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A B S T R A C T   

Essential oils are volatile constituents that give aromatic plants their characteristic odour. The 
application of these plant actives in food, agriculture, pharmaceutics, and cosmetics has been 
widely studied. Aromatherapy, a complementary therapy involving the use of essential oils to 
treat several diseases ranging from microbial infections to metabolic dysfunctions, has been 
utilised for centuries. Anticancer, antimicrobial, and anti-inflammatory activities are well- 
established among other pharmacological properties of these aromatic oils. The oils, which are 
composed mainly of terpene-based compounds, have also been explored as nutraceuticals, 
alternative green preservatives, and functional additives in foods. However, due to their physi
cochemical properties, viz high volatility and low aqueous solubility, essential oil delivery to 
target receptors were challenging when administered as chemotherapeutics. Hence, formulating 
essential oils with suitable excipients to enhance their delivery and bioavailability, invariably 
improving their bioactivity and therapeutic efficacy becomes expedient. Nanotechnology presents 
a unique strategy to develop a particulate delivery system for the controlled, sustained, and 
extended release of essential oils. In this review, we examine and summarize the trends and 
developments in the formulation of essential oils using polymeric nanoparticles.   

1. Introduction 

Paracelsus Von Hohenheim of Switzerland termed essential oil in the sixteenth century after being produced from the medicine 
Quinta essentia [1]. Essential oils (EOs) are volatile, naturally occurring chemicals with a potent odour that aromatic plants produce as 
a by-product of their secondary metabolism. They are extracted from aromatic plants typically found in temperate to warm and 
tropical regions, where they form a vital component of the ancient pharmacopoeia [2]. Various cultures have employed essential oils 
for thousands of years for medicinal and therapeutic purposes. Significant amounts of EOs are discovered in oil sacs or glands at various 
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depths in the fruit peels, particularly the flavedo and cuticle [3]. 
Additionally, they are aromatic oily liquids derived from various plant parts, including leaves, barks, seeds, flowers, and peels [4]. 

Depending on the method, they can be expressed, effervesced or fermented. Steam distillation and hydro-distillation are the most used 
techniques for the industrial manufacture of essential oils [5,6]. 

EOs are used in aromatherapy, a natural way of healing a person’s mind, body, and soul [7]. Many ancient civilisations have used 
aromatherapy as a popular and sought-after complementary and alternative therapy for about 6000 years [8,9]. Essential oils are 
administered in small quantities via various methods such as inhalation, massage, and simple application on the skin but are rarely 
taken internally [10,11]. Several aromatherapy classes have been employed in treating various disease conditions. The categories 
include cosmetic aromatherapy, massage aromatherapy, medical aromatherapy, olfactory aromatherapy, and psycho-aromatherapy. 

EOs can be classified based on chemical composition, extraction methods, and aroma therein [12]. The class of EOs based on 
chemical composition is attributed to the plant where they are found. For instance, oils from Citrus and Pine contain hydrocarbon made 
up of only carbon and hydrogen, making them different from oils found in coriander, tea, and peppermint [12]. Essential oils are 
complex mixtures that may contain more than 300 different compounds [13]. Many of these chemicals have been discovered and 
characterised as terpenes, the most common type of terpene in essential oils [14]. Characterization of essential oils is mainly via the 
Gas Chromatographic (GC) techniques for the separation of individual terpene and other components based on partition coefficients 
and retention time between the gaseous mobile phase and the liquid or solid stationary support. Most GC uses mass spectrometry (MS) 
for the detection of each chemical entity and flame ionization detectors (FID) detectors are also coupled with GC [15]. Aldehydes, 
ketones, esters, amines, amine-amide, phenols, and heterocyclic hydrocarbons are other chemical classes to which EOs belong [16]. 
Alcohols have an attached hydroxyl group to the terpene structure, which is present in coriander and peppermint. Citronella, lemon 
balm, and lemon myrtle contain terpenoids containing a carbonyl group (C=O) and a hydrogen-bonded carbon containing aldehyde 
[17]. Ketone comprises a carbonyl group connected to two carbon atoms; Thuja, Sage, and Eucalyptus radiata possess this type of 
essential oil [18,19]. Phenols contain a hydroxyl group attached to a benzene ring found in Thyme and Oregano [20]. 

EOs have found usage in the cosmetic, food, and pharmaceutical industries because of their potent therapeutic efficacy [21,22]. 
EOs are utilised as an expectorant against bronchitis and cough, carminative, antimicrobial, and pain reliever [23]. 

This review further expatiates EO’s bioactivity and delivery which are enhanced using polymeric nanoparticles. 

2. Bioactivity of essential oils 

In the scientific space, EOs have remained relevant due to their flexibility and usefulness and the increasing demand for natural 
products. They are rich sources of phytoconstituents whose pharmacological activities account for their numerous applications [24]. 
Essential oils are composed mainly of terpenoids and non-terpenoid compounds, which give their characteristic aroma. Biological 
activities such as antibacterial, antifungal, anticancer, antiviral, and antioxidant have been described for many EOs [25]. They may 
typically have about 20–60 components at varying concentrations. While some components have as high as 20–70% concentration, 
others are in minute quantities [2]. The bioactivity exhibited by these oils is not solely due to only one main active component, as 
inactive components’ synergistic and antagonistic impact is quite significant. Such impacts affect their absorption, bioactivity, and 
reaction rate [26,27]. However, the main components remain essential for their bioactivity [28]. The bioactivities discussed here 
include antioxidant, phytotoxic, acaricidal, antimicrobial, anticancer, and antidepressant (Fig. 1). 

Fig. 1. Various bioactivities of essential oils.  
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2.1. Antioxidant activity 

A vital factor which diminishes the shelf-life of many food products is oxidative degradation – a process whereby macromolecules 
break down due to the action of oxygen-releasing free radicals. Many aromatic plants have produced essential oils with significant 
potential for delaying or hindering chemical deterioration in fat-containing food systems. Effective in small quantities, these essential 
oils are increasingly being studied due to undesirable side effects obtained from using synthetic antioxidants to prevent such dete
rioration [29]. EOs are now being added to edible products either as coatings and inactive packaging or indirectly mixed to prolong 
shelf life and avert autoxidation [30]. 

