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Abstract: Histogram equalization is one of the basic image processing tasks for contrast enhance-
ment, and its generalized version is histogram specification, which accepts arbitrary shapes of target
histograms including uniform distributions for histogram equalization. It is well known that strictly
ordered pixels in an image can be voted to any target histogram to achieve exact histogram specifica-
tion. This paper proposes a method for ordering pixels in an image on the basis of the local contrast
of each pixel, where a Gaussian filter without approximation is used to avoid the duplication of
pixel values that disturbs the strict pixel ordering. The main idea of the proposed method is that the
problem of pixel ordering is divided into small subproblems which can be solved separately, and
then the results are merged into one sequence of all ordered pixels. Moreover, the proposed method
is extended from grayscale images to color ones in a consistent manner. Experimental results show
that the state-of-the-art histogram specification method occasionally produces false patterns, which
are alleviated by the proposed method. Those results demonstrate the effectiveness of the proposed
method for exact histogram specification.

Keywords: exact histogram equalization; exact histogram specification; Gaussian filter; contrast
enhancement; pixel ordering

1. Introduction

Histograms represent the distribution of pixel values in images, and can offer various
image statistics [1] to us, i.e., histograms have useful information for image processing
applications such as image enhancement, compression, and segmentation [2–4]. Therefore,
histograms are the basis for numerous spatial domain processing techniques [5], which
include intensity transformation as a special case where the smallest neighborhood of
size 1× 1 is used. Histogram equalization, which theoretically transforms an input image
into the corresponding output image having a uniform histogram, is one of the intensity
transformation techniques for contrast enhancement [5]. More generally, the method for
generating an output image that has a specified target histogram is called histogram speci-
fication or histogram matching [5], in which histogram equalization is included as a special
case [6]. It is pointed out that histogram equalization may cause over enhancement [7]. In
such situations, histogram specification will be a good candidate for substitute methods
because it accepts any shape of histograms. In this paper, although we would like to use
a Gaussian distribution constantly for the target histogram in histogram specification to
simplify our explanation, other choices such as bimodal or multimodal distribution may
work well.

For digital images that are composed of pixels with quantized values, it is usual that
the number of pixels in an image is greater than the number of possible quantized pixel
values. Therefore, there are a large number of pixels that share the same quantized pixel
value in a digital image, which means that exact histogram specification for digital images
is an ill-posed problem [8]. For the effective utilization of all possible quantized pixel
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values and the suppression of the occurrence of false contours, a number of research works
have been conducted for more than four decades since Hall published his work on discrete
distribution transformation [9]. In addition to these technical needs, it is our genuine
curiosity to make and see exactly histogram-equalized or specified images because the
solution of the ill-posed problem is not unique. A promising approach to exact histogram
specification is to obtain a meaningful strict ordering of all pixels in an image. Once we
obtain the ordering of pixels, we can assign a limited number of pixel values to the ordered
pixels so that the resultant histogram coincides with a specified target histogram.

The simplest way of pixel ordering is random ordering [10]. However, the random
ordering is not a meaningful ordering. Coltuc et al. [11] described the process of ex-
act histogram specification when a strict ordering is given, and proposed an ordering
method, which is called the local mean method (LM), based on a filter bank of multiple
moving average filters. Wan and Shi [12] proposed a wavelet-based exact pixel ordering
algorithm (WA) for both exact histogram specification and image enhancement, which
takes into account not only local mean intensity values, but also local edge information.
Nikolova and Steidl [13] proposed a fast ordering algorithm for exact histogram specifica-
tion based on a variational approach, which is equivalent to an iterative nonlinear filter-
ing, and demonstrated that their variational ordering method outperforms both LM [11]
and WA [12]. They also applied their algorithm to hue and range preserving enhance-
ment of color images [14], where the histogram of an intensity image is exactly equalized
or specified, and then an affine transform is applied to each color in a hue and range
preserving manner.

In this paper, we propose a local contrast-based pixel ordering method for exact his-
togram specification, which computes the local contrast of each pixel by using a Gaussian
filter [15] without approximation, and compare the proposed method with the state-of-the-
art method by Nikolova and Steidl [13]. Furthermore, the proposed method for grayscale
images is extended to that for color images in a consistent manner. Experimental results
demonstrate that Nikolova and Steidl’s method can produce false patterns in flat areas of
images, which are alleviated by the proposed method. For color images, it is experimen-
tally shown that the proposed method outputs exactly histogram-equalized or specified
images with closer hue to original images than that obtained by a separable method that
utilizes Nikolova and Steidl’s method for exact histogram equalization and specification of
each color channel. These results demonstrate the effectiveness of the proposed method
compared with the state-of-the-art method.

The rest of this paper is organized as follows: Section 2 provides a brief review of
some related works. Section 3 briefly summarizes conventional histogram equalization.
Section 4 summarizes conventional histogram specification and Nikolova and Steidl’s exact
histogram specification [13]. Section 5 proposes a local contrast-based exact histogram
specification method, which is extended to that for color images. Section 6 shows experi-
mental results, where the proposed method is compared with the state-of-the-art methods
by Nikolova and Steidl [13] and Ramos et al. [16]. Finally, Section 7 concludes this paper.

