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Abstract

MicroRNAs (miRNAs) are small RNA molecules, about 22 nucleotide long, which post-transcriptionally regulate their target
messenger RNAs (mRNAs). They accomplish key roles in gene regulatory networks, ranging from signaling pathways to
tissue morphogenesis, and their aberrant behavior is often associated with the development of various diseases. Recently it
has been experimentally shown that the way miRNAs interact with their targets can be described in terms of a titration
mechanism. From a theoretical point of view titration mechanisms are characterized by threshold effect at near-
equimolarity of the different chemical species, hypersensitivity of the system around the threshold, and cross-talk among
targets. The latter characteristic has been lately identified as competing endogenous RNA (ceRNA) effect to mark those
indirect interactions among targets of a common pool of miRNAs they are in competition for. Here we propose a stochastic
model to analyze the equilibrium and out-of-equilibrium properties of a network of M miRNAs interacting with N mRNA
targets. In particular we are able to describe in detail the peculiar equilibrium and non-equilibrium phenomena that the
system displays in proximity to the threshold: (i) maximal cross-talk and correlation between targets, (ii) robustness of
ceRNA effect with respect to the model’s parameters and in particular to the catalyticity of the miRNA-mRNA interaction,
and (iii) anomalous response-time to external perturbations.
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Introduction

A recently discovered molecular mechanism [1], lately named

Competing Endogenous RNA (ceRNA) effect [2,3], points out the

importance of indirect interactions among transcript RNAs in

competition for the same pool of microRNAs (miRNAs). MiRNAs

are small – about 22 nucleotide long – non-coding RNAs which

post-transcriptionally interact with their targets in a sequence

dependent manner. In their mature stage, miRNAs get included in

a RNA-induced silencing complex (RISC) and, eventually, thanks

to a 6–8 nucleotide long seed region, bind specifically the miRNA

regulatory elements (MREs) in the 39UTR of their target mRNAs.

The effective miRNA/mRNA interaction turns out to be very

complex and still poorly understood. Depending on (i) the degree

of complementarity of the seed region with the target, (ii) the

interaction of miRNAs with Argonaute preoteins which induces

functional domains ( e.g. anchor, seed, central, 39 supplementary,

and tail regions) [4] on the miRNA sequence, miRNAs can either

cleave the transcripts or downregulate their translation: in either

case the net effect is a reduced amount of mRNAs or proteins.

MiRNAs are known to regulate a multitude of different processes

ranging from differentiation to neural plasticity, and their

misfunctioning is often associated with the development of diseases

[5,6].

In a nutshell the idea behind the ceRNA effect boils down to the

simple observation that, while interacting with a target mRNA, a

single miRNA cannot act on other targets. Mature miRNAs (i.e.

miRNAs loaded in RISC) are thus the limiting factor in a system

of potentially interacting target mRNAs. If for example gene A,

which shares one miRNA with gene B, is up-regulated the

common miRNAs will tend to bind preferentially to mRNA A due

to its increased concentration. Consequently, mRNA of gene B

will be less repressed resulting in a subsequent increased

concentration [1–3,7,8]. Other studies have independently pro-

vided further evidences for miRNA mediated trans-regulatory

mRNA effects [9,10]. Since each miRNA can have several targets,

a complex indirect interaction network among different targets

emerges, where nodes are mRNA transcripts and there is a link

between two nodes if they have at least one miRNA in common.

Then, the highest the number of common miRNAs or MREs, the

strongest the link. Such crosstalk effect has been observed in

bacteria where the role of miRNAs is played by small RNAs

(sRNAs) and it is due to a titrative interaction among sRNAs and

targets [11]. Depending on the number of sRNA binding elements

crosstalk among sRNA targets can then be prioritized and selective

[11,12].

Interaction via titration mechanisms entails a threshold-like

behavior between the two interacting molecules, where the

threshold position is determined by the relative amount of them

[11,13–16]. This means that as long as the concentration of one of

these two molecules is below the threshold almost all of them are

bound in complexes with the second ones and their free amount is

very low. Increasing their concentration beyond the threshold

results in an increased amount of free molecules, while the others

will be in turn almost all bound in complexes. Moreover, systems

of molecules interacting in a titrative fashion also show a

hypersensitivity in proximity to the threshold to changes in the

molecule production rates [13,14]. In particular controlled
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conditions it has been shown that it is right near the threshold,

where sensitivity is maximal, that crosstalk among sRNA targets is

maximal too [11].

Remarkably, Mukherji and co-workers [17] recently observed a

threshold-like effect also in miRNA target expression in single

cells. Moreover, in line with studies in bacteria [11,15] and with

earlier works on protein-protein interaction [13,14], they tested a

mathematical deterministic model of molecular titration to

describe their results and found it in good agreement with

experimental observations. Such results strengthen the idea that

behind the ceRNA effect there is a miRNA-target titration

mechanism.