EOs of spices Thymus vulgaris (thyme), Syzygium aromaticum (clove), Rosmarinus officinalis (rosemary), Origanum vulgare (oregano), 
and Salvia officinalis (sage) have all been reported to show varying forms of antioxidant activity. These include iron chelation, DPPH 
radical, and TBARS inhibition [29]. Iron chelation is an antioxidant mechanism where transition metal ion (iron) forms stable 
complexes to prevent their participation in generating free radicals [31]. The build-up of free radicals in neurons has been reported as a 
major event in the development and progression of Parkinson’s disease [32]. Other degenerative disorders such as carcinogenesis, 
mutagenesis, and cardiovascular issues are also caused by free radicals [33]. 

In a study highlighting the antioxidant significance of some widely used spice EOs, clove EO inhibited DPPH radical at 98.74% (the 
highest of the five EOs screened), while thyme EO inhibited TBARS the most at 89.84%. Although all the EOs chelated iron, the highest 
effect was displayed by rosemary EO at 76.06% [29]. 

2.2. Phytotoxic activity 

The phytotoxic effect of Monarda didyma EO on germination and the initial radical growth of Avena fatua L. (wild oats; a popular 
weed), Taraxacum officinale F.H. Wigg (dandelions), Lepidium sativum L. (garden cress), and Papaver rhoeas L. (red poppies) were 
examined. The EO inhibited the germination of red poppy seeds at 1.250 μg/mL. As for dandelion seeds, their germination was also 
totally inhibited by the EO at the same concentration. However, only 50% and 80% inhibition were achieved on the germination of 
garden cress and wild oats, respectively, at that concentration [34]. Although the inhibitory reaction mechanism of EOs remains 
unclear, there are reports of a hindrance to apical meristems’ cell division. Reactive Oxygen Species (ROS) production causing 
membrane disruption or DNA synthesis inhibition is probably responsible [35]. 

2.3. Acaricidal activity 

EOs extracted from various species of Eucalyptus have shown acaricidal activity, warding and fighting off ticks and mites. 
E. staigeriana and E. citriodora’s EOs brought about 100% mortality on ticks larvae at 10% concentration while E. globulus did the same 
at 20% [36]. At low concentrations, EOs of E. maidenii, E. bicostata, E. approximans and E. sideroxylon showed significant acaricidal 
effects on Tetranychus urticae (spider mite) with high mortalities [37]. On other mite species such as Amblyomma cajennense, Anocentor 
nitens, and D. gallinae, mortality rates of 53%, 100%, and 85% respectively were observed following exposure to E. citriodora EO [38, 
39]. 

2.4. Antimicrobial activity (antibacterial, antifungal, and antiviral) 

The menace of increased antibiotic resistance has necessitated further studies on the potentials of EOs. Research works on the 
antimicrobial activity of various EOs, both in vitro and in vivo, have been carried out [40]. While some of these works centered on an 
individual EO, other works have been on blends of EOs. Extraction of the main compounds in these oils was also done using several 
methods. In oregano plants (Origanum vulgare), the main compounds, thymol and carvacrol show high antimicrobial activity. Anti
parasitic, antibacterial, and antifungal activities have been reported in vitro for oregano EO [41]. 64% of infected patients with enteric 
parasites (Entamoeba hartmanni, Endolimax nana, and Blastocystis hominis) showed improvement when treated with oregano EO [42]. 

A mild effect was exerted in vitro on strains of Plasmodium falciparum that were resistant to chloroquine. This suggests further 
studies into a potential malaria treatment through EOs [43]. Thymus vulgaris EO (of Iranian roots) was reported in vitro to be highly 
potent against Entamoeba histolytica trophozoites which cause amoebiasis [44]. The effects of these EOs on antibiotic-resistant 
Gram-positive and Gram-negative bacteria have also been documented [45]. 

In vitro antifungal activity of Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) obtained from Tarquinia in Italy against Candida 
albicans was explained in a comprehensive study. Although pulegone (a monoterpene ketone) was the major essential oil component, it 
was not the only component responsible for this activity. Following the steam distillation process, the extracted EO showed - very 
significant antifungal activity. Minimum Inhibitory Concentration (MIC) of both the extracted EO and miconazole (a common syn
thetic antifungal drug) were compared to test anti-Candida efficacy. A notable antifungal activity against candidiasis was confirmed 
[46]. 

Due to their antimicrobial and antioxidant properties, EOs have also been explored in the food industry mainly to increase shelf-life 
and maintain food quality in active packaging. While they add fragrance to fabrics in the textile industry, they also work as antimi
crobials [24]. 
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2.5. Anticancer activity 

Cancer is currently the leading cause of death worldwide. With cancer cells invading and growing uncontrollably, a potent cancer 
therapy would involve inhibiting the multiplication of cancer cells [47]. In vitro and in vivo studies of EOs from Cymbopogon flexuosus, a 
variety of lemongrass against a dozen human cell lines have been reported. In vitro, visible effects against different human cancer cell 
lines were observed, denoting cytotoxicity. In addition, the oil inhibited several tumour growths at varying doses in 180 model mice. 
The EO activated the apoptotic process, which resulted in the loss of viable tumour cells. Therefore, oil is seen as a promising anti
cancer candidate [48]. 

Limonene is a major component of citrus EO procured through distillation. It inhibited the multiplication of 22RV-1 (a prostate 
cancer cell line), and A549 (a human lung cancer cell line). Therefore, its potential for prostate and lung cancer therapy usage was 
reported [49]. Similarly, another component of citrus EO, pinene, inhibited non-small-cell lung carcinoma cells [50]. 