2. Related Work

In this section, we review recent related works on histogram equalization and specifica-
tion. Recently, Pallavi et al. [17] reviewed state-of-the-art techniques for image enhancement,
in which the techniques of histogram equalization are also included such as contrast limited
adaptive histogram equalization (CLAHE) [18] and brightness preserving bi-histogram
equalization (BBHE) [19]. Trongtirakul and Agaian [20] proposed a weighted histogram
equalization using entropy of probability density function, which outperformed related
methods including a low-rank regularized retinex model (LR3M) [21]. More recently, Zhang
et al. [22] proposed an unsupervised low-light image enhancement method via a histogram
equalization prior (HEP) based on the observation that the feature maps of histogram
equalization enhanced image and the ground truth are similar.
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Hussain et al. [23] proposed a locally transformed histogram-based technique for dark
image enhancement, which does not get affected from the over-enhancement problem.
Balado [24] examined an optimum exact histogram specification problem and the inverse
problem, and presented their closed-form performance analyses. Ramos et al. [16] proposed
two algorithms for histogram specification and quantile transformation of data without
local information. As one of the state-of-the-art algorithms for histogram specification, we
implemented the first algorithm of Ramos et al. in this paper as described below. However,
their algorithm does not produce an output image having the histogram being exactly
identical to the target one.

The above review of recent related works draws a conclusion that Nikolova and Steidl’s
algorithm [13] is still one of the state-of-the-art algorithms for exact histogram specification.

3. Histogram Equalization

Let F = [ fij] be a grayscale image for i = 1, 2, . . . , m and j = 1, 2, . . . , n, where
fij ∈ {0, 1, . . . , L} denotes the pixel value at the position (i, j) on the image plane
with m rows and n columns. The maximum pixel value L is typically given by
L = 28 − 1 = 255 in an 8-bit grayscale. Then, the histogram of the pixel values in F
is given by h = [h0, h1, . . . , hL] whose kth element is computed by

hk =
m

∑
i=1

n

∑
j=1

δk, fij
(1)

for k = 0, 1, . . . , L, where δk, fij
denotes the Kronecker delta function defined by δk, fij

= 0 for

k 6= fij, and 1 for k = fij. Note that the histogram h is not normalized, i.e., ∑L
k=0 hk = mn 6= 1.

The corresponding cumulative histogram is given by H = [H0, H1, . . . , HL] whose lth
element is defined by

Hl =
l

∑
k=0

hk (2)

for l = 0, 1, . . . , L, and recursively computed by Hl = Hl−1 + hl for l = 1, 2, . . . , L with
H0 = h0. Histogram equalization converts a pixel value fij into

f HE
ij = φHE

h ( fij) := round

(
L

H fij
− H fmin

H fmax − H fmin

)
, (3)

where fmin = mini,j{ fij}, fmax = maxi,j{ fij}, and the ‘round’ operator rounds a given
argument toward the nearest integer, and φHE

h denotes the function of converting pixel
values in histogram equalization.

Figure 1 shows an example of histogram equalization, where an original image in
Figure 1a is converted into the image in Figure 1d, and their histograms and cumulative
ones are shown in Figure 1b,c and Figure 1e,f, respectively, where the horizontal axis of
each graphic denotes the pixel value ranging from 0 to 255, and the vertical axis denotes
the (cumulative) number of pixels for each (cumulative) histogram. As shown in Figure 1e,
the resultant histogram is not equalized actually, but the cumulative one is linearized as
shown in Figure 1f. That is, to be more precise, the conventional histogram equalization is
a cumulative histogram linearization.
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(a) Original image (b) Histogram (c) Cumulative histogram

(d) Histogram-equalized image (e) Histogram (f) Cumulative histogram

Figure 1. Histogram equalization: (a) an original image with 256× 256 pixels; (b) the histogram of
the original image; (c) the cumulative histogram of the original image; (d) the histogram-equalized
image; (e) the histogram of the image in (d); (f) the cumulative histogram of the image in (d).

4. Histogram Specification

In this section, we summarize conventional histogram specification, which is not an
exact method, and then briefly summarize the state-of-the-art method for exact histogram
specification by Nikolova and Steidl [13]. After that, we propose a local contrast-based
method for exact histogram specification, whose objects to be processed are extended from
grayscale images to color images.

4.1. Conventional Histogram Specification

Let ĥ = [ĥ0, ĥ1, . . . , ĥL] be a target histogram into which we want to convert the his-
togram h of the original image F, where we assume that ∑L

k=0 ĥk = ∑L
k=0 hk for convenience.

Then, we can compute the cumulative histogram Ĥ = [Ĥ0, Ĥ1, . . . , ĤL] from ĥ in the
same manner as above. Theoretically, we can describe the relationship between the target
histogram ĥ and the original one h as

f HS
ij =

(
φHE

ĥ

)−1(
f HE
ij

)
=
(

φHE
ĥ

)−1(
φHE

h ( fij)
)

, (4)

where f HS
ij denotes the output pixel value of histogram specification corresponding to an

input pixel value fij, and (φHE
ĥ

)−1 denotes the inverse function of φHE
ĥ

which equalizes the

target histogram ĥ. However, in the digital condition, the functions φHE
h and φHE

ĥ
become

staircase functions, which are not bijective. Therefore, they have no inverse functions.
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A prescription for this situation may be the use of linear interpolation as follows:
Assume that φHE

ĥ
(l − 1) < φHE

h ( fij) ≤ φHE
ĥ

(l) for l ∈ {0, 1, . . . , L}, where we define that
φHE

ĥ
(−1) = 0. Then, we can determine the output pixel value of histogram specification by

f HS
ij ≈ round


[
φHE

ĥ
(l)− φHE

h ( fij)
]

max{l − 1, 0}+
[
φHE

h ( fij)− φHE
ĥ

(l − 1)
]
l

φHE
ĥ

(l)− φHE
ĥ

(l − 1)

 (5)

corresponding to an input pixel value fij.
Figure 2 shows an example of histogram specification, where the resultant image in

Figure 2a is obtained with a Gaussian target histogram with mean 127.5 and standard
deviation 50 from the original image in Figure 1a. Figure 2b shows the obtained histogram,
which is not Gaussian, but the cumulative one fits into the target cumulative histogram as
shown in Figure 2c, where a blue solid line denotes the target one, and the yellow dashed
line denotes the obtained one. That is, to be more precise, the conventional histogram
specification is a cumulative histogram specification.

