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Abstract: Compound 1 (SMTP-7, also FGFC1), an isoindolone alkaloid from marine fungi
Starchbotrys longispora FG216 and fungi Stachybotrys microspora IFO 30018, possessed diverse bioactiv-
ities such as thrombolysis, anti-inflammatory and anti-oxidative properties, and so on. It may
be widely used for the treatment of various diseases, including cerebral infarction, stroke, is-
chemia/reperfusion damage, acute kidney injury, etc. Especially in cerebral infarction, compound 1
could reduce hemorrhagic transformation along with thrombolytic therapy, as the traditional thera-
pies are accompanied with bleeding risks. In the latest studies, compound 1 selectively inhibited the
growth of NSCLC cells with EGFR mutation, thus demonstrating its excellent anti-cancer activity.
Herein, we summarized pharmacological activities, preparation of staplabin congeners—especially
compound 1—and the mechanism of compound 1, with potential therapeutic applications.

Keywords: FGFC1; thrombus; fibrinolytic; Stachybotrys longispora FG216; Stachybotrys microspora
IFO 30018

1. Introduction

The hemostatic system, consisting of the coagulation and fibrinolytic systems, is a
vital physiological function in inhibiting hemorrhage and accelerating wound healing [1,2].
Fibrinolysis is regulated by plasminogen and activated by physiologic plasminogen activa-
tors: tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator
(u-PA). Meanwhile, the level of activated plasmin could be inhibited through the block
of plasminogen activation by several specific molecules [3,4]. However, various clinical
cases indicated that hereditary or acquired factors would enhance or weaken fibrinolytic
systems, causing the disorder between the coagulation and fibrinolytic systems, which
led to hemorrhage or thrombosis. Compared with a hemorrhage, thrombus formation
develops much more gradually and imperceptibly, leading many patients’ deaths [5]. Cur-
rent drugs on thrombosis include aspirin, ticlopidine, warfarin, and heparin; however, the
risk of bleeding is a concern [6]. Therefore, small molecules, with different mechanisms of
fibrinolysis action, are desired for new antithrombotics and thrombolytics.
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Natural products, historically, possess various bioactivities for the treatment of human
diseases [7–12]. Marine products, due to the unique marine environments, provide special
structures of compounds differing from terrestrial ones. Up to now, over 28,175 chemical
entities have been identified, with hundreds of new compounds discovered every year [13].
Numerous marine molecules have been approved for clinical treatments, such as anticancer
cytarabine and analgesic ziconotide [14–16].

In 1996, Kohyama et al. isolated SMTP-1 from fungi Stachybotrys microspora IFO
30018, with 20–30% higher plasminogen-fibrin binding action than staplabin, indicating
the potential for thrombolysis therapy [17–19]. Staplabin, a triprenyl phenol, was the
basic core of the SMTP family, and SMTP-1, as well as other congeners, were variants of
staplabin (Figure 1) [17,20]. Then, a series of congeners, containing a tricyclic γ-lactam
moiety, a geranylmethyl side-chain, and an N-linked side-chain, were isolated and showed
plasminogen activation [21]. Compound 1 (Figure 2), with two staplabin cores bridged by
ornithine, could increase urokinase-catalyzed plasminogen activation, fibrin binding of
plasminogen, and fibrinolysis mediated by urokinase and plasminogen [20]. Meanwhile,
it showed excellent clot clearance activity in vivo [22,23]. In a rat pulmonary embolism
model, compound 1 (5 mg/kg) enhanced, by three-fold, the clot clearance rate above the
spontaneous clearance group. Moreover, clot clearance of compound 1 was enhanced,
further, in combination with u-PA [23].

Figure 1. Structures of staplabin and SMTP-1.

At present, more than 60 congeners of staplabin have been isolated, which not only
performed fibrinolysis activity but also exhibited various effects, such as anti-inflammatory,
neuroprotection, and anti-cancer properties [1]. Other modified derivatives and structure–
function relationships of compound 1 have also been studied. Scientists also confirmed
the absolute configuration and preparation methods of congeners and derivatives, which
shared similar absolute configuration (8S, 9S) and a staplabin core. Meanwhile, most
monomeric analogues could be obtained by replacing the ornthine with non-basic amino
acids or simple amines [24,25]. Herein, we focused on the diverse biological activities of
compound 1, which is a congener of staplabin (Figure 2).
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Figure 2. Structures of congeners and derivatives of staplabin.

2. Pharmacological Activity
2.1. Thrombolytic Activity

Thromboembolic disease is a main cause of mortality and disability. For instance,
stroke is responsible for 5.2% of all mortalities in the world [26]. Most of them are ischemic
strokes, which would trigger transient or permanent occlusion of cerebral vessels causing
brain infarcts, cerebral tissue death, and focal neuronal damage after blocking for 6 h [27].
Therefore, the key to saving stroke patients is solving thromboembolism in an efficient way.
It is needed to search for more potent and safer drugs for the inhibition and treatment of
ischemic symptoms.