2.6. Antidepressant activity 

An estimate of one in every 20 individuals has depression worldwide, with an almost double prevalence among females than males 
[51]. Depression affects relationships and work output, causing distress to many people. Thus, the search for efficient depression 
therapies is important [52]. The high cost of depression pharmacotherapy coupled with side effects, intolerance to treatment, and an 
exhibition of partial or no remission pose challenges to managing depression. Hence, the need for new antidepressants with fewer side 
effects, more efficiency, and a swifter response [53]. Experimental works on the antidepressant properties of EOs and their components 
have been reported Preclinical testing of many EOs (and components) on their antidepressant activities have shown that these oils 
might relieve vital depression symptoms, presenting a complimentary source of therapy [52]. Clinical trials have recently revealed that 
EOs, whether taken orally or inhaled, enter the bloodstream and exert specific effects. These effects include improving sleep, reducing 
anxiety, treating post-traumatic stress disorder, and reducing nicotine cravings [54–56]. 

Lavender, which has been most studied for its anxiolytic properties, displayed significant effects on mood in humans [57]. It was 
found that inhaling lavender oil for 3 min every day for three days resulted in decreased depression and a calm sensation in healthy 
adults. Furthermore, when diagnosed, depressed patients with psychomotor agitation, insomnia, and anxiety were given lavender oil 
capsules for three weeks, anxiety, sleep disturbance, and psychomotor agitation were significantly reduced [58]. 

According to a research investigation, EOs can also aid with mild to moderate postpartum depression and anxiety. Women diag
nosed with postpartum depression (showing anxiety and depression) were given a mix of EOs of Rose otto and Lavandula angustifolia to 
inhale or apply topically. There were no reported adverse effects by all the 28 patients tested, interestingly. The four weeks treatment, 
remarkably relieved both the symptoms of anxiety and depression as scored by a Generalised Anxiety Disorder Scale (GAD-7) and 
Edinburgh Postnatal Depression Scale (EPDS), respectively [59]. This blend of two EOs (rose and lavender) provided another practical 
approach to managing and treating the symptoms of depression and anxiety. 

Furthermore, many animal studies have described the antidepressant-like effects of several essential oils from plants. These include 
Zingiber officinale Roscoe (Zingiberaceae), Rosmarinus officinalis L. (Lamiaceae), Syzygium aromaticum (L.) Merr. & L.M. Perry (Myr
taceae), Eugenia uniflora L. (Myrtaceae), Citrus limon (L.) Osbeck (Rutaceae), and Valeriana wallichii DC. (Caprifoliaceae) [53]. 

3. Nanotechnology: polymeric nanoparticles 

Nanotechnology is fast evolving and leads to various significant technological advancements in many interdisciplinary areas such 
as chemistry, material science, engineering, physics, and medicine. Specifically, for medical applications, different types of nano
particles such as inorganic, lipid-based, and polymers have been exploited for drug delivery and enhancing effectiveness of drugs [60]. 
Polymeric nanoparticles (PNPs) offer superior advantages of being accessible to functionalised (i.e., tailor their biological, physical, 
and chemical properties), ability to release encapsulated compounds at a controlled rate, and proper action on specific sites [61,62]. 
Driven by the significance of nanotechnology in medicine in the past few years, the adoption of PNPs has played a crucial role as a 
therapeutic strategy for developing several medicinal agents. This is due to their efficacy and bioavailability, enhancement over drug 
administration, easy integration into biological matrices, and active ingredient transport to the target site of action with specified 
concentration, stability, and more extended activity period, especially for volatile active agents. Thus, they are considered ideal 
candidates for efficient drug delivery [60]. 

Furthermore, the formulation of any given nano-drug depends on the choice of a suitable polymer system based on factors such as 
maximum encapsulation efficiency, bioactivity, retention time, bioavailability and enhancement of intracellular penetration, appli
cability, safety, biocompatibility, and cost [63,64]. It is worth noting that aside from drug loading efficiencies, the choice of PNPs is a 
major factor upon which the drug release mechanism depends [63]. Additionally, the synthesis and selection of PNPs are predicated on 
the bioactive molecule to be loaded. Drug loading on PNPs can be achieved either by surface adsorption after the production of PNPs or 
by encapsulation during PNP synthesis [65]. In the past, freeze-drying was used to increase the long-term stability of polymeric 
nanoparticles while also improving handling and storage. However, this was associated with stress throughout the process [66]. More 
recent studies revealed the lyophilisation of polymeric nanoparticles as a more efficient means of obtaining a good and stable lyo
philizate for drug delivery [67]. Physicochemical properties of formulations and the engineering principle of a cycle are vital con
siderations to obtaining a good lyophilizate and preservation of the nanoparticles. 
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3.1. Classification of polymeric nanoparticles 

PNPs have been classified according to different criteria. The structural organisation is formulated as nanocapsules, nanospheres, 
nano-ellipsoids and oval nanoparticles, polymeric micelles, and polyplex nanoparticles [67,68]. Their structures depend on prepar
ative methods. When drugs are entrapped as core in a nanoparticle shell, they are regarded as “nanocapsules”, and when adsorbed on 
the surface of the matrix, they are referred to as “nanospheres”, as illustrated in Fig. 2 [61,65]. PNPs have also been grouped based on 
formulations into sizes and shapes such as micelles, vesicles, stars, and inorganic-polymer hybrids [69]. 

