type and nsf>3 zebrafish, beginning as
early as 24 hpf; a similar phenotype was also noted in the
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oxytocin-like is downregulated in nsf53 zebrafish following an acute osmolar challenge. (A) Whole-mount in situ
hybridization in 5 dpf wild-type (WT) and nsft53 control or morpholino-injected zebrafish (top panels) or following 24 h 10x
salt treatment (middle panel) is shown. The decrease in expression of oxytocin-like (oxtl) in nsft53 zebrafish exposed to 10x salt
is noted (black arrow). TUNEL-positive cells around the gills in nsft53 zebrafish following 10% salt treatment are shown (black
arrowhead). Images are representative of at least four animals per genotype per treatment. The salt challenge was repeated
twice. (B) Relative transcript levels are shown for oxtl in wild-type and nsfi>3 zebrafish heads at 5 dpf, with or without 10x salt
exposure (n = 8 each). Fold induction is relative to one control sample and taken to be 1.0. All other samples, including addi-
tional control and experimental samples, are normalized to this one wild-type sample. Variation in samples is shown by error
bars (standard error of the mean). Statistical analyses were done by unpaired t-test. *P < 0.05.

nsfs364 allele (data not shown). This is surprising consider-
ing the general role of NSF in membrane fusion and its
ubiquitous expression throughout development, and
given that Drosophila dNSF1 mutants exhibit impaired
neurogenesis [40]. It is possible that normal hypotha-
lamic development in nsf*53 may result from compensa-
tion by nsfb, maternally deposited nsf transcripts or
residual activity of NSF encoded by the nsft53 allele.
Clearly, at least some functional NSF is required for sur-

vival as evidenced by the fact that co-injection of nsf-MO
and nsfb-MO into nsft53 embryos was lethal (Additional
file 1 Table S1). The persistence of gnrh3 in immature, pre-
migratory nsf53 neurons, coupled with the ability to
dampen oxtl transcripts following an acute salt challenge
in wild-type zebrafish, implies that sub-populations of
neuroendocrine cells escape the consequences of dis-
rupted NSF function. Thus, we speculate that increased
physiological demand and secretion of neuropeptide
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WT NEUROSECRETORY CELL nsf MUTANT NEUROSECRETORY CELL

Secretory
vesicle

Golgi

ER-like
membranes

ER

Nucleus

Figure 8

Working model of nsft53 neuroendocrine cells. A schematic of regulated neuropeptide secretion is shown, as adapted
from [47,48]. In wild-type (WT) cells, newly translated neuropeptides in the endoplasmic reticulum (ER) are sorted in the
trans-Golgi network, packaged into immature secretory granules, and finally released from mature dense-core secretory vesi-
cles at the plasma membrane (reviewed in [49]). In secretion-defective nsft33 hypothalamic neurons, a buildup of ER-like mem-
branes and soma accumulation of neuropeptides is observed. We hypothesize that in secretory-deficient nsf mutants,
accumulation of 'unspent neuropeptide consumables' triggers a cytoplasmic-to-nuclear feedback signal that silences neuroendo-
crine transcriptional programs. NP = neuropeptide, PM = plasma membrane, TF = transcription factor.
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cargo during the embryo-to-larva transition accounts for
this late-stage loss of neuroendocrine transcripts in nsf
mutants.

The neuroendocrine phenotype exhibited by the nsf53
zebrafish is partially mimicked in munci18-1 mutant mice,
which exhibit a selective and stage-dependent (E18)
decrease primarily in neuropeptide transcript expression
[41]. Munc18-1 is essential for regulated exocytosis. The
authors of this study posited that transcripts encoding
'consumables’ such as secreted products are selectively
downregulated in the munc18-1 synaptically silenced neu-
rons. Although neuropeptide protein levels and localiza-
tion were not assessed in their study, our findings predict
that neuropeptides would accumulate in muncl8-1
hypothalami. We can now extend their hypothesis by sug-
gesting that unspent neuropeptide consumables feed back
to silence neuroendocrine transcriptional programs, as
shown in our model figure (Figure 8).