Motivated by [17] and [2,3] and by results obtained in

experiments with bacteria [11,12,15], in this paper we extend

previous models to the case of a general network of M miRNAs

titratively interacting with N target mRNAs (ceRNAs) and analyze

it from a stochastic point of view. So far analytical predictions from

models for titrative interactions did not go beyond the mean-field

limit [11,15,17,18] or were limited to the case of small circuits

because of the nonlinearities involved [13]. However, (i)

stochasticity plays a central role in gene expression mostly when

numbers of molecules involved are modest [19–21] and (ii) small

circuits are usually embedded in more complex networks so that

induced interactions might be relevant. Since potential crosstalk

among miRNA targets is effective right in proximity to the

threshold, where free chemical species (i.e. not bound in

complexes) are present in small numbers, it is necessary a

stochastic analysis of the system.

Here we show that, despite the complexity and the intrinsic

non-linearity of the system, a shrewd use of the moment

generating function approach plus a simple Gaussian approxima-

tion are enough to obtain analytical expressions for noise and

Pearson’s correlation coefficients for all the molecular species

considered in a generic network.

As a preliminary result we describe, at the level of the

independent molecular species approximation (viz. mean-field),

the onset of a threshold-like behavior typical of titration

mechanism [11,13–16], which has been specifically investigated

in [17,18] in the case of a miRNA-mediated mRNA interaction,

and discuss the possible mechanism leading to a specificity of the

interactions.

Secondly, for the first time, we derive analytical results beyond

the independent molecular species approximation which allows for

the characterization of profiles for means, noise and Pearson’s

correlation coefficients, comparing them with numerical simula-

tions. Interestingly, we found that in proximity to the threshold

both noise (in terms of Fano factor and coefficient of variation) and

correlation profiles among the different molecular species show a

maximum. Even if the noise increases, ceRNAs and miRNAs

fluctuate in a highly correlated manner. Titration-like interactions

could thus be an adequate mechanism to affects system’s

homeostasis, possibly supporting the idea of miRNAs as key

players in conferring robustness to the system [22–24].

Among the different parameters characterizing miRNA-mRNA

interactions, the degree of catalyticity – i.e. the fraction of miRNA

molecules that are recycled after the interaction with their target –

is among the most disputed yet less understood ones: [25,26]

support an almost completely catalytic interaction (a*0), while at

the opposite range [27–29] support an almost completely

stoichiometric interaction (a^1). Finally, intermediate values of

catalyticity are indeed supported by a recent work [30]. Here we

show that ceRNA effect is robust with respect to this parameter

too. In the limiting case of a completely catalytic interaction (i.e.

100% of the miRNA is recycled) a threshold-behavior is still

observed as an intrinsically out-of-equilibrium phenomenon: the

location of the threshold turns out to be a monotonously increasing

function of time such that, at equilibrium (long-time limit), no

threshold behavior is observed.

An out-of-equilibrium characteristic of the system predicted by

the model is the response time of a ceRNA embedded in a network

after a single factor perturbation. Again, in proximity to the

threshold, we observe peculiar trends: upon switching on or off

another ceRNA in the network the response times show a

maximum and a minimum respectively, and the qualitative

profiles are independent of the number of ceRNAs in competition.

Finally we conclude proposing a series of specific experiments

aiming at validating both qualitatively and quantitatively the

model’s predictions, and briefly describing how ceRNA interaction

turns out to be stable in presence of more complex network

topologies such as feedback and feedforward loops.

Results

Definition of a network of interaction miRNAs-ceRNAs
The network we are interested in describing is schematically

depicted in Figure 1A, where M different free mature miRNAs

(colored stars) can interact with N different free target mRNAs

(colored pentagons). miRNAs and target mRNAs interact via a

titration-like mechanism [17]. As a first approximation we can

think the mRNAs as irreversibly lost due to the miRNAs actions

(miRNA-target association rate much greater than dissociation

rate) while the miRNAs can eventually be recycled. Such

approximation is supported by recent results on the estimate of

the miRNA-target complex dissociation rate [4]. Figure 1B shows

a cartoon of such mechanism in which two different DNA

molecules (green rectangles) are transcribed with rates kSi
and kRj

to become miRNA Si and mRNA Rj respectively. Eventually Si

and Rj either degrade (broken gray stars and pentagons) with rates

gSi
and gRj

or interact binding in a complex Cij via an effective

association rate gij .