Based on absorptivity, PNPs are categorised as biodegradable (which could be natural or synthetic-based) and non-biodegradable 
polymers (such as polyacrylates, polystyrene, polyacrylamide, poly (methyl methacrylate) and many more [70,71]. Owing to the 
limitations and associated risks of non-biodegradable PNPs like low absorptivity and poor degradability in body matrices, chronic 
toxicity, poor excretion ability and inflammatory reaction [71], biodegradable PNPs remain most attractive. They enhance the 
therapeutic value of drugs and bioactive ingredients by improving bioavailability, solubility and retention time [72]. Natural 
biodegradable polymeric nanoparticles have their sources from naturally occurring materials formed during lifecycles of living or
ganisms such as green plants, animals, bacteria and fungi. They are further classified as polysaccharides- and proteins-derived [73]. 
Polysaccharides could be from the plant (such as pectin, cellulose & derivatives, starch and derivatives, Arabic gum, and alginate), 
animal or microbial origin (e.g. xanthan gum, gellan gum and chitosan). Also, protein sources include albumin, gelatin, soy protein, 
hydrolysate, and casein. Explicitly, natural PNPs are normally biodegradable and biocompatible and are eliminated from the body by 
natural metabolic pathways [74,75]. In addition, they are non-toxic, non-immunogenic, have high binding capacity, are well-tolerated 
with no serious side effects and are widely applicable [76]. Nevertheless, they can be mildly immunogenic with their uses limited due 
to batch-to-batch variation in properties. They also often require surface modification to act as nanocarriers [74]. Synthetic PNPs are 
widely known for their controlled chemical composition and are scalable for large-scale production and low batch-to-batch variability 
[77]. Nevertheless, they may be cytotoxic or immunogenic due to unintended degradation [61]. Poly lactic-co-glycolic acid (PLGA), 
Cyclodextrin, Polylactide (PLA), Poly ϵ-caprolactone (PCL), and Poly β-amino ester (PBAE) are examples of synthetic polymeric 
nanoparticles. 

3.2. Synthesis approaches of polymeric nanoparticles 

The method selection for synthesising PNPs depends on the physical and chemical properties of interest and the applications. The 
preparation methods have been categorised into two: those based on the polymerisation of monomers (which comprise microemulsion, 
emulsion, mini-emulsion, controlled/living radical and interfacial polymerisation techniques), and those based on the dispersion of 
preformed polymers (which include emulsification-solvent evaporation, nanoprecipitation, dialysis, salting out and supercritical fluid 
technology) [78]. The methods based on the polymerisation technique have been reported to be inferior and less attractive over those 
based on preformed polymers due to their non-biocompatibility, non-biodegradability, and toxic residue formation [79]. Ref. [74] 
classified the PNP synthesis approach into one-step and two-step procedures. The one-step approach (nanoprecipitation, dialysis, 
supercritical fluid technology) does not involve the preparation of the emulsification system before the formation of nanoparticles 
while the emulsification system is prepared followed by the formation of nanoparticles in the two-step approach (such as 
emulsification-solvent evaporation, emulsification solvent diffusion and Emulsification-reverse-salting out). Table 1 presents a 
comprehensive description, applications, advantages and limitations of each method and Fig. 3 shows a typical scheme for the syn
thesis of nanospheres. 

4. Polymeric-essential oil nanoparticles 

A wide range of techniques (physical, chemical, and mechanical processes) are employed to develop essential oil formulations. EOs 
are a unique class of phytochemicals that require specific protection from light, heat, and other oxidative processes. This is because 
they are labile, insoluble in water, and volatile like many other bioactives. Although the volatile nature of EOs is explored in 
aromatherapy and the treatment of respiratory diseases such as sinusitis and asthma, this unique property is also a limiting factor for 

Fig. 2. Schematic illustration of PNPs in the form of (a) nanosphere, (b) nanocapsule, (c) Polymeric micelles and (d) polyplex nanoparticles [61,65].  
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Table 1 
Summary of methods of polymeric nanoparticles preparation based on preformed polymers, application, advantages, and limitations [74,78].  

METHODS DESCRIPTION SELECTED 
APPLICATIONS 

ADVANTAGES LIMITATIONS SCHEMATIC ILLUSTRATION 

1. DISPERSION OF PREFORMED POLYMERS 
(a) One-step route (involving a direct formation of nanoparticles) 
(I) Nano- 

precipitation  
(or solvent  
displacement) 

This method is based 
on the interfacial 
deposition of the 
polymer after 
displacement of the 
organic solvent from 
lipophilic solution to 
the aqueous phase. 
First, a polymer 
solution with water- 
miscible solvent of 
intermediate polarity 
is formed and added 
to a stirring aqueous 
phase in one shot, 
stepwise, dropwise 
or in a controlled 
addition rate through 
spontaneous 
diffusion to form the 
nanoparticles 
instantaneously to 
prevention water 
molecules 

Several PLGA- and 
PLA-based 
nanoparticles are 
synthesised 
employing this 
technique [80–83]. 

The process is 
simple, quick and 
reproducible; 

Finding of drug/ 
polymer/solvent/ 
non-solvent 
system, which 
allows 
nanoparticle 
production and 
drug 
encapsulation 
challenging 

(II) Dialysis Polymer is first 
dissolved in an 
organic solvent, 
placed inside a 
dialysis membrane 
and then dialysed 
against a non- 
solvent. 

Several PLGA-, PGGA- 
, PPA- and PMMA- 
based nanoparticles 
have been prepared 
with this technique 
[84–86]. 

Requires no 
surfactant; PNPs 
prepared are of 
small or narrow 
nanoparticles 

Weak loading 
efficiency 

(III) Supercritical  
fluid  
technology  
(RESS and  
RESOLV) 

Supercritical fluids 
are used. The most 
common 
technologies are 
RESS and RESOLV 

Employed to produce 
drug-loaded 
nanoparticles 
[87–90]. 

This method is 
usually adopted in 
biomedical and 
environmental 
fields because 
surfactants or 
organic solvent is 
not applied for 

Most polymers 
are poorly soluble 
or even non- 
soluble in 
supercritical 
fluids using RESS 
or RESOLV; 
Requires a high  

(continued on next page) 
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Table 1 (continued ) 

METHODS DESCRIPTION SELECTED 
APPLICATIONS 

ADVANTAGES LIMITATIONS SCHEMATIC ILLUSTRATION 

PNPs preparation; 
easy to scale up; 
environmentally 
friendly because 
no surfactant and 
organic solvent 
required; suitable 
for the production 
of high purity 
nanomedicine 
with tunable 
structural 
homogeneity 

investment for 
high-pressure 
equipment 

(i) RESS PNPs are formed by 
dissolving the solute 
in a supercritical 
fluid to form a 
solution, followed by 
a rapid expansion of 
the solution across an 
orifice or a capillary 
nozzle into ambient 
air 

A few methods have 
demonstrated the use 
of RESS for the 
production of PNPs 
based on Poly 
(perfluoropolyether 
diamide), PLLA, etc. 
[91,92]. 