(a) Histogram-specified image (b) Obtained histogram (c) Cumulative histograms

Figure 2. Histogram specification: (a) histogram-specified image computed from the original image
in Figure 1a with a Gaussian target histogram; (b) the histogram of the image (a); (c) the target (blue
solid line) and obtained (yellow dashed line) cumulative histograms.

4.2. Nikolova and Steidl’s Method

In this subsection, we briefly summarize Nikolova and Steidl’s fast ordering algorithm
for exact histogram specification [13]. They proposed a fixed point algorithm that attains
the minimizer of fully smoothed l1-TV (total variation) functional as follows:

J(u, f ) :=
mn

∑
ι=1

θ(uι − fι) + β
r

∑
κ=1

θ((Gu)κ), (6)

where β > 0, f = [ f1, f2, . . . , fmn]T = vec(F) = [ f11, f21, . . . , fm−1,n, fmn]T is the vectoriza-
tion [25] of F where the superscript T denotes the matrix transpose [26], (Gu)κ denotes the
κth component of Gu ∈ Rr with r = 2mn−m− n, where R denotes the set of real numbers,
and G is a forward difference operator given by

G :=
(

In ⊗ Dm
Dn ⊗ Im

)
∈ Rr,mn, (7)
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where ⊗ denotes the Kronecker product, In is the n× n identity matrix, Dn denotes the
forward difference matrix defined by

Dn :=


−1 1

−1 1
. . .
−1 1

 ∈ Rn−1,n, (8)

and the function θ is defined by

θ(t) := |t| − α log
(

1 +
|t|
α

)
(9)

with a constant α > 0, which is a smooth approximation of l1 norm, and has the derivative
z = θ′(t) = t

α+|t| . The inverse function of θ′ is defined by ξ(z) := (θ′)−1(z) = αz
1−|z| , whose

derivative is given by ξ ′(z) = α
(1−|z|)2 . These functions are illustrated in Figure 3, where blue

lines denote the functions for l1 norm, and orange lines denote their
smooth approximations.

(a) θ(t) in (9) (b) θ′(t) (c) ξ(z) = (θ′)−1(z) (d) ξ ′(z)

Figure 3. Nikolova and Steidl’s smooth approximation of l1 norm: (a) l1 norm denoted by a blue
line is smoothly approximated by θ(t) denoted by an orange line; (b) the derivatives of l1 norm and
θ(t); (c) the inverse functions of l1 norm and θ′(t), which is denoted by ξ(z); (d) the derivatives of
the inverse functions.

From ∂J
∂uι

= θ′(uι − fι) + β ∑r
κ=1 θ′((Gu)κ)Gκ,ι = 0 where Gκ,ι means the (κ, ι)th el-

ement of G, we have uι = fι − ξ(β ∑r
κ=1 θ′((Gu)κ)Gκ,ι) for ι = 1, 2, . . . , mn, which are

combined into a vector equation as u = f − ξ(βGTθ′(Gu)), where the functions θ′ and ξ
are applied to each element of their arguments. This is a fixed point equation for u which
gives rise to a fixed point algorithm for minimizing J(u, f ) as described in Algorithm 1.

Algorithm 1 Fully smoothed l1-TV minimization algorithm [13]

Require: a vectorized image f = [ f1, f2, . . . , fmn]T , parameters β > 0 and α > 0 used in
functions ξ and θ′, the number of iterations T > 0

Ensure: the minimizer u(T) of a fully smoothed l1-TV functional J(u, f ) in (6)
1: Initialize the variable u as u(0) ← f
2: for t← 1, 2, . . . , T do
3: u(t) ← f − ξ(βGTθ′(Gu(t−1)))
4: end for

In this algorithm, we set α = 0.05, β = 0.1 and T = 5 according to Nikolova and
Steidl [13]. The obtained image from u(T) with the input image f in Figure 1a is shown in
Figure 4a. This procedure for computing u(T) from f can be viewed as a nonlinear filter
which reduces the quantization noise in f slightly. Therefore, the image in Figure 4a is very
close to that in Figure 1a. The pixel values in u(T) can be ordered in a strict way with a high
probability [8].
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Assume that the pixel values in u(T) = [u(T)
1 , u(T)

2 , . . . , u(T)
mn ]

T are ordered in ascending

order: u(T)
λ1

< u(T)
λ2

< · · · < u(T)
λmn

where λι for ι = 1, 2, . . . , mn denote the ordered indices,
and the cumulative histogram Ĥ = [Ĥ0, Ĥ1, . . . , ĤL] is computed from a given target
histogram ĥ. Then, if Ĥl−1 < ι ≤ Ĥl with Ĥ−1 = 0 for an index ι and a pixel value l,
then the corresponding output pixel value is given by f NS

iι ,jι = l, where (iι, jι) denotes the
pixel position corresponding to the ordered index λι, i.e., (λι − 1) = (jι − 1)m + (iι − 1)
with 0 ≤ (iι − 1) < m is satisfied. This procedure is repeated for ι = 1, 2, . . . , mn to obtain
Nikolova and Steidl’s output image FNS = [ f NS

ij ]. Figure 4b shows the output image
with the same Gaussian target histogram as Figure 2, and Figure 4c shows the target and
obtained histograms, where we can see that they have the same Gaussian shape, which
demonstrates the exactness of Nikolova and Steidl’s method.

(a) Visualization of u(T) (b) Histogram-specified image (c) Target and obtained histograms

Figure 4. Nikolova and Steidl’s exact histogram specification: (a) the output u(T) of Algorithm 1 is
visualized as an 8-bit grayscale image; (b) the output image; (c) Gaussian target (blue solid line) and
obtained (yellow dashed line) histograms.

