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Abstract

Skeletal muscle atrophy is a hallmark of severe spinal cord injury (SCI) that is precipitated by 

the neural insult and paralysis. Additionally, other factors may influence muscle loss, including 

systemic inflammation, low testosterone, low insulin-like growth factor (IGF)-1, and high-dose 

glucocorticoid treatment. The signaling cascades that drive SCI-induced muscle loss are common 

among most forms of disuse atrophy and include ubiquitin-proteasome signaling and others. 

However, differing magnitudes and patterns of atrophic signals exist after SCI versus other disuse 

conditions and are accompanied by endogenous inhibition of IGF-1/PI3K/Akt signaling, which 

combine to produce exceedingly rapid atrophy. Several well-established anabolic agents, including 

androgens and myostatin inhibitors, display diminished ability to prevent SCI-induced atrophy, 

while ursolic acid and β2-agonists more effectively attenuate muscle loss. Strategies combining 

physical rehabilitation regimens to reload the paralyzed limbs with drugs targeting the underlying 

molecular pathways hold the greatest potential to improve muscle recovery after severe SCI.
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Introduction

In the United States, ~80,000—120,000 individuals are living with a severe motor-complete 

spinal cord injury (SCI) [1], which induces immediate and permanent paralysis in muscles 

innervated below the spinal lesion. Rapid skeletal muscle atrophy is a hallmark of severe 

SCI that is precipitated by the neural insult and the resulting neuromuscular impairment, 

with 25—60% lower muscle cross-sectional area (CSA) and muscle fiber (f)CSA in 

paralyzed muscles 3—6 months post-injury [2]. Changes in the molecular signaling 

cascades that regulate muscle size are distinct after severe SCI, with muscle loss being 

more rapid than in other disuse conditions, such as hindlimb immobilization [3] or sciatic 

transection [4]. Therefore, pharmacologic strategies intending to limit SCI-induced muscle 

loss must target the initiating atrophy pathways in the paralyzed limbs, while also addressing 

systemic physiologic consequences of SCI that have the potential to exacerbate muscle loss 

and/or inhibit muscle recovery. This mini-review provides overviews of the SCI muscle 

phenotype, the molecular signaling pathways, and secondary factors that influence muscle 

atrophy, and recent pharmacologic approaches to lessen muscle loss in the paralyzed limbs 

after severe SCI.

2. Pathophysiology of skeletal muscle loss following spinal cord injury

Severe SCI results in impaired neural drive, motoneuron atrophy, and pathologic changes to 

the neuromuscular junction that combine to produce low muscle force generating capacity 

and/or paralysis [2]. Collectively, these deficits impact the rapid muscle atrophy and 

the development of the SCI muscle phenotype, which is characterized by mitochondrial 

dysfunction, a slow-oxidative to fast-glycolytic muscle fiber-type transition, and the 

development of muscle fibrosis (Figure 1) [2,5]. The atrophic signals that initiate muscle 

loss after SCI are thought to be common among most forms of disuse atrophy and 

include the ubiquitin-proteasome and transforming growth factor (TGF) β/Smad-3 signaling 

pathways, among others [6]. However, after severe SCI the rate of muscle loss is more 

rapid than in other disuse conditions [3,4], likely because the magnitude and pattern of 

atrophic signals differ in response to SCI. For example, in rodents, mRNA expression of 

the muscle-specific E3 ubiquitin ligases muscle atrophy F-box (MAFbx or atrogin-1) and 

muscle ring finger-1 (MuRF1) are twofold to threefold higher after spinal transection vs. 

sciatic nerve transection, resulting in a two-fold increase in the muscle atrophy rate over the 

initial 7-d post-injury [4]. Thereafter, atrophy signals revert to the levels of sham-operated 

controls and muscle atrophy slows. Similarly, in persons with chronic complete SCI, muscle 
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expression of MAFbx and MuRF1 was equal to or less than that of similarly aged able-

bodied persons [7] and nuclear localization of forkhead box O (FOXO)1 and FOXO3a 

(atrophic transcription factors) and MAFbx were lower [8], suggesting that proteasomal 

degradation is not central to the sustained atrophy after SCI.