No surfactant and 
organic solvent 
required 

Major products of 
this technique are 
in micro-scales 
rather than nano- 
scales 

(ii) RESOLV It is a modification of 
RESS method. The 
second step involves 
a rapid expansion of 
the formed 
supercritical solution 
into a liquid solvent 
rather than ambient 
air. The liquid 
solvent acts as a 
suppressant of 
particle growth, 
making the final 
product in the form 
of nano-sized. 

A few reports on the 
production of PLLA, 
PMMA and PHDFDA 
nanoparticles using 
supercritical fluids by 
RESOLV have been 
reported [93,94]. 

The technique 
solved the 
problem of micro- 
scale product 
formed using 
RESS 

Most polymers 
are poorly soluble 
or even non- 
soluble in 
supercritical 
fluids 

(b) Two-step route (involving the preparation of emulsification system followed by the formation of nanoparticles) 

(continued on next page) 
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Table 1 (continued ) 

METHODS DESCRIPTION SELECTED 
APPLICATIONS 

ADVANTAGES LIMITATIONS SCHEMATIC ILLUSTRATION 

(I) Solvent  
evaporation 

Polymer is dissolved 
in a volatile solvent. 
The organic solution 
is emulsified either 
by single emulsion 
(oil-in-water) or 
double emulsion 
(water-in-oil)-in 
water in the aqueous 
phase, and the 
mixture is processed 
by a surfactant 
followed by 
homogenisation 
yielding a dispersion 
of nanodroplets. The 
polymer solvent is 
then evaporated to 
form nanoparticles, 
followed by further 
post-synthesis 
treatment and 
finally, the product is 
lyophilised. 

They are widely 
applied in the 
preparation of several 
synthetic polymeric 
nanoparticles with 
diameter that falls 
within 60 to about 
300 nm using 
appropriate solvent 
systems and stabiliser 
[95–101]. 

The method is 
simple and 
versatile 

It is time- 
consuming; 
possible 
coalescence of 
nanodroplets 
during 
evaporation 
process may 
affect 
morphology and 
particle size; 
applied only to 
liposoluble drugs; 
for scale-up, an 
alternative 
method using 
low-energy 
requirement in 
homogenisation 
is preferred 

(II) Solvent 
diffusion 

In this method, a 
partially water- 
miscible solvent 
containing the 
polymer, and an 
aqueous solution, 
containing a 
surfactant yields the 
formation of o/w 
emulsion. Solvent 
diffusion from the 
dispersed droplets 
into the external 
phase is induced by 
sequential dilution 
with an extensive 
amount of water, 
resulting in colloidal 
particle formation. 

Nanospheres are 
generally produced by 
this method [102, 
103]. Also, by adding 
little amount of oil, 
nanocapsules can be 
prepared [104,105]. 

High yield of 
product obtained; 
easy to scale up; 
no need for high- 
pressure 
homogeniser or 
ultra-sonication; 
good 
encapsulation 
efficiencies; 
batch-to-batch 
reproducibility 

A high volume of 
water is usually 
eliminated from 
the suspension; 
there is the 
possible leakage 
of water-soluble 
drugs into the 
external phase 
throughout the 
emulsification 
step (continued on next page) 
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Table 1 (continued ) 

METHODS DESCRIPTION SELECTED 
APPLICATIONS 

ADVANTAGES LIMITATIONS SCHEMATIC ILLUSTRATION 

(III) Reverse- 
salting out 

An emulsion is 
formulated from a 
water-soluble 
polymer solvent 
(such as acetone) and 
an aqueous gel 
containing the 
salting-out agent 
(calcium chloride) 
and a colloidal 
stabiliser 

Various PLGA and 
PLA nanoparticles are 
produced [106,107]. 

Hazardous 
solvents are not 
required. 

Exclusive 
application in 
encapsulating 
lipophilic drugs; 
intensive 
purification step 
due to the use of 
salts 

2. POLYMERISATION OF MONOMERS 
(I) Emulsion  

polymerisation 
Most common 
method use for the 
production of, many 
speciality polymers  

Water is used as 
the dispersion 
medium, making 
the process eco- 
friendly; 
Characterised by 
excellent 
dissipation of heat 
in the course of 
the 
polymerisation  

(i) Conventional  
emulsion  
polymerisation 

Surfactants are 
utilised in the 
process, and the 
nature of the 
surfactants 
determines the 
diameter of the PNP 
produce. Using this 
approach, water, a 
monomer of low 
water solubility, a 
water-soluble 
initiator is the 
precursors required 
for the reaction. 
PNPs of about 100 
nm are usually 
obtained. 

The majority of the 
poly 
(alkylcyanoacrylate) 
nanoparticles are 
obtained through 
anionic 
polymerisation 
[108–113] 

Well-defined 
nanoparticles are 
obtained 

Surfactants used 
are not easily 
eliminated, thus 
may pose some 
toxicity effect; 
Surfactant 
removal is time- 
consuming, and 
that increases the 
cost of 
production (continued on next page) 
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Table 1 (continued ) 

METHODS DESCRIPTION SELECTED 
APPLICATIONS 

ADVANTAGES LIMITATIONS SCHEMATIC ILLUSTRATION 

(ii) Surface-free  
emulsion  
polymerisation 

No surfactant 
required. The 
ingredients used are 
deionised water, a 
water-soluble 
initiator and 
monomers 

Several PS, PMMA, 
PECA nanoparticles 
have been prepared 
[114–117] 

The process is 
surfactant-free, no 
environmental 
and economic 
concern; time- 
saving for PNPs 
production 
because there is 
no removal of 
surfactant 

A challenge of 
preparing mono- 
dispersed and 
precisely 
controlled 
particle size is a 
challenge 

(II) Mini-emulsion Water, a mixture of 
monomer, co- 
stabiliser, surfactant 
and initiator, are the 
typical formulation 
of this method. Low 
molecular weight 
compounds are used 
as compounds. A 
high-shear device (e. 
g. ultrasonication 
machine) is used; 
Droplets formed 
range between 20 
and 200 nm; Particle 
sizes fall within 10 
nm–30 nm. 
Polydispersity is very 
low. Stability period 
range from hours to 
months upon 
appropriate storage 
conditions 

PMMA and poly (n- 
butylacrylate) 
nanoparticles were 
prepared using SLS/ 
DDM and S.L.S./ 
hexadecane as 
surfactant/co- 
stabiliser systems 
respectively [118, 
119]. 