In 1999, Hu et al. isolated compound 1 from the fungus S. microspora IFO 30018, with
a preliminary determination for its plasminogen activation and fibrinolysis activity at
80–150 µM in vitro [20]. In 2010, Hashimoto et al. established a novel cerebral infarction
model for predicting cerebral infarction, in which generated embolus transferred to the
brain in the right common carotid artery of Mongolian gerbils, induced by acetic acid [28].
In the same year, they assessed the therapeutic effect of compound 1 and t-PA in the cerebral
infarction model [29]. The fibrinolytic activity of compound 1 (<20% of positive control)
was lower than t-PA (>140% of positive control) in the 3 h after administration, but the
activity of compound 1 increased about 3.5-fold during 1–3 h and was higher than t-PA
after 3 h. It was attributed that the activity of compound 1 gradually increased. Meanwhile,
compound 1 extended the therapeutic time window. Compared with a clear infarct in the
cerebral hemisphere by t-PA (10 mg/kg) treatment, there was no visible infarction in the
group of compound 1 at 3 h after ischemia. More importantly, there was little hemorrhagic
region with 10 mg/kg of compound 1, suggesting that it is a latent safe cerebral infarction
therapy method. Hu et al., (2012) disclosed that compound 1 enhanced plasmin generation
in vivo [20]. The level of plasmin-α2-antiplasmin complex, an indicator of plasmin forma-
tion, increased by 1.5-fold in male ICR mice after the treatment with 5 and 10 mg/kg of
compound 1. In 2014, the antithrombotic activity of compound 1 was further demonstrated
in the male cynomolgus monkey model [30,31], which achieved excellent effects (Table 1).
In addition, Ito et al. found that the combination therapy with warfarin and compound
1, in the middle cerebral artery occlusion, improved the treatment safety and reduced
hemorrhagic transformation [32]. Compound 1, as a safe thrombolytic agent, relieved the
side effects, such as severe infarction, edema, and hemorrhage, induced by warfarin in the
middle cerebral artery occlusion model. All mice treated with compound 1 survived and
the hemorrhagic severity score (1.3 ± 0.5) indicated decreased hemorrhagic transformation.
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Table 1. The antithrombotic effect of compound 1 in the severe embolic stroke monkey model.

The Antithrombotic Effects Efficacy (10 mg/kg)

consistent clot clearance 43.3 ± 40.5%
thrombotic middle cerebral artery occlusion recanalization 32.5-fold

neurologic deficit amelioration 29%
cerebral infarct reduction 46%

cerebral hemorrhage decrease 51%
infarct, edema and clot sizes reduction 65%, 37%, and 55%, respectively

Then, Wang et al. isolated compound 1 from a rare marine fungus Stachybotrys longispora
FG216 and evaluated its fibrinolysis activity [33]. Additionally, 0.1–0.4 mmol/L of compound
1 increased the Glu-plasminogen and Lys-plasminogen activation by 2.05–11.44 times in vitro.
Meanwhile, 10 mg/kg compound 1 dissolved most pulmonary thrombus in the Wistar
rat in vivo. Yan et al. further researched the thrombolysis and hemorrhagic activities of
compound 1, from S. longispora FG216, in vitro and on acute pulmonary embolism Wistar
rat model in vivo [34]. Compound 1, from 5 to 25 µM, induced fibrin hydrolysis in vitro;
moreover, its thrombolytic activity was evaluated with fluorescence lung tissues in vivo. It
was observed that compound 1, of 5 and 10 mg/kg, displayed effective dissolving capacity
(less fluorescence halo). Meanwhile, the euglobulin lysis time (ELT) was shortened for 30 s
by the treatment of compound 1 in the Wistar rat model. Shortening ELT was related to the
activation of the fibrinolytic system. Therefore, compound 1 exhibited fibrinolytic activity
in vivo. Compound 1 (5, 10, and 25 mg/kg), especially, did not induce fibrinogenolysis at
30 min and 2 h after administration, which suggested that compound 1 reduced the risk of
hemorrhage. Thus, compound 1 was a potential thrombolytic agent without hemorrhage [34].
In 2021, Gao et al. detected that compound 1, with low concentration (0.096 mM), enhanced
fibrinolytic activity by 2.2-fold in vitro; however, it inhibited fibrinolytic activity at excess
doses (above 0.24 mM) [35].

Congeners 3, 5, and 7 enhanced fibrinolysis activities at 0.25 mM, in the 125I-Fibrin
degradation experiment, by 2.3-fold, 1.9-fold, and 2.7-fold, respectively [36]. Congener
8 (80 µM) also increased fibrinolysis activity by eight-fold in the fibrin binding of 125I-
plasminogen [20]. In 2003, Hu et al. isolated congeners 4, 6, and 9 with the activation effect
on the urokinase-catalyzed plasminogen in vitro [24]. In 2012, congeners 11–13, isolated
from S. microspore, showed similar plasminogen activation activities when compared with
compound 1 [37]. In 2018, Shibata et al. evaluated fibrinolysis activities of congeners 12
and 17 in an acetic acid-induced cerebral infarction mouse model [38]. Compared with
compound 1, of 10 mg/kg, congeners 12 and 17 reduced the size of the infarction area,
neurological score, and edema percentage (Table 2).