Our study is now the second to identify nsf as essential in
a specific neuronal cell-type program using a forward
genetic screen in zebrafish. Previously, Talbot and col-
leagues [34] unexpectedly found nsf to be essential for
organization of myelinated axons, with mutant zebrafish
exhibiting decreased myelin basic protein expression and
altered sodium channel clustering. Here, we find that this
ubiquitous protein is also essential for maintenance of
neuroendocrine transcriptional programs. These distinct
phenotypes illustrate how different neuronal populations
adjust to deficits in membrane fusion and intracellular
trafficking. We suggest that hypothalamic neurons mount
a stage-dependent adaptive response to this major secre-
tory defect by silencing transcriptional programs. For
other neuronal cell types, loss of nsf results in vastly differ-
ent cellular responses. Indeed, we observed prominent
cell death in many sensory organs, including photorecep-
tors, olfactory sensory neurons, and mechanosensory cells
in nsf mutants. By contrast, no measurable cell death was
observed in nsf mutant hypothalami as evidenced by the
normal gross organization of the nsf®53 hypothalamus,
normal HuC/D staining, which marks early neuronal dif-
ferentiation, and normal staining with the SV2 pan-neu-
ronal vesicle marker. Targeted knockdown of nsf or nsfb in
the mutant background also ruled out that survival of
hypothalamic cells in nsft53 was due to compensation by
the duplicate gene nsfb and/or maternally deposited nsf
mRNA. Taken together, hypothalamic neurons, unlike
other neuronal populations, are able to survive and main-
tain normal cellular integrity in the face of this major
secretory deficit.

The phenotypes observed in nsft53 hypothalamic neurons,
including the complete loss of neuroendocrine transcripts
and the accumulation of ER-like membranes, are reminis-
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cent of, but different from, other well-described secretory
feedback signaling pathways. Regulation of nuclear tar-
gets by ER-associated events are well established for
unfolded protein responsive (UPR) genes [42] and for
sterol regulatory genes (reviewed in [43]). Here, we have
yet to identify the precise molecular nature of the feed-
back signal; whether these signals arise from the buildup
of ER-like membranes, from accumulation of neuropep-
tides in the cytoplasm, or from the inability to secrete neu-
ropeptides at the plasma membrane remains to be
determined. The build up of ER-like membrane in the
cytoplasm of nsf hypothalamic neurons suggests that neu-
ropeptidergic cells are responsive to a loss of secretion and
not a general trafficking defect. Indeed, we can mimic this
phenotype with a transient block on secretion in wild-
type animals with botox injections. Thus, it is possible
that ER-to-golgi transport in nsf53 neurons is partially
intact, but becomes overloaded when functional demands
are placed on these neurosecretory neurons in the
embryo-to-lava transition.

This cytoplasmic-to-nuclear signaling hypothesis assumes
that phenotypes observed in nsft>3 hypothalami are cell-
autonomous, as documented previously [34]. In our case
blastomere transplantation studies into the hypothala-
mus are technically challenging because transplanted
clone sizes in this brain region are small, and because
selection of the correct in situ hybridization (ISH) probe,
each recognizing a very small number of cells, is difficult.
Despite these inherent limitations, preliminary transplan-
tation data revealed expression of neuroendocrine mark-
ers in the medial hypothalamus of wild-type — nsf53
chimeras (data not shown), supporting the notion that
similar to other neurons, NSF functions autonomously in
specialized neuroendocrine neurons.

Conclusion

The unexpected role of nsf in maintenance of hypotha-
lamic cell type markers at late developmental stages
implies that hypothalamic neurons adapt to and survive a
major trafficking defect by modifying their transcriptional
programs. We speculate that unlike sensory neurons,
which undergo apoptosis, hypothalamic neurons cope
with this major cellular stress because these ancient and
evolutionarily conserved neurons are inherently pro-
grammed to defend and maintain homeostatic physiolog-
ical responses when confronted with changing
environments.

Materials and methods

Zebrafish

All research involving zebrafish was approved and carried
out according to guidelines of the UCSF IACUC commit-
tee. Zebrafish were maintained at 28°C under 14 h light,
10 h dark as described previously [27]. Nsf25 and nsft53
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zebrafish were kind gifts from W Talbot (Stanford Univer-
sity). Adult nsf+/- zebrafish were fed a mixture of fish flakes
and brine shrimp twice per day. The 5 dpf fish were main-
tained in egg water, consisting of 0.03% Instant
Ocean—V sea salts (Spectrum Brands, Atlanta, GA, USA)
in distilled water and not supplemented with any food.
Embryos were obtained by natural crosses of identified
parents and zebrafish embryo and larvae stages were
determined according to [44]. The VBA phenotype was
assayed by placing 5 dpf zebrafish on a white background
for >15 minutes. Fish that remained dark in color and
failed to have inflated swim bladders were selected as
mutant zebrafish. Zebrafish <5 dpf were genotyped as pre-
viously reported in [34].