Although atrophy signaling initiates muscle loss after severe SCI, reduced anabolic signaling 

likely contributes to the sustained muscle deficits. Key proteins involved in anabolic 

signaling are those downstream of the insulin-like growth factor (IGF)-1/PI3K/Akt pathway 

[9] and of other anabolic stimuli, with the nexus of protein synthesis in all cells being 

the intracellular kinase mechanistic target of rapamycin (mTOR). Once phosphorylated (p), 

mTOR targets and phosphorylates downstream proteins involved in translation initiation 

and efficiency that increases protein synthesis and, if sustained, produces muscle growth 

[10]. However, total and (p)mTOR decline within the muscle in persons over the initial 

3—12 months post-SCI [11], likely contributing to lower anabolic signaling that persists 

for decades in this population [8]. Similarly, (p)PI3K, (p)Akt, and (p)mTOR levels are ~50

—75% lower in the soleus muscle of rodent SCI models versus controls within only a few 

days to weeks post-injury [12,13].

The reasons why differing atrophic and anabolic signaling patterns exist after SCI versus 

other disuse conditions are unknown, although it is likely that secondary factors that occur in 

response to SCI are involved. For example, it is possible that the systemic inflammation 

that develops in response to the direct SCI trauma (e.g., car crash or fall) or to the 

subsequent surgical interventions [14] exacerbates muscle atrophy. In this regard, high-dose 

methylprednisolone (systemic glucocorticoid) is routinely administered to persons with 

severe SCI over the acute—subacute recovery phase to suppress inflammatory processes that 

influence the secondary injury cascade within the spinal cord, despite the questionable safety 

and efficacy of this regimen [15]. However, preclinical research indicates that high-dose 

glucocorticoid treatment directly stimulates muscle atrophy by initiating atrophic pathways 

and/or suppressing anabolic signaling [16] and that methylprednisolone exacerbates the 

increase in FOXO1, MAFbx, MuRF1, and REDD1 (an inhibitor of mTOR signaling) 

expression in response to SCI, along with the subsequent muscle loss [17]. Several hormonal 

irregularities that are associated with muscle atrophy (e.g., low testosterone and low IGF-1) 

also occur secondary to SCI [2,18]. These are important factors to consider because 

circulating testosterone [19] and IGF-1 [20] have both been positively correlated with thigh 

muscle CSA in persons with chronic complete SCI.

3. Pharmacologic approaches to ameliorate muscle atrophy after SCI

No drugs are currently approved to counter muscle atrophy after severe SCI and no 

pharmacologic strategy has been definitively shown to attenuate muscle loss in the paralyzed 

limbs of persons with SCI; however, several promising preclinical strategies have been 

identified. The following sections discuss the most investigated anabolic agents in relation 

to SCI (i.e., androgens and β2-adrenergic agonists), along with several other promising 

pharmaceuticals. Because of the brevity of this mini-review, we focus on drugs that have 

been tested in persons with paralyzed limbs or in animal models with complete/severe SCI 
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because muscle atrophy after incomplete SCI is less drastic, due to the presence of spared 

spinal tracts that permit voluntary musculoskeletal loading in the impaired limbs [2].

4. Androgens

Testosterone is the most abundant bioactive androgen within the circulation. Pharmacologic 

testosterone increases muscle mass in able-bodied hypogonadal men when administered 

in sufficient doses [21], either via direct androgen receptor engagement and/or indirectly 

via androgen-induced alterations in anabolic (e.g., IGF-1/PI3K/Akt) or catabolic signaling 

(e.g., myostatin/Smad-3) pathways [2]. In the 1950s, Cooper et al. [22] reported elevated 

urinary nitrogen excretion and a negative nitrogen balance that persisted for several months 

in persons with SCI and that high-dose testosterone (50—100 mg/day) normalized nitrogen 

balance by mitigating nitrogen excretion, suggesting that high-dose testosterone may limit 

muscle wasting after SCI. However, this possibility has yet to be verified, likely because 

high-dose testosterone produces several health risks, including prostate enlargement [23]. 