5. Proposed Method

In this section, we propose a local contrast-based pixel ordering method for exact
histogram specification. We first describe the method for grayscale images, and then it
is extended to that for color images. We also give a complexity analysis of the proposed
method. The main idea of our approach is that the problem of pixel ordering can be divided
into 256 subproblems for an 8-bit grayscale image. We solve the downsized subproblems
separately to have 256 groups of ordered pixels, and then concatenate them to have a
sequence of all ordered pixels.

5.1. Local Contrast-Based Exact Histogram Specification for Grayscale Images

As demonstrated above, we can transform the histogram of a digital image into the
specified one, when all pixels in the image are ordered in a strict and faithful way [13]. In
most cases, pixels in a digital image take a limited number of discrete values, e.g., 256 values
are available for 8-bit grayscale images, which is smaller than the number of pixels in the
image, e.g., m× n = 256× 256 = 65, 536� 256 for the above image in Figure 1a. Therefore,
many pixels share the same pixel value with each other in the image, and the ordering of
the pixels with the same values becomes an ill-posed problem [8]. However, it is fortunate
for us that we have a rough ordering of 256 groups of pixels in the image, which means that
the entire pixel ordering problem can be divided into 256 subproblems that can be solved
separately. In this subsection, we propose a method for ordering pixels in each group on
the basis of the local contrast of each pixel, and then the separately ordered subgroups are
finally merged into an entire pixel ordering.
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The first step of the proposed method is Gaussian filtering without approximation,
which means that the weighted mean of all pixels is outputted at each pixel, where the
weights are given by a Gaussian function as follows:

f GF
ij =

m

∑
k=1

n

∑
l=1

exp
(
− (i− k)2 + (j− l)2

2σ2

)
fkl

m

∑
k=1

n

∑
l=1

exp
(
− (i− k)2 + (j− l)2

2σ2

) =

m

∑
k=1

exp
(
− (i− k)2

2σ2

) n

∑
l=1

exp
(
− (j− l)2

2σ2

)
fkl

m

∑
k=1

exp
(
− (i− k)2

2σ2

) n

∑
l=1

exp
(
− (j− l)2

2σ2

) (10)

for i = 1, 2, . . . , m and j = 1, 2, . . . , n, where σ denotes the standard deviation positive constant.
Let FGF = [ f GF

ij ] be an m× n matrix which expresses the Gaussian-filtered image of F. Then, we
can compute FGF by the following matrix operations. The numerator of (10) is computed by

Nu = GL FGR, (11)

where the left matrix GL is given by GL = exp(−DL � DL/2σ2) with

DL = 1m

[
1 2 · · · m

]
+
[
1 2 · · · m

]T
1T

m − 2
[
1 2 · · · m

]T[
1 2 · · · m

]
, (12)

where � denotes the Hadamard product or elementwise product of matrices, and 1m denotes
the m-dimensional column vector of ones. Similarly, the right matrix GR in (11) is given by
GR = exp(−DR � DR/2σ2) with

DR = 1n

[
1 2 · · · n

]
+
[
1 2 · · · n

]T
1T

n − 2
[
1 2 · · · n

]T[
1 2 · · · n

]
. (13)

On the other hand, the denominator of (10) is computed by

De = GLEGR, (14)

where E denotes the m× n matrix of ones. Then, we have the Gaussian-filtered image by
FGF = Nu � De, where � denotes the Hadamard division or elementwise division of matrices.

Next, we define the local contrast (LC) of each pixel by dij := fij − f GF
ij which is added to

the corresponding pixel as an attribute, and divide the mn pixels in F into (L + 1) groups as
Sk := {( fij, dij) | fij = k}, where we have that hk = |Sk | for k = 0, 1, . . . , L, i.e., hk is the cardinality
of Sk. Then, we sort the elements of Sk in the ascending order of dij for k = 0, 1, . . . , L, and
concatenate them to have a sequence. As a result, we expect to have the entire pixel
ordering µι ∈ {1, 2, . . . , mn} for ι = 1, 2, . . . , mn, from which the corresponding pixel position
(iι, jι) is given as the integer part (jι − 1) and remainder (iι − 1) of the division (µι − 1)/m, i.e.,
(µι − 1) = (jι − 1)m + (iι − 1), and {dij} is ordered as follows:

di1 ,j1 < · · · < diι ,jι < · · · < dimn ,jmn . (15)

For exact histogram specification, we would like to have a strict ordering as described
in (15). That is, for different pixels with the same pixel value as fij = fi′ j′ with i 6= i′ or j 6= j′, it
is expected that dij 6= di′ j′ or f GF

ij 6= f GF
i′ j′ . For conventional Gaussian filters with finite kernel

sizes such as 3× 3, 5× 5 and 7× 7 pixels, the lower bounds of the probability of f GF
ij = f GF

i′ j′ are
( 1

256 )
7×7 < ( 1

256 )
5×5 < ( 1

256 )
3×3 ≈ 0. However, some symmetric patterns may result in the case of

f GF
ij = f GF

i′ j′ accidentally. To reduce the probability of such cases, we adopt the Gaussian filter
with sufficiently large kernel size as described in (10).