Utilises a small 
amount of 
surfactant 

Although little 
quantity of 
surfactants are 
used in the 
process, some 
amount remains 
in the polymer 
matrix 

(III) Micro- 
emulsion 

The mechanism of 
the process involves 
the formation of 
nanodroplets of 
about 10 nm 
followed by growth 
in particle size due to 
the osmotic and 
elastic influence of 
the chain. Like the 
emulsion 
polymerisation 
method, colloidal 
polymer 
nanoparticles of high 
molecular mass are 
produced; they are 

Production of co- 
polymer nanoparticles 
made of MMA and 
NMA using AOT as 
surfactant. Poly 
(dimethylsiloxane) 
nanopolymer) (12–80 
nm) can be produced 
using cationic 
surfactants. Poly 
(hexylmethacrylate) 
of 38–53 nm can be 
produced using DTAB 
and DDAB as stabiliser 
and VA-044 as the 
initiator [120–122]. 

Very effective for 
the parathion of 
nano-sized 
particles 

A large ratio of 
surfactant to 
monomer is 
required for 
polymer stability 
and thus may be 
difficult to 
eliminate 

(continued on next page) 
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Table 1 (continued ) 

METHODS DESCRIPTION SELECTED 
APPLICATIONS 

ADVANTAGES LIMITATIONS SCHEMATIC ILLUSTRATION 

kinetically different. 
Polydispersity is very 
low. Particle sizes 
may fall within 
30–100 nm; They are 
thermodynamically 
unstable; Infinity 
stability upon 
constant storage 
conditions 

(IV) Interfacial  
polymerisation 

A reaction occurs at 
the interface of two 
liquids in which the 
two reactive 
monomers needed 
for the reactions 
dissolve, respectively 

Several PNPs have 
been prepared using a 
wide range of 
continuous and 
dispersed phases 

A well-established 
process of 
producing PNPs 

The process is 
expensive; 
Environmental 
concerns; various 
membranes with 
different sizes of 
inner pores are 
required to 
control the size of 
the product 

N/A 

(V) Controlled/ 
Living radical  
polymerisation  
(NMP, ATRP  
and RAFT) 

Three approaches are 
involved (NMR, 
ATRP and RAFT) 

Preparation of poly 
(n-butylacrylate) 
nanoparticles of about 
300 nm size [123]. 

Polymeric 
nanoparticles 
with precise 
particle size and 
size distribution 
control can be 
achieved 

Lack of control 
over molar mass; 
molar mass 
distribution, end- 
functionalities 
and macro- 
molecular 
architecture due 
to unavoidable 
fast radical- 
radical 
termination 
reactions; residua 
control agent are 
usually contained 
in the product; 
challenging to 
remove 
mediating agents 
from the aqueous 
dispersion 

N/A 

RESS: Rapid expansion of a supercritical solution; RESOLV: Rapid expansion of a supercritical solution into liquid solvent; PS: Polystyrene; PMMA: poly (methylmethacrylate); PECA: Poly (ethyl
cyanoacrylate); NMP: Nitroxide-mediated polymerisation; ATRP: Atom transfer radical polymerisation; RAFT: Reversible addition and fragmentation transfer chain polymerisation. 
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applying EOs as chemotherapeutics despite their wide range of medicinal properties. Thus, there is a need to develop new advanced 
formulations for augmented protection and enhanced delivery of EOs. 

In recent years, advances in nanotechnology have spurred interest in the use of nanoparticles to improve the bioactivity of EOs via 
encapsulation in polymeric matrices. Polymeric nanoparticles are sub-micron particles (<1000 nm in size) that have found extensive 
medical applications in drug delivery, targeting, imaging, and diagnostics. Bioactives can either be encapsulated in or adsorbed on 
these polymeric materials. The polymers conferred new characteristics on the actives, protecting them from degradation to more minor 
or inactive derivatives, improving their half-life in circulation when administered and serving as a platform for controlled delivery, and 
ultimately enhancing their targeted bioavailability and bioactivity in a sustained manner. 

As highlighted in the previous sub-section, polymers can either be from natural or synthetic origins. Nanoparticles prepared from 
pharmaceutically approved synthetic polymers such polyethylene glycol (PEG), polylactic acid (PLA), polycaprolactone (PCL), 
polyvinyl alcohol (PVA) and their respective co-polymers, PLGA (poly(lactic-co-glycolic acid)), EVA (poly(ethylene-co-vinyl acetate)) 
among others are used as delivery systems for EOs [124–128]. Similarly, polymers from natural sources such as starch, cellulose, 
alginate, chitosan, cyclodextrins, gum arabic, and their derivatives and polycomplexes have been demonstrated as micro to nano
particulate platforms for EOs formulations [129]. These polymeric nanoparticles were formed using various techniques that include 
melt-dispersion, antisolvent precipitation, ionic gelation, polyelectrolyte complexation, spray-drying, and supercritical fluid tech
nology. This section will briefly discuss some of the advances in the formulation of polymer-essential oil nanoparticles based on the 
type of materials employed, with more focus on those from natural sources (Table 2). 