The effective association rate gij should be thought as a

combination of association, dissociation and degradation rates of

the miRNA-mRNA complex Cij (see Supporting Information (File

S1) for more details). Once in the complex the mRNA Rj cannot

be translated or utilized anymore. The parameter a (with

0ƒaƒ1) is a measure of the catalyticity of the miRNA, that is

Figure 1. Representation of a generic miRNA-target interaction
network. (A) Simplified picture of a miRNA-ceRNA interaction network.
(B) For each miRNA (Si) and ceRNA (Rj ) present in the network we
consider the main steps of transcription (rates kSi

and kRj
respectively)

and degradation (rates gSi
and gRj

respectively) plus a titrative

interaction between miRNA and ceRNA. miRNA and ceRNA can
therefore form a complex Cij with effective association rate gij . The
parameter a (the catalyticity parameter) tells which is the probability a
miRNA is recycled after having interacted with one of its targets.
doi:10.1371/journal.pone.0066609.g001
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the ability the miRNA has to be available again once having

interacted with its target. Thus, a~1 means that for each mRNA

Rj bound in a complex Cij there is also one miRNA Sj sequestered

(and no more able to interact with its other targets) while a~0
implies that mRNA Rj effective degradation is increased by gij but

this does not have any effect on the miRNA Si.

Mean field approximation: threshold behavior and cross-
talk

The onset of a threshold-like response as a consequence of a

titration mechanism is a rather well known phenomenon [11,13–

18]. In Figures 2A and 3A, we show an example of threshold effect

in the case M~N~2 as a function of different ceRNA and

miRNA concentrations. Such an effect can be derived under the

assumption that the joint probability distributions of the different

molecular species are statistically independent, as explained in

Section Materials and Methods.

In a general network of interaction of N ceRNAs and M
miRNAs, when miRNA-target interaction strength is high,

following the derivation of Eq. 11 and depending on the control

parameter we decide to tune, two distinct phases emerge: (i) if all

target transcription rates are below the threshold level, explicitly

computable in terms of all other model’s parameters, all targets

turn out to be bounded in complexes and the free molecule (i.e. not

bounded) share is very low, (ii) if at least one of the transcription

rates is above threshold, then all other target free molecule shares

are expressed in finite amount. As shown in Figure 2A, the

emerging scenario entails a cross-talk mechanism where a single

mRNA target above threshold is able to drive the other common

mRNA targets above threshold. The hypothesis of a strong

ceRNA-miRNA interaction can be relaxed, and still, a smoother

threshold-like behavior is observed [11].

One of the most controversial issue of the ceRNA hypothesis is

to what extent can a 2–5 fold change in the abundance of one

miRNA target (say ceRNA1), with realistic transcription rate and

miRNA expression rate, affects hundreds of other targets of this

same miRNA. To settle this controversy, in Table 1 we report the

fold-change in the number of free ceRNAs and miRNA for a

Figure 2. Threshold, noise and Pearson’s coefficients varying ceRNA transcription rate. (A–C) Steady state value for means, Fano factors
and coefficients of variation for each free molecular species in a system of two miRNAs (miRNA1 and miRNA2, green and orange lines respectively)
interacting with two ceRNAs (ceRNA1 and ceRNA2, blue and red lines respectively) varying the concentration of ceRNA1. In proximity to the
threshold the system shows hypersensitivity to changes in the control parameter (ceRNA1 transcription rate), captured by a maximum in the Fano
factors (panel B). For the same values of ceRNA1 transcription rate, the local maximum in the coefficients of variation (panel C) is the fingerprint of
bimodal distributions in the number of molecules for each molecular species. (D) Pearson’s coefficients between the two miRNAs (orange line) and
the two ceRNAs (blue line). The two lines show a maximum in proximity to the ceRNA1 transcriptiom rate threshold value, meaning that there is a
region of parameters where the fluctuations in the number of ceRNAs or miRNAs are highly correlated. Lines are the results of Gaussian
approximation while symbols are Gillespie’s simulations. For panels B,C the line color-code is the same as in panel A.
doi:10.1371/journal.pone.0066609.g002
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system of one miRNA interacting with 100 targets. We study

which is the impact of the variation of a single ceRNA (ceRNA1

R1) transcription rate (kR1
) on another randomly chosen of the

remaining 99 (let call it ceRNA2 R2). For simplicity (but this

simplification can be relaxed), all the transcription, degradation

and association rates are maintained equal among the different

ceRNAs (these values are reported in File S1). Depending on the

number of free miRNA S available, the system could be below,

around or above the threshold, with consequently different

miRNA dilution effects on the 100 miRNA targets. Although

the fold-change in kR1
is the same in the three cases (we report the

case of fold-change 1,5, and 7), the variation of ceRNA2 R2 (and

each one of the other 98 ceRNAs) and miRNA S levels are

maximal when the system is in proximity to the threshold, while

almost nothing changes when above or below the threshold.

CeRNA1 grows almost linearly with its transcription rate below

and above threshold, while again its variation is maximal in

proximity to the threshold. Consider now the behavior of two

different ceRNA networks characterized by the same transcription

rates of the different chemical species (all ceRNAs have the same

transcription rates across the two networks): (i) network1 composed

by 2 ceRNAs and 1 miRNA (N = 2,M = 1), (ii) network2 analogous

to the previously discussed case (N = 100, M = 1). It is now clear

that if network1 is at threshold, of course network2 would be well

above threshold (there would not be enough miRNAs), and

conversely if network2 is at threshold, network1 would be well below

threshold (there would be too many miRNAs and basically all

ceRNAs would be bound by a miRNA). So the overall

stoichiometry of the system dictates whether or not there is

cross-talk between ceRNAs (see Table 1).