For an input image F with a target histogram ĥ and its cumulative version
Ĥ = [Ĥ0, Ĥ1, . . . , ĤL], the proposed method outputs a histogram-specified image FLC = [ f LC

ij ],
where each pixel value is given by f LC

iι ,jι = l for the index µι satisfying Ĥl−1 < ι ≤ Ĥl with Ĥ−1 = 0

as well as Nikolova and Steidl’s method summarized in Section 4.2. The proposed method
is summarized in Algorithm 2.
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Algorithm 2 Local contrast-based exact histogram specification

Require: a grayscale image F = [ fij], a positive constant σ and a target histogram ĥ
Ensure: a histogram-specified image FLC = [ f LC

ij ]

1: Compute the Gaussian-filtered image FGF of F with a positive constant σ
2: Compute the local contrast D = [dij] by D = F− FGF

3: Make (L + 1) groups Sk = {( fij, dij) | fij = k} for k = 0, 1, . . . , L
4: ι← 1
5: for k← 0, 1, . . . , L do
6: Sort the elements of Sk in the ascending order of dij as di1,j1 < · · · < diu ,ju < · · · <

di|Sk |
,j|Sk |

7: for u← 1, 2, . . . , |Sk| do
8: µι ← m(ju − 1) + iu
9: ι← ι + 1

10: end for
11: end for
12: Compute the target cumulative histogram Ĥ = [Ĥ0, Ĥ1, . . . , ĤL] from ĥ
13: for ι← 1, 2, . . . , mn do
14: Search for l satisfying Ĥl−1 < ι ≤ Ĥl with Ĥ−1 = 0
15: f LC

iι ,jι ← l, where (jι− 1) and (iι− 1) are the integer part and remainder of (µι− 1)/m
16: end for

Additionally, we can make an image whose pixel values indicate ordered numbers
as FI = [ f I

ij], where each pixel value is given by f I
iι ,jι = ι for ι = 1, 2, . . . , mn. For histogram

equalization, the number of pixels to which the same pixel value is assigned is given by
h̄ = bmn/(L + 1)c, where bxc denotes the floor function that gives the largest integer less than
or equal to x [27]. That is, we make a target histogram ĥ = [ĥk ] as ĥk = h̄ for k = 0, 1, . . . , L.
However, the truncation by the floor function may cause the shortage of total amount in
the histogram: ∑L

k=0 ĥk < mn. To cover the shortage, if Q = mn−∑L
k=0 ĥk > 0, then we add 1 to

ĥ0, ĥ1, . . . , ĥQ−1 to have ∑L
k=0 ĥk = mn. This modified histogram can be inputted to Algorithm 2

as a target histogram for exact histogram equalization.
Figure 5 shows the results of the proposed method, where Figure 5a,b show the

results of the histogram equalization and specification with σ = 50 for the original image in
Figure 1a, respectively, and Figure 5c shows their histograms, where we can see that both
exact histogram equalization and specification are achieved.

(a) Histogram-equalized image (b) Histogram-specified image (c) Equalized and specified histograms

Figure 5. Exact histogram equalization and specification: (a) histogram-equalized image of the
original image in Figure 1a; (b) the histogram-specified image with a Gaussian target histogram;
(c) equalized (blue line) and specified (orange line) histograms.
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5.2. Extension to Color Images

In this subsection, we extend the above proposed method for grayscale images to
color images. Let C = [cij] be an RGB color image, where cij = [cij1, cij2, cij3] denotes the RGB
color vector of the (i, j)th pixel in C, and cijk ∈ {0, 1, . . . , L} for k = 1, 2 and 3. Then, we make a
histogram into which all RGB values in C are united as follows:

hC = [hC
0 , . . . , hC

l , . . . , hC
L ], hC

l =
m

∑
i=1

n

∑
j=1

3

∑
k=1

δl,cijk
for l = 0, 1, . . . , L. (16)

For example, Figure 6 shows an RGB color image and its histogram defined in (16).

(a) Original color image (b) Histogram

Figure 6. Color image and its histogram: (a) an RGB color image with 256× 256 pixels; (b) the
histogram of the color image (a).

The first step of our exact histogram specification is Gaussian filtering applied to each
color channel in C. Let CGF = [cGF

ij ] be the resultant image, where cGF
ij = [cGF

ij1 , cGF
ij2 , cGF

ij3 ] denotes
the RGB color vector of each pixel in CGF. Then, we compute the LC as DC = [dC

ij ] = C− CGF

where dC
ij = [dC

ij1, dC
ij2, dC

ij3] = cij − cGF
ij , each element of which is added to the corresponding

element of the corresponding pixel as an attribute: (cijk , dC
ijk) for i = 1, 2, . . . , m; j = 1, 2, . . . , n and

k = 1, 2, 3, and divide them into (L + 1) groups as Sl := {(cijk, dC
ijk) | cijk = l}, where we have that

hC
l = |Sl | for l = 0, 1, . . . , L. Then, we sort the elements of Sl in the ascending order of dC

ijk for
l = 0, 1, . . . , L, and concatenate them to have a sequence. As a result, we expect to have the
entire element ordering ηι ∈ {1, 2, . . . , 3mn} for ι = 1, 2, . . . , 3mn, each of which is connected with
the corresponding pixel position (iι, jι) and channel number kι by satisfying

dC
i1 ,j1 ,k1

< · · · < dC
iι ,jι ,kι

< · · · < dC
i3mn ,j3mn ,k3mn

. (17)

Let ĥC be a target histogram with the cumulative one ĤC = [ĤC
0 , ĤC

1 , . . . , ĤC
L ]. Then, the

histogram-specified image CLC = [cLC
ij ] is given by cLC

ij = [cLC
ij1 , cLC

ij2 , cLC
ij3 ] with cLC

iι ,jι ,kι
= l for the index

ηι satisfying ĤC
l−1 < ι ≤ ĤC

l with ĤC
−1 = 0. This procedure for color images is summarized in

Algorithm 3.
Figure 7 shows the results of the proposed method for color images, where Figure 7a,b

show the results of the histogram equalization and specification with σ = 50 for the original
color image in Figure 6a, respectively, and Figure 7c shows their histograms, where we can
also see that both exact histogram equalization and specification are achieved.
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Algorithm 3 Local contrast-based exact histogram specification for color images

Require: a color image C = [cij], a positive constant σ and a target histogram ĥC

Ensure: a histogram-specified image CLC = [cLC
ij ]

1: Compute the Gaussian-filtered image CGF of C with a positive constant σ
2: Compute the local contrast DC = [dC

ij ] by DC = C− CGF where dC
ij = [dC

ij1, dC
ij2, dC

ij3]