Table 2. The fibrinolysis activities of compound 1, as well as congeners 12 and 17.

Fibrinolysis
Activities (10 mg/kg)

Infarction Area Size
Reduction

Neurological Score
Reduction

Edema Percentage
Reduction

Compound 1 4.9 ± 1.1% 1.7 ± 0.4% 5.8 ± 1.0%
Congener 12 4.4 ± 0.5% 1.7 ± 0.4% 4.6 ± 1.0%
Congener 17 5.7 ± 1.2% 1.5 ± 0.5% 3.3 ± 1.4%

To gain a deep insight into the antithrombotic effect, many studies attempted to
illustrate the detailed mechanism for compound 1. Hashimoto et al., firstly, confirmed ex-
cellent thrombolytic activity of compound 1 (no visible infarction area after treatment with
10 mg/kg for 3 and 6 h) in an acetic acid-induced novel embolic cerebral infarction model
in vivo. They hypothesized that compound 1 could relieve cerebral infarction by combined
effects, giving rise to studies on other activities of compound 1 [28]. In 2010, they demon-
strated that compound 1 possessed thrombolytic and anti-inflammatory activities [29]. By
the treatment with compound 1, at 3 h after ischemia, mRNA expression of interleukin-1β
(IL-1β), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) did not increase signif-
icantly. Therefore, compound 1 ameliorated hemorrhage and neurologic deficits, with a
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wide therapeutic time window in thrombolysis, by inhibiting inflammation. One year later,
Akamatsu et al. further completed the anti-inflammatory mechanism of compound 1 in
fibrinolysis [39]. Matrix metalloproteinase-9 (MMP-9) was significantly inhibited (92 kDa
band) with compound 1 in transient focal cerebral ischemia, suggesting a cerebral neu-
roprotective effect of compound 1, on ischemia/reperfusion injury, and a reduction risk
for hemorrhagic transformation. Moreover, compound 1 inhibited the expression of an
early superoxide anion and nitrotyrosine for 2 h after ischemia/reperfusion, so it showed
anti-oxidative activity to reduce ischemia/reperfusion damage [39]. In 2014, Hanshimoto
et al. observed that reactive oxygen species could cause overexpression of proinflammatory
cytokines [40]. Compound 1 inhibited the overexpression of a signal transducer and activa-
tor of transcription 3, to extend the therapeutic time window in thrombolysis therapy, by
exhibiting its anti-oxidative effect. In addition, Huang et al. observed the inhibitory activity
of compound 1 on pro-MMP-9, which inhibited the degradation of the basal membrane
and the blood–brain barrier, reducing the risk of hemorrhage [41]. Moreover, Koyanagi
et al., (2014) found compound 1 performed better plasminogen activation activity with
the presence of physiological cofactors [42]. Compound 1, of 20–60 µmol/L, promoted the
activation of Glu-plasminogen, by 10-fold, with phosphatidylcholine and phosphatidylser-
ine. Meanwhile, compound 1 also showed promoted plasminogen activation activity, with
the presence of gangliosides and oleic acid released from thrombus in the process of clot
lysis. These endogenous cofactors might change the fifth kringle domain conformation of
plasminogen to induce the interactions between compound 1 and the plasminogen, whose
mechanism could be elucidated in detail in future.

Wu group also investigated the thrombolytic mechanism of compound 1. Compound 1
of 0.1–0.4 mmol/L activated the Glu-plasminogen and Lys-plasminogen (2.05–11.44 folds),
but it had no fibrinolytic activity in the absence of u-PA or a plasminogen in vitro [33].
Meanwhile, the treatment, with 10 mg/kg of compound 1 after 24 h, performed efficiently
in the pulmonary embolism Wistar rat model, meaning that u-PA and plasminogen medi-
ated its thrombolytic effect. Furthermore, Wu group detected enzymatic kinetic parameters
of compound 1 by chromogenic-substrate associated with p-nitroaniline from the enzymatic
reaction [43]. The results indicated that the increase in kcat and kcat/Km activity was related
to the concentration of compound 1, which exhibited 26.5-fold and 22.8-fold activity at
40 µg/mL. Moreover, the affinity of plasminogen and pro-uPA to the enzyme substrate
presented a faint decrease with an increasing concentration of compound 1, as the Km
increased (from 0.413 to 0.484 µmol/L) along with the increasing concentration of com-
pound 1 (0–40 µg/mL). The results further proved that reciprocal activation of pro-uPA
and plasminogen was critical to the fibrinolysis activity of compound 1, which enhanced
the maximum catalytic efficiency and total catalytic activity of fibrinolysis. The fibrinolysis
activity of compound 1 featured an enzymatic kinetic characteristic.