Interestingly enough we note that if, as control parameter, we

decide to tune the p-th miRNA transcription rate, keeping all the

remaining model’s parameters fixed, a mirror-like scenario

emerges (as displayed in Figure 3A): in complete analogy with

the case previously discussed, also miRNAs cross-talk through

ceRNAs. Here again, as long as all miRNAs transcription rates are

below threshold, free miRNA molecule shares are very low. As the

first miRNA transcription rate crosses the threshold, all other

miRNAs show a substantial increase of their free share. In this case

Figure 3. Threshold, noise and Pearson’s coefficients varying miRNA transcription rate. (A–C) Steady state value for means, Fano factors
and coefficients of variation for each free molecular species in a system of two miRNAs (miRNA1 and miRNA2, green and orange lines respectively)
interacting with two ceRNAs (ceRNA1 and ceRNA2, blue and red lines respectively) varying the concentration of miRNA1. In proximity to the
threshold the system shows hypersensitivity to changes in the control parameter (miRNA1 transcription rate), captured by a maximum in the Fano
factors (panel B). For the same values of miRNA1 transcription rate, the local maximum in the coefficients of variation (panel C) is the fingerprint of
bimodal distributions in the number of molecules for each molecular species. (D) Pearson’s coefficients between the two miRNAs (orange line) and
the two ceRNAs (blue line). The two lines show a maximum in proximity to the miRNA1 transcriptiom rate threshold value, meaning that there is a
region of parameters where the fluctuations in the number of ceRNAs or miRNAs are highly correlated. Lines are the results of Gaussian
approximation while symbols are Gillespie’s simulations. For panels B,C the line color-code is the same as in panel A.
doi:10.1371/journal.pone.0066609.g003
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too there is a clear cross-talk between miRNAs. It is interesting to

note that the threshold value predicted by the model (see Section

Materials and methods) occurs at near-equimolar concentrations

of the different chemical species.

If a hierarchy is present for the miRNA-target interaction

strengths gij=(gRi
gSj

) [11,18], for example accounting for different

MREs for different target mRNAs, then a hierarchy will be also

established in the other target (miRNA) signal amplification levels

when the amount of target mRNAs (miRNAs) is moved from

below to above the threshold value. Targets sharing similar MREs

will be more co-regulated than targets sharing only few MREs

[18]. The miRNA-target interplay may thus be selective depend-

ing on the particular affinities and binding strengths [11,12]. This

leads to a complex regulatory network with non-trivial indirect

interactions among targets in competition for the same pool of

miRNAs.

The network sketched in Figure 1A is a crude simplification of

what should be a real-case ceRNA’s network. To make things

slightly more realistic see Figure 4A, where two groups of ceRNAs

interact through two distinct sets of miRNAs. However, a small

subset of miRNAs makes the two groups of ceRNAs, otherwise

statistically independent, weakly interacting by cross-connecting the

two sets. We simulated the network’s dynamics using the Gillespie

algorithm in two different settings. In the first one, we modulate

over time the transcription rate of one ceRNA, starting with a

value below threshold, and we first increase the transcription of

one specific ceRNA (ceRNA1) rate after 35 hours. A first

observation is that it is enough to bring above threshold a single

ceRNA to set the whole network in its non-repressed state. The

second observation is that ceRNA-mediated regulation can be

specific, i.e. we observe a clear hierarchy in the response of the

different ceRNAs (see Figure 4B): those ceRNAs sharing the

largest set of miRNA (red pentagons) respond more than the

others. A second increase in the transcription rate of ceRNA1 after

70 hours makes the hierarchy in the responses even more clear.

Interestingly, also the sets of ceRNAs (orange and blue pentagons)

which do not share any targeting miRNA respond to the over-

expression of ceRNA1 (although less than the other groups),

thanks to an indirect effective interaction: ceRNA1 pulls up the

red and yellow pentagon sets, the yellow pentagon pulls up the

orange, and the latter the blue pentagon set.

In the second setting (see Figure 4C), we analyze the mirror

scenario in which miRNA10 transcription rate is increased. Again

the hierarchical responses of the different miRNAs is clearly

visible.

Beyond mean field approximation: noise and correlation
coefficients

To get insight into molecular species correlations for the

miRNA-ceRNA interaction network we then assume that the joint

probability distribution P for the different molecular species is a

multivariate Gaussian (see Section Materials and Methods). This

ansatz turns out to be useful since all moments of a multivariate

Gaussian can be expressed as a function of the first two, i.e. in

terms of means and covariances. We will assume that the vector
~XX~(X1, . . . ,XNzM ) : ~(R1, . . . ,RN ,S1, . . . ,SM ) is distributed

according a Gaussian multivariate measure of mean mi : ~E(Xi)
and covariances cij : ~E(XiXj){E(Xi)E(Xj). Thus the generic

third and fourth moments read E(XiXjXk) : ~cijmkzcikmjzcjkmi

and E(XiXjXkXl) : ~cijcklzcikcjlzcilcjk.