3: Make (L + 1) groups Sl = {(cijk, dC
ijk) | cijk = l} for l = 0, 1, . . . , L

4: ι← 1
5: for l ← 0, 1, . . . , L do
6: Sort the elements of Sl in the ascending order of dC

ijk as dC
i1,j1,k1

< · · · < dC
iu ,ju ,ku

<

· · · < dC
i|Sl |

,j|Sl |
,k|Sl |

7: for u← 1, 2, . . . , |Sl | do
8: ηι ← mn(ku − 1) + m(ju − 1) + iu
9: ι← ι + 1

10: end for
11: end for
12: Compute the target cumulative histogram Ĥ = [Ĥ0, Ĥ1, . . . , ĤL] from ĥ
13: for ι← 1, 2, . . . , 3mn do
14: Search for l satisfying Ĥl−1 < ι ≤ Ĥl with Ĥ−1 = 0
15: cLC

iι ,jι ,kι
← l, where iι, jι and kι are related to ηι by ηι = mn(kι − 1) + m(jι − 1) + iι

16: end for

(a) Histogram-equalized image (b) Histogram-specified image (c) Equalized and specified histograms

Figure 7. Exact histogram equalization and specification for a color image: (a) histogram-equalized
image of the original color image in Figure 6a; (b) the histogram-specified image with a Gaussian
target histogram; (c) equalized (blue line) and specified (orange line) histograms.

5.3. Complexity Analysis

In this subsection, we analyze the complexity of the proposed method in Algorithm 2.
Let N = mn be the input size. The computation of Gaussian filtering in line 1 is de-
scribed as matrix calculations. The time complexity of the numerator (11) is estimated as
mn2 + m2n = mn(m + n) = N(m + n) ≈ N3/2, which is the same as that of the denominator (14).
The Hadamard division requires N elementwise divisions. Then, the order of time com-
plexity of Gaussian filtering is O(N3/2). The next main procedure is sort in line 6, which is
repeated L + 1 times. Assume that the cardinality |Sl | is N

L+1 on average. Then, the time com-
plexity of the sorting procedure is estimated as (L + 1)× N

L+1 log N
L+1 = N[log N − log(L + 1)] from

which we have O(N log N). The time complexity of the remaining procedures is bounded by
O(N). Consequently, the time complexity of the proposed method is given by O(N3/2).

The space complexities of images F, FGF , D, and FLC are O(N), and that of (L + 1) groups
Sk for k = 0, 1, . . . , L in line 3 is also O(N). Histogram arrays ĥ and Ĥ require O(L + 1). Selecting
the largest one, we can see that the space complexity of the proposed method is O(N).
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6. Experimental Results

In this section, we show experimental results in comparison with Nikolova and Steidl’s
method [13]. First, we show the results with a synthetic input image shown in Figure 8a.
Nikolova and Steidl’s method summarized in Section 4.2 outputs the image in Figure 8b,
where we can see that vertical stripes appear in the flat areas in the original image. As a
result, Nikolova and Steidl’s method achieves the equalized histogram shown in Figure 8c.
Figure 8d shows the horizontal profile of the output image in Figure 8b, where the vertical
and horizontal axes denote the pixel value and the column index j, respectively. Although
the pixel values fluctuate with small steps, the pixel values on the left side are larger than
that on the right side as well as the original image.

(a) Input image (b) Output image (c) Obtained histogram (d) Horizontal profile

Figure 8. Nikolova and Steidl’s exact histogram equalization: (a) input image with 200× 282 pixels,
where the dark and bright areas have pixel values 100 and 200, respectively. (b) vertical stripes
are generated in the output image; (c) the obtained histogram confirms that Nikolova and Steidl’s
method exactly equalizes the histogram; (d) horizontal profile in (b) shows the fluctuation of pixel
values, but it preserves the original ordering in (a).

Figure 9 shows the results of the proposed method described in Section 5, where
Figure 9a,b show the output images of exact histogram equalization and specification
with the Gaussian target histogram used in the previous section. Their histograms are
shown in Figure 9c. The proposed method enhances the edge in the center of the input
image in Figure 8a, and does not produce the pseudo-stripes observed in Figure 8b that are
graphically confirmed by the horizontal profiles in Figure 9d.

(a) Histogram-equalized (b) Histogram-specified (c) Obtained histograms (d) Horizontal profiles

Figure 9. Exact histogram equalization and specification by the proposed method: (a) histogram-
equalized image has the enhanced central edge; (b) histogram-specified image also has the enhanced
edge; (c) histograms of the output images in (a,b) are equalized and specified to be Gaussian,
respectively; (d) horizontal profiles in (a,b) have no fluctuation observed in Figure 8d.

Next, we compare the ability in strict ordering by Nikolova and Steidl’s and the
proposed methods. Figure 10 compares the filter outputs used in the two methods with the
input image in Figure 1a. Nikolova and Steidl’s filter in Algorithm 1 outputs u(T), the values
in which are sorted in ascending order in Figure 10a where the vertical and horizontal axes
denote the pixel value and index, respectively. The differences between the neighboring
pixel values in Figure 10a are very small, and therefore, we take the logarithm of them as
shown in Figure 10b. Similarly, we sort the values of the output of the Gaussian filter in
(10) as shown in Figure 10c, and take the logarithm of the difference values in Figure 10c
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as shown in Figure 10d, where we can see that the minimum value is greater than that in
Figure 10c, which is preferable for strict ordering because the larger the difference is, the
clearer the ordering is. The minimum values of the differences without taking logarithm
are 4.23× 10−12 and 1.66× 10−8 for Figure 10b,d, respectively.