Alternatively, moderate-dose testosterone (5—10 mg/day for 12 months) was shown to 

increase whole body and lower extremity lean mass in a small cohort of hypogonadal 

men with chronic complete SCI [24], with improvements persisting for 6 months [25]. In 

contrast, low-dose testosterone (2—6 mg/day for 16 weeks) did not increase whole body 

lean mass, lower extremity muscle CSA [26], or muscle fCSA [27] in eugonadal and 

hypogonadal men with chronic complete SCI. These small trials did not observe prostate 

enlargement nor reported any serious adverse events. In comparison, some preclinical SCI 

studies reported that high-dose testosterone increased the mass of the prostate and of 

the levator ani-bulbocavernosus (LABC) muscle (involved in sexual function) and various 

hindlimb muscles [2], while others have reported that testosterone did not increase muscle 

mass or fCSA in the paralyzed hindlimbs [28-31]. The reasons for these inconsistencies 

are unknown, although androgen receptor expression is greater than threefold higher in 

the prostate and LABC (androgen-responsive tissues) versus soleus [30] and other non-

androgen-responsive hindlimb muscles [2]. Regardless, testosterone has been shown to 

suppress muscle FOXO1, MAFbx, MuRF1, and REDD1 expression and lessen the excess 

atrophy associated with methylprednisolone treatment in a rodent spinal transection model 

[17]. Moreover, testosterone attenuated gastrocnemius muscle loss after spinal transection, 

when given in combination with nandrolone (non-5α-reducible androgen), with muscle 

preservation being associated with reduced ACVR2B (myostatin receptor) expression and 

reduced nuclear content of Smad2/3 (downstream effectors of myostatin signaling) [31]. 

In a rodent severe SCI model, high-dose testosterone with finasteride (US Food and Drug 

Administration (FDA)-approved 5α-reductase inhibitor) also lessened prostate enlargement 

versus testosterone alone and did not impede androgen-induced LABC growth [32], 

indicating that the 5α reduction of testosterone mediates prostate growth but not muscle 

growth. However, these preclinical findings remain to be verified in clinical trials.

5. β2-Adrenergic agonists

β2-agonists are traditionally used to treat bronchospasm resulting from asthma or 

chronic obstructive pulmonary disease (COPD) through smooth muscle relaxation and are 

categorized as short- or long-acting agonists, with treatment effects lasting 3—6 h or 12—
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24 h, respectively. Select β2-agonists also increase protein synthesis and suppress protein 

degradation in skeletal muscle by activating the PI3K/Akt/mTOR pathway and suppressing 

FOXO transcriptional activation of the ubiquitin-proteosome and autophagy—lysosome 

pathways [33]. In this regard, short-acting β2-agonist metaproterenol (80 mg/day for 4 

weeks) improved muscle size and strength in a small cohort of men with muscle atrophy 

following SCI [34] and short-acting clenbuterol (2 μg/kg/day for 3 months) attenuated 

the reduction in type I and II fCSA by ~40% in persons with acute denervation due to 

traumatic cervical brachial plexus injury [35]. Additionally, in a mouse spinal transection 

model, short-acting clenbuterol (1 mg/kg/day) and high-dose testosterone produced additive 

improvement in hindlimb muscle fCSA when delivered for 1—8 weeks [36], although the 

signaling changes mediating this effect remain to be determined. Interestingly, in a mouse 

contusion SCI model, the long-acting μ2-agonist formoterol (0.3 mg/kg/day) did not prevent 

gastrocnemius muscle loss 3 days post-SCI, despite completely preventing myostatin mRNA 

induction and producing 100% higher muscle Igf1 expression, likely because formoterol 

did not prevent the rapid increase in MuRF1 protein nor the dramatic (p)Akt suppression 

after SCI [13]. In comparison, formoterol-treated mice displayed similar MuRF1 and 

(p)Akt protein levels to controls at 21 days and higher muscle mass versus untreated 

SCI mice [13]. It is important to note that considerable locomotor recovery occurred in 

formoterol-treated mice after SCI, which introduced hindlimb reloading. However, delaying 

formoterol treatment for 24-h post-SCI induced preservation of gastrocnemius mass in the 

absence of locomotor recovery [37]. Although promising, it remains unknown whether 

formoterol lessened fCSA atrophy in these studies. Regardless, the formoterol-induced 

locomotor improvements, muscle signaling changes, and muscle mass preservation appeared 

dependent on the β2-adrenergic receptor (ADRB2), as no neuromuscular improvements 

were observed in global Adbr2−/− knockout mice treated with formoterol after SCI [13]. The 

above-mentioned preclinical findings have not yet been verified in clinical trials, although 

formoterol is FDA approved to control COPD symptoms.