In this way we are able to obtain a closed system of equations

for SXiT, SX 2
i T and SXiXjT (see File S1 for a detailed analysis).

This assumption is not arbitrary (the usual van Kampen’s

expansion method [31] shows the master equation is Gaussian

except for small corrections) and interestingly performs better than

the most widely used linear noise approximation (see File S1) when

Table 1. Fold change in the number of free miRNA and ceRNAs.

above threshold: miRNA S transcription rate kS = 0.05S
21(kS = 0.0001S21)

KR1[S21] R1 fold-change R2 fold-change S fold-change

0.1R0.2 2 1 1

0.1R0.5 5 1 1

0.1R0.7 7 1 1

near threshold: miRNA S transcription rate kS = 1.6S
21(kS = 0.02S21)

KR1[S21] R1 fold-change R2 fold-change S fold-change

0.1R0.2 ,3(,4) ,1.3(,2) 0.8(,0.3)

0.1R0.5 15 3 ,0.4(,0.1)

0.1R0.7 ,32(,23) 4.5(,3.3) 0.2(,0.1)

below threshold: miRNA S transcription rate kS = 2S
21(kS = 0.02S21)

KR1[S21] R1 fold-change R2 fold-change S fold-change

0.1R0.2 ,2 ,1 1(,0.9)

0.1R0.5 ,5.5 ,1.1 ,0.9(,0.8)

0.1R0.7 ,8.5(,10.7) ,1.2(,1.5) ,0.8(,0.7)

Using ceRNA1 transcription rate kR1
as control parameter we evaluate the fold change in the number of free miRNA (S), ceRNA1 (R1) and ceRNA2 (R2) upon a variation

of 2,5 and 7 fold in kR1
in a system of 1 miRNA interacting with 100 different targets (R1,R2,:::,R100). Depending on the availability of free miRNA S (which depends on

its basal transcription rate kS ) the system could be below, near or above the threshold. Although the fold-change in kR1
is the same in the three cases, the fold change

in S,R1 and R2 (measured as the ratio between their final and initial values) is maximal in proximity to the threshold. To obtain approximately the same fold-change in a
system with only 1 miRNA and 2 targets (R1 and R2) the miRNA transcription rate has to be lower. Its value is reported in brackets as well the corresponding fold-
change when different from the case with 1 miRNA and 100 targets.
doi:10.1371/journal.pone.0066609.t001
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compared with Gillespie’s simulations (see [32] for a nice

introduction to the subject). Under this approximation we then

find an analytical expression for means, noise and Pearson’s

correlation coefficients.

The threshold is characterized not only by the abrupt change of

the mean quantities as a function of the control parameter, but

also by Pearson’s correlation coefficients and noise (both related to

the covariances) which turn out to show a maximum around the

threshold. For each molecular species we evaluated in terms of

variance sSxiT : ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SX 2

i T{SXiT2
q

the Fano factor,

fxi
~s2

SxiT=SxiT, and the coefficient of variation,

CVxi
~sSxiT=SxiT, which are both measures of noise. While the

first one tells how much a particular process is different from a

Poisson process, the second is a dispersion index. Figures 2B,C and

3B,C show such noise profiles as a function of ceRNA1 or

miRNA1 transcription rate. As it is possible to notice in Figures 2B

and 3B, in proximity to the threshold the joint probability

distributions are far from being independent (fxi
&1 for all indexes

i labelling the different chemical species) while a multivariate

Gaussian approximation is better suited to describe the simulation

results. In Figures 2C and 3C we plot the CV profiles. Increasing

the ceRNA1 (miRNA1) transcription rate we observe a decreasing

noise profile for ceRNAs (miRNAs) and an increasing one for

miRNAs (ceRNAs), as expected because of the increasing and

decreasing amount of free ceRNAs (miRNAs) and miRNAs

(ceRNAs) respectively. Interestingly however, right close to the

threshold it is possible to notice a bump in the CV profiles. This

phenomenon, due to variances growing faster than means, is

compatible with the bimodal distributions experimentally observed

and verified via simulations in particular controlled conditions in

bacterial sRNA target [33,34].

The Pearson’s correlation coefficients,

rXi ,Xj
~

SxixjT{SxiTSxjT
sSxiTsSxjT

, are shown in Figures 2D and 3D.

The profile of the curves as a function of the control parameter,

with a well-defined maximum, confirms the system hypersensitiv-

ity near the threshold. Analogously, we can define the Pearson

correlation coefficient between miRNAs and ceRNAs (not shown).

In this case, miRNAs and ceRNAs are negatively correlated.

It is interesting to notice that exactly where the number of

interacting molecules is small and the noise profiles show local

maxima, the statistical correlation between molecular species is

maximal too. Speculatively, the titration interaction mechanism

provides for a tool able to affect the network homeostasis:

potentially interacting ceRNAs (or miRNAs) needed in the same

time fluctuate together.