(a) Sorted values in u(T) (b) Logarithm of the difference of u(T)

(c) Sorted values in FGF (d) Logarithm of the difference of FGF

Figure 10. Comparison of filter outputs u(T) and FGF: (a) The values in the output u(T) in

Algorithm 1 visualized in Figure 4a are sorted in ascending order. (b) The values of log(u(T)
λι+1
− u(T)

λι
)

for ι = 1, 2, . . . , mn− 1 are plotted. (c) The values of the output of the Gaussian filter in (10) with
σ = 50 are sorted in ascending order. (d) The logarithm of the difference of the sorted values in
(c) are plotted.

The proposed method has a parameter σ in (10), the effect of which is investigated in
Figure 11a, where the vertical and horizontal axes denote the minimum difference in the
sorted output values of the Gaussian filter and the parameter σ, respectively, for the input
image in Figure 1a. In this figure, although we cannot find clear tendency of the minimum
difference as a function of σ, the obtained difference values are larger than that of u(T) given
by Algorithm 1 that exemplifies the insensitivity of the proposed method to σ. Figure 11b,c
show the results of histogram equalization with σ = 1 and 70, respectively. These images
demonstrate that the proposed method is insensitive to the values of parameter σ.

We investigate the limitation of the proposed method on the value of σ. Figure 12 shows
the results of histogram equalization for the input image in Figure 8a, where Figure 12a,b
correspond to σ = 108 and 5× 108, respectively. Figure 12a is similar to Figure 9a. However, in
Figure 12b, we observe an artifact. As a result, we estimate that the limitation of the value
of σ exists between 108 and 5× 108, and recommend using the value of σ smaller than 108.

Figure 13 shows twelve grayscale images in the Standard Image Data-BAse
(SIDBA) [28], which are enhanced by Nikolova and Steidl’s exact histogram equaliza-
tion as shown in Figure 14, where the contrast of all images is enhanced well because the
histogram of each image is exactly equalized.
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(a) Minimum difference vs. σ (b) σ = 1 (c) σ = 70

Figure 11. Insensitivity to parameter σ: (a) the minimum difference in the sorted values of FGF

as a function of σ. The positive values mean that there are no pixels with the same pixel value in
Gaussian-filtered image FGF, from which we have a strict ordering; (b) histogram equalization with
σ = 1; (c) histogram equalization with σ = 70.

(a) σ = 108 (b) σ = 5× 108

Figure 12. Histogram equalization by the proposed method with relatively large values of σ: (a) No
artifact is generated with σ = 108. (b) An artifact is generated with σ = 5× 108.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 13. Grayscale images in the SIDBA image dataset [28]: (a) Airplane, (b) Barbara, (c) Boat,
(d) Bridge, (e) Building, (f) Cameraman, (g) Girl, (h) Lax, (i) Lenna, (j) Lighthouse, (k) Text, (l) Woman.



J. Imaging 2022, 8, 247 15 of 22

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 14. Nikolova and Steidl’s exact histogram equalization: (a) Airplane, (b) Barbara, (c) Boat,
(d) Bridge, (e) Building, (f) Cameraman, (g) Girl, (h) Lax, (i) Lenna, (j) Lighthouse, (k) Text, (l) Woman.

Similarly, Figure 15 shows the results by the proposed method, which also equalizes
the histogram of each image exactly. Therefore, the output images of both methods are
similar to each other.

Figure 16a shows the root mean squared error (RMSE) between Nikolova and Steidl’s
output image and the corresponding output image by the proposed method, where “Text”
image shown in (b) get the largest RMSE value, but the difference is small as visualized in
(c), where error-free pixels have the neutral gray value 127.

We also compare the results of exact histogram specification with the Gaussian target
histogram, which are shown in Figures 17 and 18 for Nikolova and Steidl’s and the proposed
methods, respectively. In Figure 17, we observe that the obtained contrast is not so high
as that of Figure 14 because the Gaussian target histogram suppresses the numbers of
extremely dark and bright pixels, and assigns many pixel values to middle-range gray
pixels. As a result, the dynamic range of gray pixels is boosted relatively. The output images
in Figure 18 have a similar tendency to that in Figure 17 because the proposed method also
obtains an exact Gaussian target histogram as well as Nikolova and Steidl’s method.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 15. The proposed exact histogram equalization: (a) Airplane, (b) Barbara, (c) Boat, (d) Bridge,
(e) Building, (f) Cameraman, (g) Girl, (h) Lax, (i) Lenna, (j) Lighthouse, (k) Text, (l) Woman.
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(a) (b) (c)

Figure 16. Comparison between Figures 14 and 15: (a) RMSEs of twelve grayscale images; (b) The
“Text” image obtains the largest RMSE value in (a); (c) Difference from the neutral gray indicates the
difference between Nikolova and Steidl’s and the proposed methods. (a) Root mean squared error;
(b) Text (identical to Figure 13k); (c) Difference image.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 17. Nikolova and Steidl’s exact histogram specification: (a) Airplane, (b) Barbara, (c) Boat,
(d) Bridge, (e) Building, (f) Cameraman, (g) Girl, (h) Lax, (i) Lenna, (j) Lighthouse, (k) Text, (l) Woman.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 18. The proposed exact histogram specification: (a) Airplane, (b) Barbara, (c) Boat, (d) Bridge,
(e) Building, (f) Cameraman, (g) Girl, (h) Lax, (i) Lenna, (j) Lighthouse, (k) Text, (l) Woman.
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Figure 19a shows the RMSE between the corresponding output images in
Figures 17 and 18, where three images “Bui.”, “Lig.” and “Tex.” have relatively large
RMSE values. We can find the differences at the bottom of those images as shown in
Figure 19b, where the bottom areas of “Bui.”, “Lig.” and “Tex.” are arranged from top to
bottom. The corresponding results by Nikolova and Steidl’s and the proposed methods are
shown in Figure 19c and Figure 19d, respectively, where we can see artifacts in (c) similar
to that in Figure 8b. On the other hand, Figure 19d has no such artifacts.