Wu group further studied the interaction mechanism between compound 1 and plas-
minogen [35]. The Glu-plasminogen, in the bloodstream, contains a Pan-apple domain
(PAp), five kringle domains (KR1-KR5), and a serine protease domain (SP). Lysine-binding
sites (LBS), in kringle domains of plasminogen, were essential for the interaction of plas-
minogen and compound 1 [44–46]. Compound 1, firstly, bound the LBS of KR1, while
KR1 activated and mediated the interaction between plasminogen and the C-terminal
lysine moiety on fibrin. KR5 dropped from PAp and was exposed to closed plasminogen
temporarily [36]. Then, compound 1 formed hydrogen bonds with Asp518 and Asp534
in KR5, which induced conformational change and structural rearrangement. After that,
additional LBSs on kringle domains were exposed, leading the movement of PAp. There-
fore, these additional LBSs interacted with compound 1, causing an open conformation of
plasminogen, which could be easily activated by u-PA (Figure 3). The theoretical binding
mode showed that compound 1 formed a stable complex with Glu39, Thr41, and Arg43 in
plasminogen with hydrogen bonds (Figure 4).
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Figure 3. The mechanism of plasminogen activation by compound 1.

Figure 4. The interactions between compound 1 and plasminogen: (a) binding site; (b) the 3D docking
model of compound 1 with plasminogen.

The structure–activity relationships of the plasminogen modulator compound 1 and
its congeners have been studied in detail. Most congeners contain the same geranylmethyl
side-chain, but they bear different N-linked side-chains. Congener 2 possessed a hydrox-
ylated geranylmethyl side-chain [17] and could not enhance plasminogen binding to the
activated plasminogen. Thus, the side-chain of geranylmethyl plays a key role in promoting
plasminogen activation. In 2016, Otake et al. found that the geranylmethyl side-chain of con-
geners was critical to inhibitory activity of soluble expoxide hydrolase (sEH), an enzyme
mediating anti-inflammatory action [47]. sEH lost inhibitory activity with the increas-
ing number of hydroxyl groups on geranylmethyl side-chains or missing geranylmethyl
side-chains, and the terminal hydroxy group of side-chain led to the damage of cellular
localization. For the N-linked side-chain, Hasumi et al. isolated the simplest congener
(SMTP-0) without an N-linked side-chain, which had no plasminogen activation effect [48]
(Figure 5). It can be concluded that the N-linked side-chain was essential for plasminogen-
modulating activity. In 2010, Hasegawa et al. confirmed the crucial role of the N-linked
side chain in modulating plasminogen [21]. The congeners, without ionizable groups in
N-linked side-chain, were inactive in plasminogen activation, such as with congener 10.
Moreover, the congeners, with an aromatic group and a negatively ionizable group on the
side-chain, were more active for the enhancement of plasminogen activation than those with
an aliphatic group and a negatively ionizable group, such as congener 3 (Emax = 15-fold).
Koide et al. further isolated a series of SMTP congeners with different N-linked side-chains
and evaluated their bioactivities. Congeners 11 (Emax = 126-fold) and 12 (Emax = 159-fold)
were as potent as compound 1 (Emax = 102-fold) in plasminogen-modulating activity [37].
Only these congeners could express higher plasminogen-modulating and anti-oxidative
activities, and other isomers or phenolic hydroxy groups, at different positions, did not
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present satisfactory activities in plasminogen activation. Moreover, the congeners with
N-linked side-chains showed anti-oxidative activities too. All the congeners bearing a
phenolic hydroxy group and a carboxylic acid group displayed higher anti-oxidative activi-
ties. Congener 12, especially, possessed more than 1.7 times the anti-oxidative activity in
comparison to compound 1 (Figure 5).

Figure 5. Structure–activity relationships of congeners 11 and 12.

Pharmacokinetics is an essential evaluation system for the development of new drugs,
which finally determines the metabolism and efficacy of drugs in vivo [49]. In 2013, Su
et al. observed the pharmacokinetics and tissue distribution of compound 1 in Wistar
rats [50]. Compound 1 had a half-life (t1/2) of ca. 22.37 min, and it was suitable for two-
compartment models, by intravenous administration, for 10 and 20 mg/kg. From the
viewpoint of tissue distribution, compound 1 was present in the highest concentration
in the liver, but it had low or undetectable concentrations in the brain, suggesting that
compound 1 did not cross the blood–brain barrier (the results were wrong, and compound
1 could cross the blood–brain barrier). In 2019, Ma et al. evaluated pharmacokinetic
properties in beagle dogs and permeability characterization in Caco-2 cells [51]. t1/2 of
compound 1 was determined in dogs’ brains, and t1/2, in beagle dogs, was about two
times longer than in Wistar rats (48.7 min in average). Moreover, compound 1 performed
low penetrability in a human Caco-2 cell’s monolayer model and the rapid distribution
into organs, suggesting intravenous injection was more appropriate than oral. In addition,
absorption and transportation characteristics of compound 1 had been studied [52]. In Caco-
2 cells model, compound 1 expressed passive diffusion of the absorption pattern, and it was
not the substrate of P-gp, indicating that compound 1 could cross the blood–brain barrier.
Therefore, compound 1 had the potential to be a thrombolytic agent for the treatment of
occluded cerebral vessels.