4.1. Synthetic polymer-essential oil nanoparticles 

PEG is a polyether compound generated from petroleum by-products that comes in a wide range of molecular weights and is used in 
various industrial applications. It’s a versatile excipient utilised in cosmetics, pharmaceuticals, food, and agriculture as an additive, 
binder, and emulsion. Ref. [128] employed the melt-dispersion approach to make polymer-essential oil nanoparticles with PEG 6000 
(g/mol). The EO was loaded into the polymer at a 1 to 9 ratio, nanoparticles with sizes <240 nm were produced, and 80% oil loading 
efficiency was achieved. Due to the gradual release of the EO from the polymeric nanoparticles, the oil’s anti-insecticidal action against 
Tribolium castaneum (red flour beetle) was boosted seven times and maintained for five months. 

In another study, PLA-lemon grass (Cymbopogon citratus) EO nanocapsules were produced by solvent/antisolvent precipitation 
method [127]. PLA is a linear aliphatic polyester of lactic acid, which is strongly hydrophobic. [127] prepared the functional nano
capsules by mixing the lemon-grass oil with PLA in acetone and then dispersing the water solution. The precipitated PLA nanoparticles 
were ~240 nm and increased in size to ~300 nm when the lemongrass oil was incorporated. The PLA nanoparticles were shown to 
possess inherent antimicrobial activities against four bacteria strains viz Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia 
coli, and Candida albicans. The incorporation of lemongrass EO enhanced the antimicrobial properties of the nanocapsules. 

Other synthetic polymers such as PCL and co-polymers such as PLGA can also formulate a polymeric-essential oil delivery system. 
Ref. [125] prepared PCL-nanocapsules for thyme and oregano EO using the nanoprecipitation method. The polymeric nanoparticles 
showed uniform size distribution (170–175 nm) with very high encapsulation efficiency. In addition to the improved antimicrobial 
activities against S. aureus and E. coli, PCL nanocapsules conferred higher anti-oxidant activity on Cymbopogon martini, palmarosa EO 
[126]. PLGA nanoparticles containing lemongrass oil were optimised using the oil-in-water emulsion/solvent diffusion method [124]. 
GC/MS analysis of the optimised formulation showed that only citral was incorporated in the nanoparticles. The PLGA-citral nano
particles had a mean size of 277 nm and an encapsulation efficiency of about 73%. The bioactive component, citral, demonstrated a 

Fig. 3. Schematic illustration of the synthesis of nanosphere PNPs [74].  
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Table 2 
Biopolymeric nanoparticles loaded essential oils for different biological applications.  

PNPs Essential oil (EO) Support materials Method of synthesis Morphology of NPs Biological Application References 

Starch Menthone EO – Nanoprecipitation Spherical Antioxidant and antimicrobial activities [130] 
Zein Clove EO – Electro-spraying Spherical wrinkle edible coating and bio-preservative in perishable 

food products 
[131] 

Potato starch Zataria multiflora EO Apple peel pectin/ZrO2 NPs – Spherical pores Anti-microbial packing for quail meat [132] 
Starch Clove EO CaCO3 NPs Templating approach Honeycomb Natural food preservatives and anti-microbial 

activity 
[133] 

Chitosan Tumeric EO Magnetic-Silica NPs Core-shell Oval and round Packaging material for prolonged shelf-life of 
surimi 

[134] 

Glycyrrhiza 
polysaccharide 

Tea tree EO Gliadin NPs – Spherical Meat preservation [135] 

Starch Thyme EO Nano-silica – Coarse surface Slow-releasing and antimicrobial packaging 
materials 

[136] 

Chitosan Thymol EO – – Spherical Inhibit chestnuts decay during storage [137] 
Konjac glucomannan Oregano EO Zein–pectin Pickering emulsions Homogeneous and 

smooth 
Food preservation/packaging [138] 

Whey and mung bean 
proteins 

Industrial hemp EO – Nanoprecipitation Spherical Natural preservative for coating fishes [139] 

Alginate- chitosan Turmeric oil- and Lemongrass 
oil- 

– Emulsification Spherical Nanocarriers with antiproliferative properties [140] 

Calcium alginate Thyme EO Acetic or propionic acids, and 
Tween®80 

– Porous fibrous Maintaining the microbial quality of ground meat [141] 

β-cyclodextrin/chitosan Cinnamomum zeylanicum EO  Ionic gelation Spherical Ocular mucosa, cornea, or transdermal delivery [142] 
Chitosan Thyme EO β-cyclodextrin Freeze drying Dense and irregular Antibacterial and antioxidant [143] 
Chitosan Geranium maculatum, and Citrus 

bergamia 
PEG Dispersion – Mosquito control [144] 

Zein Clove EO – Antisolvent 
precipitation 

– Insecticides for crop protection [145] 

Chitosan Peppermint EO – Ionic gelation Spherical Stored food pest management [146] 
Chitosan Garlic EO TPP Ionic gelation Spherical Seed dressing agent [147] 
Chitosan/pullulan Clove EO Chitosan-ZnO Solvent casting Rough surface Active food packaging [148] 
Chitosan Clove EO – Emulsion-ionic 

gelation 
Spherical Antioxidant and antibacterial activities [149] 