(a) Root mean squared error (b) Original (c) Nikolova and Steidl (d) Proposed

Figure 19. Comparison between Figures 17 and 18: (a) RMSEs of twelve grayscale images; (b) The
bottom areas of the original “Bui.”, “Lig.” and “Tex.” images are arranged from top to bottom; (c) the
same parts of the results by Nikolova and Steidl’s method; (d) the same parts of the results by the
proposed methods.

Figure 20 shows twelve color images in the SIDBA image dataset [28], which are
enhanced by a separable histogram equalization that applies Nikolova and Steidl’s exact
histogram equalization algorithm to each color channel separately as shown in Figure 21,
where we can see that the contrast of every image is enhanced, but the hue has changed
from the original images in Figure 20.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 20. Color images in the SIDBA image dataset [28]: (a) Aerial, (b) Airplane, (c) Balloon,
(d) Couple, (e) Earth, (f) Girl, (g) Lenna, (h) Mandrill, (i) Milkdrop, (j) Parrots, (k) Peppers,
(l) Sailboat.



J. Imaging 2022, 8, 247 18 of 22

Figure 21. Results of separable histogram equalization with Nikolova and Steidl’s exact histogram
equalization algorithm.

Figure 22 shows the results from the proposed histogram equalization method de-
scribed in Section 5.2, where we can see that the hue of each image is closer to the original
one than that in Figure 21.

Figure 22. Results of the proposed exact histogram equalization.

Figure 23 shows the RMSE of hue of each output image from the corresponding
original image, where the vertical and horizontal axes denote the RMSE value and the
images, respectively, and the blue and orange bars denote the separable and proposed
methods, from which we observe that the proposed method preserves the original hue
better than the separable method.

Figure 24 shows the results of a separable histogram specification that applies Nikolova
and Steidl’s exact histogram specification algorithm to each color channel separately. Simi-
larly to the above results of histogram equalization in Figure 21, here we can see the hue
change from the original images.

On the other hand, Figure 25 shows the results by the proposed histogram specification
method, where we can also see that the hue of each image is closer to the original one than
that in Figure 24.

Figure 26 shows the RMSE of hue of each output image from the corresponding
original image, from which we also observe that the proposed method preserves the
original hue better than the separable method.
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Figure 23. Comparison of the RMSE of hue of the images in Figures 21 and 22 from the original images.

Figure 24. Results of the separable histogram specification with Nikolova and Steidl’s exact histogram
specification algorithm.

Figure 25. Results of the proposed exact histogram specification.

The above experimental results demonstrate the effectiveness of the proposed local
contrast-based pixel ordering method for exact histogram equalization and specification
compared with the state-of-the-art method by Nikolova and Steidl [13]. A drawback of
Nikolova and Steidl’s algorithm observed in Figure 8b, where a stripe pattern occurred
on flat areas, may be a newfound phenomenon. The proposed method can avoid the
occurrence of such false patterns.
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Figure 26. Comparison of the RMSE of hue of the images in Figures 24 and 25 from the original images.

In the above experiments, although we used a Gaussian target histogram for histogram
specification constantly, we can choose other candidates such as multimodal distributions
without any problems.

For the implementation of Nikolova and Steidl’s algorithm described in Algorithm 1,
we need to use sparse matrices even if the input image is not so large, e.g., the original
image in Figure 1a with 256× 256 pixels because the difference operator G in (7) becomes a
very large matrix with r×mn ≈ 8.56× 109 elements. On the other hand, the proposed method
can be implemented without sparse matrices.

Additionally, we implemented Ramos’s recent algorithm for histogram specifica-
tion [16]. Figure 27 shows the result of Ramos’s histogram specification, where Figure 27a
shows the output image computed from the input image in Figure 1a with the Gaussian
target histogram with mean 127.5 and standard deviation 50. Figure 27b shows the ob-
tained histogram of the output image in Figure 27a in a blue line with the target histogram
in the orange line. This figure shows that Ramos’s algorithm is not an exact histogram
specification method, and the obtained histogram is similar to that of the conventional
histogram specification shown in Figure 2b. On the other hand, the proposed method gives
exactly the same histogram as a prescribed target histogram as shown in Figure 2c. In
Ramos’s formulation of lp norm minimization, we set p = ∞. For details, please refer to
Ramos’s original paper [16]. For the implementation of Ramos’s algorithm, we need to use
sparse matrices with about mn× L elements as well as Nikolova and Steidl’s one.

A limitation of the proposed method is that users need to prepare a target histogram
for histogram specification. However, it may be difficult to know the optimal shape of the
histogram for a given image in advance. The estimation of suitable target histograms for
given images will be a subject to be considered in the future.

(a) Original color image (b) Histogram

Figure 27. Histogram specification by Ramos’s algorithm [16]: (a) histogram specified image;
(b) obtained and target histograms.
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7. Conclusions

In this paper, we proposed a method for ordering pixels in an image for exact his-
togram specification, and compared it with the state-of-the-art algorithm by Nikolova and
Steidl [13]. We divided the problem of pixel ordering into small subproblems which can be
solved memory-efficiently. This idea makes the problem of exact histogram specification
more tractable than ever. The proposed method uses the Gaussian filter without approx-
imation instead of the nonlinear filter used in Nikolova and Steidl’s algorithm. We use
the local contrast defined with the Gaussian-filtered image as a key to ordering pixels. As
a result, it was experimentally demonstrated that we could avoid the occurrence of false
patterns that were observed in the results obtained by Nikolova and Steidl’s algorithm.

We also extended the proposed method for grayscale images to that for color images.
Experimental results showed that the proposed method keeps the hue of the original images
better than conventional separable methods of histogram equalization and specification for
color images.

Our future work will include the development of a method for making a preferable
target histogram for histogram specification depending on a given input image.
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