The modification of compound 1 enhanced fibrinolytic activity to access more efficient
and safer thrombolytic agents. In 2021, Wang et al. synthesized a series of compound 1
derivatives through the modification of phenyl groups, at the C2-OH and C2′-OH positions
on compound 1, and evaluated their fibrinolytic activities (Figure 6) [53] (The compound,
modified by Wang et al., was the enantiomer of compound 1 (8S, 9S)). Derivative a, with
methyl, and derivative b, with para-bromobenzyl, presented significant fibrinolytic activity
with the EC50 values of 59.7 µM and 42.3 µM, respectively. Derivative b showed rapidly
increasing fibrinolytic activity in the early stage (0–40 min), dose-dependently. Furthermore,
derivative b displayed weak activities of inducing apoptosis and anti-inflammation on
HeLa cells, suggesting that derivative b was a potential antithrombotic agent.
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Figure 6. The modification of compound 1.

2.2. Effects on Inflammation and Oxidant Related Damage: In Reperfusion of Occluded Vessels

A large portion of tissue damage in diseases is caused by inflammation. In 2000, it
had already been confirmed that inflammation could affect the coagulation system and
regulation, which was responsible for thrombotic complications in vivo [54]. In 2005, it was
found that patients with inflammatory diseases were more likely to develop thrombosis.
For instance, the patients with inflammatory bowel disease suffered from a three-fold risk
of pulmonary embolism or vein thrombosis [55]. In 2008, the unique role of inflammation
was focused in the formation of venous thrombus [56]. Thus, researchers investigated the
relationship between the reduced damage of ischemia/reperfusion and anti-inflammatory
activity by the treatment of compound 1.

Mammalian sEH contributes to inflammatory response through hydrolyzing lipid
signaling molecules, and it has been developed as a potential therapeutic target [57,58].
More than 100 sEH inhibitor patents have been published for the treatment of diabetes,
hypertension, pain, and cardiovascular diseases [59,60]. The geranylmethyl side-chain of
compound 1 is crucial to the inhibitory activity of sEH [47]. Therefore, compound 1 and
other staplabin congeners possessed great anti-inflammatory potential.

sEH is a bifunctional enzyme with a C-terminal domain (Cterm-EH) and an N-terminal
domain (Nterm-phos). Cterm-EH catalyzes hydrolysis of epoxyeicosatrienoic acids (EETs,
an endogenous signaling molecule involved anti-inflammation), and Nterm-phos hy-
drolyzes lipid phosphates [60–62]. Therefore, the inhibition to Cterm-EH is the key to
inhibit inflammation. Mastsumoto et al. performed sEH inhibition kinetic analysis of
congeners [63]. Congeners 14 (IC50 = 12 ± 1) and 15 (IC50 = 5 ± 2) had better Cterm-EH in-
hibitory activities in comparison to congeners 10 (IC50 > 100) and 16 (IC50 > 100). Therefore,
although the geranylmethyl side-chain was essential to the inhibitory activity, the nature of
N-linked side chains also affected the inhibitory potency of sEH (Figure 7). Compound 1
inhibited the hydrolysis of EETs with IC50 of 6.5 µM. SMTP-0 (IC50 = 1.2 µM) and congener
18 (IC50 = 9.2 µM) were also efficient for inhibiting the hydrolysis of EETs [63]. Meanwhile,
both 10 mg/kg of compound 1 and congener 18 improved neuritis symptoms in a rat
Guillain–Barré syndrome model, and they alleviated symptoms of ulcerative colitis and
Crohn’s disease in mice. The results proved that compound 1 and staplabin congeners
possessed great anti-inflammatory potential [63].
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Figure 7. The structure of congeners 14, 15, and the SARs study of inhibitory effect on Cterm-EH
and Nterm-phos.

Occluded vessels reperfusion could produce reactive oxygen species (ROS), which
would stimulate ischemic cells, secreting excessive pro-inflammatory and inflammatory
cytokines, such as IL-6, IL-1β, and TNF-α. The overexpressed cytokines cause damage,
hemorrhage, and even inflammation in cerebral vessels, which is a major factor in ischemic
brain injury [64]. Shibata et al. observed little hemorrhagic region with compound 1
(10 mg/kg), in the model of cerebral infarction mice, in comparison with 10 mg/kg t-PA
treatment; moreover, they investigated the involved mechanism [29]. mRNA expression of
IL-6, IL-1β, and TNF-α were not increased by the treatment of compound 1, in comparison
to t-PA treatment, at 3 h after ischemia. Hashimoto et al. found that compound 1 decreased
expression of IL-6, the signal transducer and activator of transcription 3, S100 calcium
binding protein A8, and MMP-9 by microarray and RT-PCR analysis [40]. Therefore,
compound 1 inhibited the secretion of pro-inflammatory and inflammatory cytokines to
improve the hemorrhage and ischemic brain injury. Meanwhile, Akamatsu et al. detected
that superoxide anions (one ROS in cerebral ischemia) were observed by hydroethidine
signals at 2 h after reperfusion [39]. Hydroethidine signal was reduced by the treatment of
compound 1 in comparison to the vehicle group, meaning that compound 1 inhibited the
production of ROS to decrease reperfusion damage. In addition, the treatment of compound
1 reduced the expression of nitrotyrosine and MMP-9, causing attenuated ischemic neuronal
damage. Moreover, inflammatory tissue could release proteolytic enzymes of MMP-9,
which is associated with blood–brain barrier breakdown and hemorrhagic complications
in cerebral infarction [65]. Ito et al. indicated that compound 1 inhibited the activation of
MMP-9 to protect the blood–brain barrier from destruction and hemorrhagic transformation
(pro-MMP-9: 88.9 ± 34.2; MMP-9: 5.0 ± 1.6) in mice [32]. Besides, Huang et al. suggested
that compound 1 could inhibit oxidative stress to reduce ischemia/reperfusion injury [41].
Compound 1 decreased the expression of 4-hydroxy-2-nonenal (4-NHE), 3-nitrotyrosine,
and 8-hydroxy-2′-deoxyguanosine (8-OHdG) significantly, which provided therapeutic
benefits for ischemic stroke. Therefore, compound 1 possessed anti-inflammatory and
anti-oxidative activities in the reperfusion of occluded vessels (Figure 8).
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Figure 8. The anti-inflammatory and anti-oxidative mechanisms of compound 1 in ischemia–
reperfusion damage.