6. Myostatin inhibitors

Myostatin (also known as growth and differentiation factor 8 (GDF-8)) is a member of 

the TGF-β superfamily and a muscle-derived negative regulator of muscle growth that acts 

via the activin IIB receptors [38]. Elevated myostatin gene expression has been observed 

in persons with chronic SCI [39] and in rodent SCI models several days post-injury [13]. 

Interestingly, in a rodent spinal transection model, administration of a soluble activin IIb 

receptor that inhibits myostatin (RAP-031, 10 mg/kg, 2×/week) increased whole body lean 

mass ~15% and increased mass of the fully loaded forelimb muscles ~20-40%, without 

attenuating muscle loss in the paralyzed hindlimbs [40]. Similarly, others have reported 

that pharmacologic myostatin inhibition did not attenuate muscle loss after sciatic nerve 

transection but prevented disuse (immobilization) muscle atrophy [41]. Collectively, these 

results suggest that intact innervation may be required for muscle growth in response to 

myostatin inhibition.
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7. SS-31/Elamipretide

Mitochondrial reactive oxygen species (ROS) generation triggers muscle atrophy signaling 

in response to prolonged immobilization [42] and has been proposed a contributing factor 

to SCI-induced mitochondrial dysfunction and muscle atrophy [5]. SS-31, a mitochondrial-

targeting tetrapeptide, prevents atrophy in response to immobilization and reduces markers 

of mitochondrial ROS and oxidative stress [42]. SS-31 has been shown to attenuate ROS 

levels, to reverse mitochondrial dysfunction, and to lessen lung edema and damage in a 

rodent model of SCI-induced lung injury [43]. However, SS-31 (5-mg/kg/day) did not lessen 

hindlimb muscle atrophy in mice after moderate contusion SCI [44]. This suggests that 

ROS generation may not contribute extensively to SCI-induced muscle atrophy and/or that 

locomotor recovery due to the moderate SCI may have confounded any positive benefits of 

SS-31.

8. Natural products

To identify novel small molecule muscle atrophy inhibitors Adams et al. developed an SCI-

centric drug discovery strategy that (1) surveyed genome-wide mRNA expression patterns 

that were conserved across normal human and mouse muscle and that were altered in 

atrophic muscle collected after SCI or fasting and (2) searched for small molecules with 

established safety profiles that induced inverse mRNA patterns in human skeletal muscle 

cell lines [45]. This strategy identified ursolic acid (UA), a natural plant metabolite with 

previously unrecognized anabolic properties, which has since been shown to stimulate 

muscle growth in mice in an IGF-1-dependent manner and to lessen disuse atrophy, with 

effects dependent on repression of MAFbx and MuRF1 [46]. Interestingly, UA (200 mg/kg/

day) lessened FOXO1 protein and MAFbx expression in the mouse soleus 1 week after 

moderate—severe SCI and prevented the SCI-induced suppression of (p)P13K, (p)Akt, 

(p)mTOR, and (p)70s6K for several weeks thereafter. This resulted in higher soleus masses 

in SCI+UA versus untreated SCI mice [12]. However, UA induced some locomotor recovery 

after SCI, which may have influenced these muscle responses. Although promising, it 

remains unknown whether UA preserved fCSA in this study or whether UA can improve 

muscle mass in the paralyzed limbs after severe SCI.