Length measurements

Mutant and wild-type zebrafish (n = 10 each) were sorted
for their dark phenotype at 5 dpf and then placed on ice
to paralyze them but were kept alive. They were then
transferred to a 3% agarose mold and their images were
captured under an Olympus light microscope equipped
with a CCD camera (Center Valley, PA, USA). The
zebrafish in each image was measured from nose to tip of
the tail to the nearest 0.1 cm using a standard ruler and the
scale was adjusted appropriately using the scale bar
present within the captured image. Statistical analyses
were conducted by unpaired t-test.

Whole mount in situ hybridization

Mutant and wild-type embryos/larvae were fixed in 4%
paraformaldehyde (PFA) in phosphate-buffered saline
(PBS) overnight at 4°C and transferred to 100% MeOH
and stored at -20°C until use. Embryos were rehydrated
into PBS-Tween (PBS-Tw; 0.1% Tween-20), bleached (72
hpf to 5 dpf; 1% H,0, + 5% formamide in PBS-Tw; 1 h),
treated with proteinase K (20 pg/ml; 8 minutes), refixed
(4% PFA; 20 minutes), prehybridized (65 to 70°C; 1 h)
and hybridized (65 to 70°C; overnight) with hypotha-
lamic riboprobes. Embryos were washed (50% forma-
mide/50% 2x SSC; 2x SSC; 0.2x SSC), blocked (5% sheep
serum heat inactive) and incubated overnight at 4°C with
a-digoxigenin (DIG) antibody followed by washing and a
second incubation with p-nitroblue tetrazolium chloride/
5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP) in
staining buffer (100 mM NaCl, 50 mM MgCl,, 100 mM
Tris-HCl, 0.1% Tween 20). The color reaction was moni-
tored for several hours and stopped by washing with PBS-
Tw. The embryos were re-fixed and transferred to 90%
glycerol for clearing. Embryos were captured using an Axi-
ocam camera (Carl Zeiss, Thornwood, NY, USA). TUNEL-
based cell death assays were carried out using this proce-
dure with minor revisions according to manufacturer's
protocol (ApopTag; Millipore Corporation, Billerica, MA,
USA). DIG-cRNA probes were synthesized (Roche, Indi-
anapolis, IN, USA) from the following generously gifted
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plasmids: pomc, Roger Cone (Vanderbilt University Medi-
cal Center); hert, Alexander Schier (Harvard University);
nsf, William Talbot (Stanford); oxtl and avpl, Eric Glasgow
(Georgetown University); npy, Peter Schoonheim (UCSF);
emx1, Su Guo (UCSF); crh, Limor Ziv (UCSF); ff1d, Miyuki
Suzawa (UCSF); nkx2.1a, Steve Wilson (University Col-
lege London); gnrh3, Yonathan Zohar (Cambridge Uni-
versity).

Immunohistochemistry on sectioned zebrafish

Mutant and wild-type larvae were fixed in 4% PFA/PBS
overnight at 4°C and cryoprotected in 30% sucrose/PBS
overnight at 4°C. For horizontal sections, zebrafish were
embedded in OCT (Tissue-Tek, Sakura Finetek, Tokyo,
Japan) and sectioned at 12 um (Leica Microsystems, Ban-
nockburn, IL, USA). Sectioned zebrafish were left to dry
(overnight at 25°C), then washed in PBS-Tw, incubated in
block (10% Normal sheep serum/PBS; 1 h at 25°C), and
left to incubate overnight with a-HuC/D (1:400; Invitro-
gen, Carlsbad, CA, USA), a-SV2 (1:50; Developmental
Studies Hybridoma Bank, University of lowa), a-hypocre-
tin (1:500; Dr Kohgo, Asahikawa Medical College, Japan),
o-GnRH (1:1,500; Gunma University, Japan), a-Tyrosine
Hydroxylase (1:100; Chemicon, Temecula, CA, USA) and
o-NPY (1:1,000; Dr Jo Harrold, University of Liverpool).
After washing in PBS-Tw, sections were incubated with
Alexa-488 (1:200; Invitrogen) for 4 h, 25°C. Prior to
mounting, sections were stained using Hoechst 33258
(Invitrogen). Confocal images were captured using a Zeiss
LSM 5 Pascal microscope and software. Confocal stacks
were further processed using Image] software. Z-projec-
tions of a few slices were made and comparisons were
made between images that were processed equivalently.
Fluorescence images were adjusted in Adobe Photoshop
using the brightness/contrast, levels, and curves functions
in order to best represent the protein levels.