2.3. Neuroprotective Activity

In 2011, Akamatsu et al. first confirmed the intrinsic neuroprotective effect of com-
pound 1 [39]. In the photochemical-induced thrombotic occlusion model of cynomolgus
monkeys, compound 1 of 10 mg/kg improved the neurologic deficit by 29% and cerebral
hemorrhage by 51%, after treatment for 24 h, in comparison to the saline control group [29].
Then, Shibata et al. further explored the mechanism of reducing brain damage [66]. Com-
pound 1 inhibited the expression of 4-NHE and neutrophil cytosolic factor 2 (Ncf2) after
treatment for 1–3 h. Additionally, 4-NHE is an oxidized product of lipid peroxidation, Ncf2
can stimulate the NADPH oxidase complex to produce SOD, and their levels would in-
crease in the infarction area [67]. Therefore, compound 1 reduced lipid peroxidation and the
generation of SOD, in cerebral infarction, to possess neuroprotective activity [66]. Moreover,
Ito et al. evaluated the activation of MMP-9 with compound 1 treatment in a mouse model.
Compared with the control group, compound 1, of 10 mg/kg, inhibited the expression of
MMP-9, which could digest the endothelial basal lamina and open the blood–brain barrier,
causing neuro-inflammation [32]. Compound 1 showed less basal membrane damage
and functional breakdown of the blood–brain barrier. Therefore, compound 1 reduced
neuronal damage by inhibiting MMP-9 expression. In 2018, Huang et al. investigated
the anti-inflammatory and antiapoptosis mechanisms of compound 1 for neuroprotective
effects [68]. Compound 1, of 10 mg/kg, decreased the expression of NF-κB, TNF-α, and
NLRP3-positive cells, which involved the alleviation of neuroinflammation. Meanwhile,
compound 1 reduced the expression of cleaved-caspase-3, suggesting the inhibition in cell
death progress. Therefore, compound 1 treatment demonstrated less necrosis of neurons
and high neuroprotective activity in the peri-ischemic area. The results showed that the neu-
roprotective activity of compound 1 was attributed to the anti-oxidative, anti-inflammatory,
and anti-apoptosis mechanisms in cerebral infarction.

In 2014, Matsumoto et al. found that congener 18 (10 mg/kg) (Figure 9) alleviated
neuritis symptoms in a rat model presenting neuroprotective activity [63]. Shi et al. in-
vestigated the therapeutic effect of congener 18 in the neurovascular unit (NVU) and
neurovascular trophic coupling damage [69]. Congener 18 ameliorated the NVU dissocia-
tion between pericyte, basal lamina, and astrocytic foot. It also improved the endothelial
neuroprotective support for the outsider neurons. Moreover, congener 18 decreased the
expression of TNF-α, 4-HNE, 8-OHdG, and cleaved caspase-3. Therefore, neuroprotective
activity of congener 18 was due to its anti-inflammatory, anti-oxidative, and anti-apoptotic
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mechanisms. Congener 18, especially, had therapeutic potential for diabetic neuropathy
symptoms [70]. Congener 18 (30 mg/kg) improved the mechanical allodynia, thermal
hyperalgesia symptoms, and neurological degeneration of DN in a streptozotocin-induced
diabetes mouse model.

Figure 9. The structure of congener 18.

2.4. Effects on IgA Nephropathy and Acute Kidney Injury

IgA nephropathy (IgAN) has become a primary chronic glomerulonephritis world-
wide, featuring mesangial cell proliferation and the deposition of IgA [71]. It causes a
gradual decline in renal function, and 30% of patients will develop to the end stage of renal
disease [72–74]. Kemmochi et al., (2012) investigated the therapeutic effects of compound
1 against IgAN [75]. In a mouse IgAN model, compound 1 (10 mg/kg) slightly reduced
the deposition of IgA, but it had no effect on the serum concentration of IgA. The results
suggested that compound 1 might inhibit the progression of IgAN through reducing the
deposition of IgA in the glomerular mesangium. However, it was not effective in decreasing
IgA production and treatment for terminal IgAN, indicating the limited therapeutic ability
in IgAN.