Epicatechin, a flavanol that is present in tea and other edible plants, has also been shown 

to improve muscle performance in several atrophy models [47]. Recently, epicatechin (1 

mg/kg/day) was shown to lower ubiquitin and MuRF1 protein by 33—50% in mice within 7 

days of spinal transection and to return ubiquitin, FOXO1, MAFbx, and MuRF1 to control 

levels within 30 days, which lessened muscle CSA and fCSA atrophy ~50% [48]. Similarly, 

acteoside (verbascoside), a phenylethanoid glycoside found in tea and other plants [49], was 

shown to stimulate skeletal muscle cell proliferation in culture by increasing secretion of 

pyruvate kinase isoform M2 [50]. In a mouse moderate—severe SCI, acteoside (0.1 mg, 3×/

week) increased hindlimb muscle mass versus untreated SCI animals, when initiated 30 days 

post-SCI [50]. However, acteoside also improved hindlimb locomotor function, which likely 

influenced the observed findings. Although these natural compounds have shown promise in 

preclinical studies, their clinical efficacy remains to be established.
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9. Future directions

Activity-based physical therapies (ABPTs) have been used to combat muscle atrophy and 

the deleterious muscle phenotype that develops following SCI [2]. For example, both 

bodyweight-supported treadmill training (BWSTT) and neuromuscular electrical stimulation 

(NMES) are known to increase muscle CSA in persons with chronic complete SCI 

and to facilitate a fast-glycolytic to slow-oxidative fiber-type conversion [2,5], although 

ABPT effectiveness wanes as injury severity increases and continual training is needed to 

maintain muscular gains. Given these limitations it seems relevant to assess pharmacologic 

adjuvants combined with established ABPTs. For example, in a rodent severe SCI model 

high-dose testosterone combined with quadrupedal (q)BWSTT (40 min/day, 5×/week) 

attenuated soleus fCSA atrophy, prevented the soleus slow-to-fast fiber-type transition, 

and maintained isolated muscle force production better than testosterone alone [28]. 

Similarly, in a rodent spinal transection model, a multimodal therapy involving high-dose 

testosterone with electrical stimulation (1.5 V, 40 Hz, 2 s:18 s on:off) suppressed MAFbx 

and MuRF1 expression better than testosterone alone and produced slightly better muscle 

recovery [29]. Moreover, in men with chronic complete SCI low-dose testosterone in 

combination with a 16-week NMES-based progressive resistance training protocol produced 

greater knee extensor CSA and fCSA than testosterone alone [26,27]. Collectively, these 

studies provide evidence that multimodal therapies combining ABPTs with pharmacologic 

adjuvants provide improved muscle recovery after severe SCI.

10. Conclusion

Numerous pharmacologic agents stimulate hypertrophy in fully innervated and loaded 

muscles. However, most anabolic agents display a diminished ability to lessen atrophy 

in the paralyzed limbs after severe SCI for yet to be identified reasons, although several 

possibilities exist. First, most anabolic drugs target specific signaling pathways but not 

the plethora of molecular changes in atrophic muscle after SCI, highlighting the need 

to elucidate the complexity of signaling pathways that drive SCI-induced muscle loss 

and to identify pharmaceuticals that target these pathways. Second, increased atrophy 

signaling coincides with reduced anabolic signaling after SCI, as detailed above, implying 

that effective drugs may need to suppress atrophy and simultaneously stimulate anabolic 

pathways, which has proven difficult in the absence of innervation and loading in the 

paralyzed limbs. Third, muscle atrophy occurs more rapidly after severe SCI than in other 

disuse conditions, suggesting that the ideal window to prevent muscle loss is limited. 

Given these possibilities, compounds that target the molecular signatures present in atrophic 

muscle after SCI appear to hold the greatest potential to lessen muscle loss and/or 

promote muscle recovery, especially when combined with established ABPTs that reload 

the paralyzed limbs.
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Figure 1. 
Pathophysiology of skeletal muscle loss after severe spinal cord injury (SCI). SCI results in 

impaired neural drive, motor neuron atrophy, and pathological changes to the neuromuscular 

junction that combine to produce low muscle force generating capacity and/or paralysis. 

Collectively, these deficits impact the rapid rate of muscle atrophy and the repeated 

denervation–reinnervation cycles that influence the slow-oxidative to fast-glycolytic muscle 

fiber-type transition in paralyzed muscles. Figure was generated in BioRender.
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