Threshold effect and miRNA-target catalytic interaction
So far we considered a titrative stoichiometric (0vaƒ1)

ceRNA/miRNA interaction. However, the open question is if

Figure 4. Selectivity of miRNA and ceRNA interactions. (A) Example of a network of ten miRNAs interacting with ten ceRNAs in blocks. The
interaction links are such that we can define two main blocks (block 1 and block2) of strongly interacting miRNAs-ceRNAs connected by one common
miRNAs (miRNA 5 in block 1, miRNA 6 in block 2) and ceRNAs (ceRNA 5 in block 1 and ceRNA 6 in block 2). Panels (B,C) show an example of dynamics
of such network. Varying ceRNA1 (panel B) or miRNA10 (panel C) transcription rate during time (every 35 hours in the example, but the time is
arbitrary) has a differentiated effect on the other ceRNAs and miRNAs present in the all network. The color-code for lines in panels B and C follows the
color of miRNAs and ceRNAs in panel A.
doi:10.1371/journal.pone.0066609.g004

Modelling Competing Endogenous RNA Networks

PLOS ONE | www.plosone.org 6 June 2013 | Volume 8 | Issue 6 | e66609



cross-talk among miRNAs or miRNA targets can be possible in

case of purely catalytic-like interaction (that is, in case of complete

miRNA recycling, or rather a~0 in Equation 1) [29].

It is straightforward to see that, at the steady state, equations for

the various SRjT (or SSiT) decouple when a~0 (see Equation 9)

[18]. As a consequence, no cross-talk is possible among ceRNAs

(or miRNAs). We found that in the out of equilibrium phase

instead, the behavior is different.

We considered the time evolution of the system in Equation 1 of

the Supplementary Material File S1, and then took pictures of the

system at a given time t. If t is sufficiently small with respect to the

time the complexes need to reach the steady-state, for different

values of miRNA (or ceRNA) transcription rate we can observe

the threshold behavior of Figure 5A. Consequently ceRNAs or

miRNAs cross-talk is possible, and statistical correlations are

maximal, as shown by the Pearson’s correlation coefficient profile

in Figure 5B.

The emerging picture is that of a dynamical threshold whose

value at a given time t tends monotonously to the equilibrium one

in case of a=0 and to infinity in case of a~0 for large time. In the

latter case no cross-talk is observed at equilibrium (Figure 5C,D).

The ceRNA effect is therefore robust also in case of catalytic

miRNA-target interaction, the crucial point lieing in the instant of

time at which we look at the system.

Response times
We have already discussed the threshold effect due to titrative

miRNA-target interaction and how the system displays strong

sensitivity (maximum cross-talk) and maximal statistical correla-

tion. We now want to understand how fast the system responds to

an external perturbation. In particular we want to compute the

time needed for a particular ceRNA (say ceRNA1) to reach the

equilibrium after the instantaneous over-expression or knock-out

of a second ceRNA (ceRNA2).

Following [35], we consider two different settings: (i) to mimic a

sudden signal which saturates ceRNA2 promoter at t~0, the

transcription rate kR2
of ceRNA2 switches from zero to a given

value (ceRNA2OFF?ON), (ii) to mimic the opposite condition of a

sudden drop of the activating signal at t~0, the transcription rate

of ceRNA2 kR2
switches from its initial value to zero

(ceRNA2ON?OFF).

Defining the response time as the time needed to reach half of

the way between initial and final ceRNA1 steady state, we evaluate

the response times for both switch-on (TON) and switch-off (TOFF)

conditions (i.e. for ceRNA2OFF?ON and ceRNA2ON?OFF

respectively). We integrated numerically the deterministic system

of equations obtained with M~1 and N~2 (see Equation 2 in

Supplementary Material File S1) to calculate: (i) the time TON such

that R1(TON)~R10
z(R1ss

{R10
)=2 (where R10

and R1ss
are the

initial and final ceRNA1 steady-state respectively), (ii) the time

Figure 5. Threshold effect in a miRNA-target catalytic interaction. Example of a system of one miRNA interacting with two ceRNAs with
cataliticity parameter a~0. The threshold effect is possible only if the system is out of equilibrium (A). Numerical integration of Equation (1) in File S1
leads to time evolution of each molecular species for a given set of parameters. In panels A,C we plot "pictures" of the evolving system at different

time t (panel A t~103 , panel C t~106) as a function of ceRNA1 transcription rate. When t is smaller than the time complexes need to reach their
steady state a threshold effect is observed. In panels B,D we plot the corresponding Pearson’s coefficient profiles. Where the threshold effect is
present (panel A), a peak in the Pearson’s coefficient is also observed.
doi:10.1371/journal.pone.0066609.g005
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TOFF such that R1(TOFF)~R10
{(R10

{R1ss
)=2. The initial

conditions are R2(0)~0 and R1(0) and S(0) with their steady

state values in absence of R2 in the former case, and R2(0)=0 and

R1(0) and S(0) with their steady state values in presence of R2 in

the latter. We also considered a slightly more complex network in

which more ceRNAs are present and we compute ceRNA1

response time with N~5,10,20.