Real-time quantitative PCR

Real-time quantitative PCR was performed as described
previously [45]. The head was dissected from the tail just
prior to the swim bladder of 5 dpf mutant and wild-type
zebrafish and the RNA was isolated from both head and
tail using TrizolT. All data are normalized to one wild-type
'head' sample (taken to be 1) and the error bar represents
the variation of the other 'head' samples (n = 4). Prior to
routine use, all primer sets (Primer Express v2.0, Applied
Biosystems, Foster City, CA, USA) were validated to
ensure amplification of a single product with appropriate
efficiency. Data obtained from the PCR reaction were ana-
lyzed using the comparative C;method (User Bulletin No.
2, PerkinElmer Life Sciences, Waltham, MA USA).
Sequences are provided in Additional file 1 (Table S2).
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Osmolar challenge

For high salt, osmolar challenge, 4-dpf larvae were trans-
ferred to egg water composed of either 0.3% Instant
Ocean—V (challenge) or 0.03% Instant Ocean—V (con-
trol) and maintained at 28°C. Larvae were collected 24 h
later and fixed immediately using cold 4% PFA.

Morpholino analyses

MO analyses were conducted as published previously [5].
Briefly, MOs were designed to bind sequences surround-
ing the initiating methionine (Gene Tools, Philomath,
OR, USA). MOs were resuspended in water to a working
solution of 1 uM and injected into the yolk of one- to
four-cell stage embryos (n = 100 embryos/MO; repeated 3
times). Effective doses were determined separately for
each MO. Larvae (5 dpf) were collected, fixed overnight
and stored in 100% MeOH at 20°C until whole mount
ISH was performed. Sequences are provided in Table S2
(Additional file 1).

Electron microscopy

Tissue was fixed in 2% glutaraldehyde, 1% paraformalde-
hyde in 0.1 M sodium cacodylate buffer, pH 7.4, postfixed
in 2% osmium tetroxide in the same buffer, and block
stained in 2% aqueous uranyl acetate, dehydrated, infil-
trated, and embedded in LX-112 resin (Ladd Research
Industries, Burlington, VT, USA). Toluidine blue stained
semi-thin sections were made to locate the area of interest,
using the eyes as a guideline. Samples were ultrathin sec-
tioned on a Reichert-Jung (Leica) Ultracut S ultramicro-
tome (Leica Microsystems, Bannockburn, IL USA), and
stained with 0.8% lead citrate. Grids were examined on a
JEOL JEM-1230 transmission electron microscope (JEOL
USA, Inc., Peabody, MA, USA) and photographed using
the Gatan Ultrascan 1000 digital camera (Gatan Inc., War-
rendale, PA, USA).

Botulinum toxin analyses

Botulinum toxin injections and analyses were conducted
as published previously [46]. Briefly, progeny from in-
crosses of heterozygous nsf>3 adults were injected at the
one-cell stage with an approximately 5 nl bolus of 0.1 to
1.0 ng/nl BtTxB (EMDBiosciences, Darmstadt, Germany).
Larvae (5 dpf) that lacked a startle response were placed
either into fix (4% PFA, overnight, 16°C) or Trizol™ (-
80°C) until processed for ISH and quantitative PCR,
respectively.

Abbreviations

dpf: days post-fertilization; E: embryonic day; EM: elec-
tron microscopy; ER: endoplasmic reticulum; GnRH:
gonadotropin-releasing hormone; hpf: hours post-fertili-
zation; ISH: in situ hybridization; MO: morpholino oligo-
nucleotide; NPY: neuropeptide Y; NSF: N-ethylmaleimide
sensitive factor; oxtl: oxytocin-like; avpl: arginine vaso-
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pressin-like; PBS: phosphate-buffered saline; PBS-Tw: PBS
Tween; PFA: paraformaldehyde; pomc: proopiomelanocortin;
SV2: synaptic vesicle protein 2; TUNEL: Terminal deoxy-
nucleotidyltransferase-mediated dUTP nick end labeling;
VBA: visually mediated background adaptation.
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