Unlike IgAN, acute kidney injury (AKI) could cause rapid reduction in renal func-
tion [76]. The pathological condition of the kidney retained toxins and wastes, causing
toxicosis and disorder in fluid, electrolyte, and acid–base balance [77]. It is estimated that
22% of hospitalized adults suffered from AKI [78]. Compound 1 showed less damage of
ischemia-reperfusion in thrombolysis therapy. Meanwhile, ischemia-reperfusion played
a major role in AKI renal damage. Therefore, in 2021, Shibata et al. studied the efficacy
of compound 1 in renal damage [79]. Compound 1 improved the parameters of renal
function (blood–urea nitrogen, creatinine levels in serum, creatinine clearance, and frac-
tional excretion of sodium) and renal tubule damage. The therapeutic effect of compound 1
was derived from anti-inflammatory and anti-oxidative activities. The inhibition to sEH
elevated the EET level, which inhibited tubular dysfunction and inflammatory factors, such
as NF-κB, TNF-α, IL-6, and IL-1β. ROS production was also reduced after compound 1
treatment. Thus, the suppression of peroxidation led to less renal cell injury.

2.5. Effects on Cancer: Non-Small Cell Lung Cancer

The essence of cancer is the abnormal proliferation and differentiation of cells, which
are dependent on angiogenesis [80]. Therefore, anti-cancer agents could identify and inhibit
angiogenesis, thus representing an approach for cancer therapy [81]. Many patents on
angiogenesis inhibitors have been published, such as angiostatin, endostatin, and throm-
bospondin. Therein, angiostatin is a hidden fragment of plasminogen with great antiangio-
genic properties [82]. Congener 7 reduced vascular formation, along with proliferation and
migration, to inhibit tumor growth and possessed plasminogen activation activity, causing
a conformational change of plasminogen to dissolve thrombus [83]. Ohyama et al., (2004)
reported that congener 7 also promoted the autoproteolytic of plasmin, inducing extensive
fragmentation of the catalytic domain [83]. After urokinased-catalyzed plasminogen was
activated by congener 7, the catalytic domain of plasmin (activated plasminogen) rapidly
degraded into 68–77 kDa fragments. These fragments blocked proliferation, migration, and



Mar. Drugs 2022, 20, 405 14 of 21

vascular formation of endothelial cells, at concentrations of 0.3–10 µg/mL, meaning they
provide potential applications of congener 7 for cancer treatment.

As the most common lung cancer, non-small cell lung cancer (NSCLC) accounts
for approximately 80–85% of lung cancer diseases [84]. The clinical drugs for treating
NSCLC are the epidermal growth factor receptor (EGFR) and EGFR-targeted tyrosine kinase
inhibitors (TKIs). However, more than 80% patients gradually showed drug resistance after
about 1 year of treatment with EGFR-TKI. Thus, it is necessary to discover new anti-tumor
agents for treating NSCLC [85]. In 2022, Yan et al. observed the effects of compound 1 on
erlotinib-resistant NSCLC and explored the underlying mechanism [86]. NSCLC cells were
sensitive to compound 1 with IC50 = 7.45± 0.57 µM in vitro, especially for erlotinib-resistant
NSCLC H1975 cells (IC50 = 9.22 ± 0.84 µM); meanwhile, compound 1 was relatively
safe for normal cells. The accumulation of cleaved-PARP, cleaved-caspase-3, Bax, and
the reduction in Bcl-2 revealed that compound 1 induced the cell apoptosis of NSCLC
cells [86]. Then, they discovered the underlying mechanism of treating erlotinib-resistant
NSCLC. Compound 1 induced mitochondria-mediated apoptosis, leading to increased
ROS and reduced GSH. Thus, compound 1 caused apoptosis of erlotinib-resistant NSCLC
cells [86,87]. In addition, compound 1 also inhibited the PI3K/Akt signaling pathway and
the EGFR/PI3K/Akt/mTOR pathway. The abnormal activation of the PI3K/Akt pathway
could cause TKI resistance, as well as invasiveness and migration of NSCLC [85]. Moreover,
compound 1 showed high binding affinity to EGFRT790M/L858R in molecular modeling,
meaning compound 1 selectively exhibited anticancer activity on erlotinib-resistant NSCLC
cells. Finally, compound 1 (10 mg/kg) had consistent anti-cancer effects in nude mice,
meaning that it showed potential for erlotinib-resistant NSCLC therapy. In 2022, Feng et al.
further observed that compound 1 downregulated the levels of CD4K and Cyclin D1 to
arrest the cell cycle of PC9 cells at the G0/G1 phase [88]. Compound 1, especially, inhibited
the viability and proliferation of PC9 cells through the inhibition of the NF-κB signaling
pathway. The results indicated that compound 1 had excellent anti-cancer activity on
EGFR-mutant NSCLC cells, but it had weak or no effect on wild-type EGFR cells. It can
be concluded that compound 1 might depend on the EGFR status to induce apoptosis of
NSCLC cells.

3. Preparation of Compound 1 and Staplabin Congeners

Hu et al. isolated SMTP congeners from S. microspora in 2001 [25]. They found that the
use of amino acids and amino alcohols significantly increased the production of congeners,
and the obtained products were related to the type of added amino acid. The production of
compound 1 and congeners 3, 5, and 7 increased by 7 to 45-fold, with the addition of Orn,
Phe, Leu, Trp, and Lys at 100 mg/mL, which acted as precursors in culture. Therefore, the
addition of precursors was an important procedure in the preparation of compound 1 and
staplabin congeners.