We then ask two questions: (i) how the response time of ceRNA1

changes at different values of basal miRNA concentration, and (ii)

what happens when the system is complicated by the addition of

other competing targets.

As displayed in Figure 6A,B, upon increasing miRNA

transcription rate ceRNA1 TON and TOFF show a maximum

and a minimum respectively. Both the maximum and the

minimum are located at the threshold, where ceRNA1 initial

and final equilibrium values are near (see Figure 6C). Such

response time trend suggests an out-of-equilibrium phase transition, for

which the system experiences anomalous dynamical features

around threshold. Let us point out that around threshold, despite

the change in terms of number of molecules from initial and final

steady state is small, as depicted in Figure 6C, TON is largely

increased while TOFF is decreased. Moreover, the qualitative

shape of the curve is robust with respect to the number of targets

in competition for the same miRNA (see Figure 6A,B where

different line colors correspond to a different number of ceRNAs

in the interaction’s network): the maximum (resp. the minimum) of

the response time depends only mildly on the number of ceRNA

competitors, whereas the location of the threshold at which the

free molecule share of ceRNA1 starts being repressed depends

linearly on the number of competitors. Moreover, the statistical

correlation between ceRNA1 and ceRNA2 seems independent

from the size of the ceRNA’s network: the maximum level of

correlation is almost the same upon increasing the number of

ceRNAs with only a shift to higher miRNA transcription rates

(Figure 6D). Therefore ceRNA1 and ceRNA2 are always very

correlated, notwithstanding the dynamical anomalies in the

response-time around threshold.

Network motifs and cross-talk
Which is the impact of recurrent wiring patterns on the general

picture we analytically described, beyond the particular miRNA-

target titrative interaction? It is increasingly clear that similarly to

what happens in the transcriptional network [36], also in the

mixed one (i.e. the superposition of transcriptional and post-

transcriptional layers of regulation) network motifs can be detected

[37–42]. The widespread idea is that motifs have been the object

Figure 6. Response times upon one ceRNA perturbation. Increasing miRNA transcription rate ceRNA1 shows a maximum and a minimum in its
response times upon switching on or off ceRNA2 transcription respectively (panel A and B). The maximum (minimum) is located near the threshold,
where ceRNA1 initial value (that is its values before switching on (off) ceRNA2) is near to the steady state it will reach upon switching on (off) ceRNA2
(panel C) but is also more sensitive to ceRNA2 variation (look at the maximum in the Pearson’s correlation coefficient between ceRNA1 and ceRNA2 in
panel D). Different color lines correspond to different numbers of ceRNAs in competition for the same miRNA. The qualitative trend for response
times and Pearson’s correlation coefficient is robust with respect to increasing such number.
doi:10.1371/journal.pone.0066609.g006
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of selective pressure because of functional reasons, possibly playing

elementary regulatory roles. As an example, miRNA-mediated

feedback and feedforward loops have been found to be recurrent

network motifs in mammals [39]. A recent work pointed out the

function of incoherent miRNA-mediated feedforward loops (a

transcription factor as master regulator of a miRNA and a target

of both) in reducing noise from upstream regulators [43]. In [35] a

minimal version of such motif (i.e. an intronic miRNA-mediated

self regulation) has been mathematically analyzed. The results

show that independently of the particular set of parameters

considered the functions performed by the circuits are related with

the maintenance of homeostasis. Moreover, in both these

circuitries the analytical predictions are robust with respect to

different modeling strategies for the miRNA-target interaction,

including the titrative one. In this respect, the capability of the

circuitries in reducing noise propagating from upstream regulators

depends on the particular value of the a parameter.

While a complete mathematical characterization of those

topologies from the point of view of crosstalk and correlation is

out of the scope of the present work, we show through simulations

that the threshold/cross-talk behavior of the system is maintained

also in presence of feedbacks and feedforward loops (see Figure S4

in File S1). We thus compare the simplest system consisting of one

miRNA and two ceRNAs with the cases in which (i) one of the two

ceRNAs (ceRNA 1 R1) is translated and its protein product

activates the miRNA transcription (feedback loop) and (ii) both the

miRNA and one of the two ceRNAs are activated by a common

transcription factor (incoherent feedforward loop). For cases (i) and

(ii) we maintained fixed the parameters in common with the

simplest circuit (one miRNA and two ceRNAs) while using

reasonable translation and protein degradation rates. The

transcription activation is modeled via a Hill function.