Chitosan Summer savory – Ionic gelation Spherical Antioxidant and antibacterial delivery [150]  
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biphasic release pattern with an initial 50% burst release within 1 h in saline-phosphate buffer (pH 6.8). Astoundingly, encapsulation 
in PLGA nanoparticles eliminated the cellular toxicity of citral-rich oil against human keratinocytes by attenuating its effect on 
mitochondrial dehydrogenase activity. These investigators showed that polymeric nanoparticles could improve activity and reduce the 
toxicity of EOs. The antimicrobial and antioxidant bioactive compounds in Palmarosa (Cymbopogon martinii) EO was entrapped in 
poly-ε-caprolactone nanoparticles prepared by the nano-precipitation method [126]. The entrapped compounds demonstrated 
intriguing antioxidant capacity by DPPH assay, and antimicrobial activity against Escherichia coli and Staphylococcus aureus and are 
considered as a material suitable in perfumery, cosmetics, and in the pharmaceutical industries. In addition, the electrospinning of 
polycaprolactone blended with gold nanoparticles (AuNPs) and spearmint oil nanoemulsion was also explored for wound dressing 
[151]. The blended compounds also displayed brilliant antimicrobial prospects against wound-associated microbes such as Escherichia 
coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans. The potential pharmaceutical application of Cymbopogon 
citratus EO loaded into poly (D,L-lactide-co-glycolide)-nanoparticles was reported [124]. The characterization of the compound 
revealed the incorporation of citral as a nanocarrier, with a biphasic pattern sustained-release depending on diffusion from the 
polymeric matrix. A composite material of thyme essential oil (TEO) loaded in electrospun porous poly(lactic acid) nanofibers and 
coated with poly(vinyl alcohol)/poly(ethylene glycol) blend was prepared for humidity-controlled TEO release [152]. The bioactive 
packaging film showed an excellent >99% inhibition of Escherichia coli and Staphylococcus aureus as well as minimal weight loss and 
good firmness of strawberries packaged with the composite material. The in vitro release behaviours of TEO could be controlled by 
adjusting the humidity (20% RH to 80% RH). 

4.2. Natural polymer-essential oil nanoparticles 

Chitosan is a natural polymer derived from the deacetylation of chitin. It is a polycationic macromolecule that is readily func
tionalised for the targeted delivery of bioactive agents. It also has exceptional mucoadhesive properties. Hence, its application as an 
oral to gastrointestinal delivery of poorly diffused drugs across the intestinal epithelium. Polymeric encapsulation of EOs in a chitosan- 
based delivery system is well-established in the literature. Ionic gelation with polyphosphate is the most common method for syn
thesising chitosan-essential oil nanoparticles because it is generally organic solvent-free. Ref. [129] successfully encapsulated Oregano 
EO in chitosan nanoparticles using the oil-in-water emulsion method followed by ionic gelation with tripolyphosphate. The nano
particles were spherical with a size range of 40–80 nm. The influence of pantasodium tripolyphosphate (TPP) and sodium hexame
taphosphate (HMP) showed that oil loaded in chitosan-TPP nanoparticles had higher loading capacity and encapsulation efficiency 
than those prepared with HMP. The bioactivities of the EO were not affected following loading in chitosan nanoparticles. For ap
plications in food preservation, films made from or coated with chitosan-essential oils nanoparticles were also shown to improve the 
shelf life and quality of perishable foods such as fruits and meats [153]. Chitosan nanoparticles loaded with cinnamon EOs exhibited 
unusual antimicrobial and antioxidant activities. The loading capacity of the oil was directly dependent on the size of the nanoparticles 
[153]. The cumulative amount of oil released was higher in acidic pH when compared to those released at normal or basic pH [129]. 
Chitosan disintegrates easily in acidic solutions, thus the need for co-polymerisation with other acid-tolerant polymers such as alginate 
in other to extend retention coefficients of chitosan-based nanoparticles in the gastric environment. The antifungal properties and 
half-life of thyme EOs in nanogel formulation of chitosan and benzoic acid were examined by Ref. [154]. 

The in vivo analysis displayed an increased half-life and remarkable anti-fungal properties against Aspergillus flavus at elevated 
concentrations above 700 mg/l. Ref. [155] revealed that the semi-solid hydrogels fabricated from polyvinyl alcohol incorporated into 
chitosan-loaded clove EO or turmeric EO are promising candidates for wound management. This is because the hydrogel assisted in 
sustaining the prolonged-release rate of the bioactive essential oil compounds for wound treatment and is non-toxic to both NCTC 
clone 929 and normal human dermal fibroblasts (NHDF) cells. To improve the anti-cancer activity of celandine roots and leaves oil, 
Ref. [156] extracted the essential oils and loaded them into chitosan nanoparticles. The loaded compounds displayed a dose-dependent 
effect on the MCF-7 cell line with inhibitory concentration (IC50) values of 77.6, and 41.5 μg/mL for the loaded roots oil and leaves oil 
respectively; as well as 63.73% apoptosis for the loaded leaves oil. Meanwhile, in the dental industry, nanogel was fabricated from 
Mentha piperita EO (MPEO) loaded with chitosan [157]. The nanogel was deployed as an antibiofilm agent against Streptococcus mutans 
(dental plaque agent). The maximum release of MPEO was about 50% during 360 h in a hydroalcoholic solvent at ambient temper
ature. The adherence of bacterial cells showed high sensitivity to the nanoformulation compared with unloaded chitosan-nanogel. The 
antibiofilm inhibition of S. mutans occurred in 50 and 400 μg/mL for loaded and unloaded-nanogel respectively. For the control of 
dengue vector, Ref. [158] prepared chitosan-cashew gum beads loaded with Lippia sidoides EO. The oil loading ranged from 2.4% to 
4.4% and the diffusion coefficient was as low as 2 × 10− 15 m2/s. The in vivo release studies show good larvae control of the dengue 
vector and its successful elimination in 72 h. 

5. Conclusions 

The integration of EOs into the health care delivery system worldwide is increasing, and enhancing their delivery is of utmost 
importance. Essential oils used chiefly in aromatherapy can be repurposed, and their delivery into the patient’s system is enhanced 
using nanotechnology. EOs are reportedly antioxidant, phytotoxic, acaricidal, antimicrobial, anticancerous, and antidepressant. 
Integrating nanotechnology into the healthcare delivery system is an evolving area of drug delivery. However, formulating any nano- 
drugs depends on choosing a suitable polymer system. EOs from several medicinal plants have been produced in synthetic polymer 
nanoparticles, which has reportedly increased the efficacy and shelf-life of the polymer-essential oil nanoparticles. Also, natural 
polymers have been employed to produce polymer-essential oil nanoparticles, increasing their effectiveness. 
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