In 2012, Nishimura et al. isolated a new compound designated pre-SMTP from
fungus S. microspora, which directly afforded SMTP congeners by reacting nonenzymatically
(phthalaldehydes reaction) [89,90]. Pre-SMTP accumulated, with limited amounts of amine,
in medium with S. microspora, and it consumed rapidly after increased amine feeding.
Meanwhile, SMTP-0, as well as congeners 3, 7, 19, and 20 were afforded, by reaction of
pre-SMTP, with ammonium chloride, L-phenylalanine, L-tryptophan, L-glutamine, and
L-glutamic acid, respectively. Thus, it is available to synthesize a variety of congeners,
with different N-linked side-chain structures, through nonenzymatic reaction between
pre-SMTP and an amine (Figure 10).

In 2013, Su et al. investigated the fermentation conditions of compound 1 isolated from
S. longispora FG216 [91]. The results showed that the optimized fermentation conditions
were as follows: 0.5% ornithine hydrochloride addition, 28 ◦C culture temperature, and
7 d (Figure 11a). The yield of compound 1 increased up to 1.98 g/L. In 2015, Wang et al.
designed a metabolic regulation strategy to improve the production of compound 1 [92].
The results indicated that the carbon skeleton of compound 1 was synthesized through
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the shikimate and mevalonate pathways. Therefore, the addition of precursor shikimic
acid and precursor sodium acetate increased the yield of compound 1 by 10.4%–14.6%
(Figure 11b,c). Glucose and ornithine were the essential skeleton and structural core of
compound 1, respectively, which involved the synthesis of compound 1. Along with
20 g/L glucose and 4.32 g/L L-ornithine provision, compound 1 increased up to 82.2 and
95.9 g/L (Figure 11d). During the fermentation, a transformation was observed from
ornithine, FGFC3, and FGFC2 into compound 1. Further research is needed for promoting
transformation from ornithine to compound 1, which will be able to increase production
substantially (Figure 11e).

Figure 10. Synthesis of SMTP-0, as well as congeners 3, 7, 19, and 20, based on pre-SMTP (phthalalde-
hydes reaction). Pre-SMTP (100 µg/mL in acetone) was incubated with (a) 5 mg/mL ammonium
acetate in acetic acid (1.5%, v/v); (b) 5 mg/mL L-phenylalanine in acetic acid (1.5%, v/v); (c) 5 mg/mL
L-tryptophan in acetic acid (1.5%, v/v); (d) 5 mg/mL L-glutamine in acetone-water-acetic acid (50:50:1);
(e) 5 mg/mL L-glutamic acid in acetone-water-acetic acid (50:50:1).
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Figure 11. The optimized method for a compound 1 culture. On fermentaion basal medium, inducers
(or precursor), and conditions: (a) 0.5% ornithine hydochloride, 28 ◦C, 7 d, 1.98 g/L; (b) (i) 0.1 g/L shikimic
acid, yield increased by 10.4%; (ii) 3 mmol/L sodium acetate, yield increased; (c) 0.09 mmol/L cerulenin,
yield increased by 14.6%; (d) (i) 20g/L glucose, 82.2 g/L; (ii) 4.32 g/L, L-ornithine, 95.9 g/L; (iii) and
(e) need further research.

Yin et al., (2017) studied the biosynthesis pathway in S. longispora FG216 [93]. The
results were that three reported core genes and the nitrate reductase (NR) gene copy were
the isoindolinone biosynthetic gene cluster in S. longispora FG216. NR is the rate-limiting
enzyme of nitrate reduction. Therefore, nitrate reductase possibly played a role in the
balance of ammonium ion concentration. Moreover, four new derivatives, 21–24, were
obtained by various amino supplements in S. longispora FG216 (Figure 12).

Figure 12. The structures of derivatives 21–24.
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4. Conclusions

Compound 1 possesses rich bioactivities, such as excellent fibrinolytic, anti-inflammatory,
and anti-oxidative activities. Compared with other anti-thrombotic agents, such as warfarin,
compound 1 exhibits less hemorrhage risk for the treatment of thrombosis because it changes
the conformation of plasminogen, in the presence of uPA, to activate the plasminogen. More-
over, the inhibition to sEH reduces inflammatory response, causing neuroprotection and less
damage from the reperfusion of occluded vessels. The structure–activity relationships of
compound 1 indicate that the N-linked side chain determines plasminogen activation activity,
and the geranylmethyl side chain is essential for anti-inflammatory activity. Recent studies
show that compound 1 possesses, surprisingly, anti-cancer activity toward EGFR-TKI-resistant
NSCLC cells. Furthermore, the satisfactory pharmacokinetic property and optimized culture
methods show that compound 1 has potential as a promising agent. Some modifications of
compound 1 and staplabin congeners perform better in fibrinolytic or neuroprotective activity,
thereby illustrating the high therapeutic potential.
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