In Figure S4 in the File S1 we depicted the time evolution for

free miRNA S and ceRNAs R1 and R2 in the three cases (panels

B,D,F). We chose as control parameter R1 transcription rate and,

as in Figure 4 of the main text, we increased its value from below

to above threshold every 35 hours. As it is possible to notice, also

in presence of feedback or feedforward loops it is enough to move

one parameter (among those defining the threshold) to control the

dynamical behavior of all the miRNA/ceRNAs players.

Discussion

In this paper we analyzed the theoretical framework for the

stochastic description of a general network of M miRNAs

interacting with N target mRNAs via a titration mechanism.

With a dexterous use of the moment generating function approach

plus simple Gaussian approximation we showed that it is possible

to obtain analytical expressions for means and covariances for all

the interacting molecules present in the system.

We have first shown how the already well understood threshold

effect implied by titrative interaction [11,13–16] entails with

interesting cross-talk phenomena which, so far, have been only

partially investigated from the experimental point of view [1–3,8–

10]. In particular the issue of the mirror scenario – for which not

only ceRNAs cross-talk through competing for the same set of

miRNAs, but, symmetrically the same set of miRNAs cross-talk

through the common set of ceRNA – is a straightforward

verification of the ceRNA hypothesis which, at the best of our

knowledge, has never been attempted so far. In practice, knowing

the set of miRNAs belonging to a specific ceRNA network, one

could knock-down (resp. over-express) a given miRNA in the

network. In this case, the model predicts that the other miRNAs in

the network, driven by the controlled miRNA knock-down (resp.

over-expression), should decrease (resp. increase) their free

molecule share. Such an effect could be directly measurable as

an up-regulation (resp. down-regulation) of any of the miRNAs

targets (either belonging to the same ceRNA network, or to any

other secondary target).

In addition to cross-talk and threshold phenomena, the model

predicts interesting and experimentally measurable trends for the

noise and Pearson’s correlation coefficient profiles. In proximity to

the threshold, where all the free molecular species involved in the

system are present in small numbers, both the noise measures we

analyzed (Fano factor and coefficient of variation) show a

maximum (for the latter the maximum is local). These behaviors

can be interpreted in terms of bimodal distributions for each

molecular species involved in the titrative mechanism [34].

Interestingly the bimodality has been experimentally measured

in a simple sRNA-mediated circuit in bacteria [33], and could be

potentially verified in our ceRNA case.

In proximity to such threshold value, also the Pearson’s

correlation coefficients among ceRNAs or miRNAs show a

maximum, meaning that the statistical correlation among mole-

cules deriving from different genes is high. That is, not only the

system is hypersensitive to little changes in the control parameter,

but also fluctuations are highly correlated. As a matter of fact, the

titration mechanism of interaction establishes a positive coupling

among ceRNAs belonging to different genes (or among miRNAs).

While the intensity of such correlation depends mostly on the

combination of the basal transcription rates of each particular

gene (so that different genes speak each other at different

intensities, but the level of correlation is established by the

particular parameters), the location of the maximum is determined

by all the molecular species in competition. Furthermore, such

statistical correlation is robust with respect to the number of

ceRNAs involved in the system (with just a shift in the location of

the threshold when increasing the number of ceRNAs) and also

with respect to the catalyticity parameter a. When a is zero,

meaning that all the miRNAs are recycled, it is still possible to

observe the threshold effect and the maximum in correlations’

profiles as an out-of-equilibrium characteristic of the system. Thus,

the ceRNA effect is always present, provided that the observation’s

time is short enough.

To investigate experimentally these features, quantitative

fluorescence microscopy seems, for the time being, the most

promising technique. Previous works not directly related to the

ceRNA hypothesis (see [11] for a seminal work in bacteria, and [17]

in human cell lines) used two-colors fluorescent reporter systems.

The construct typically consists of a bidirectional drug-inducible

promoter driving the expression of the two fluorescent proteins.

The 39UTR of the fluorescent proteins can be engineered to

control the binding sites, and so the miRNA-mRNA binding

affinity for the targeting miRNAs of interest. Both in [11] and

[17], the method was used to monitor the threshold effect in a

simple sRNA/miRNA ? mRNA interaction. At the expenses of

creating more complex constructs, an analogous technique could

be deployed to investigate threshold, cross-talk, and noise/

correlation behavior of simple ceRNA networks. In the most

straightforward implementation one needs two reporter constructs:

(i) the first construct consists of a bidirectional reporter system

composed by the 39UTR of ceRNA1 concatenated to the

fluorescent gene (say green), and on the other side a miRNA

binding site free 39UTR concatenated to a second fluorescent gene

(say yellow) to monitor the transcription activity, (ii) the second

construct consists of a single reporter composed by the 39UTR of

ceRNA2 concatenated with a third fluorescent gene (say cherry).

In this way one could simultaneously monitor the activity of both
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ceRNAs (green, cherry) as a function of the transcriptional activity

of ceRNA1 (yellow) which would validate both qualitatively (in

terms of the profile predicted by the model) and possibly

quantitatively (by allowing a multi-parametric fit of the model’s

kinetic constants from the experimental data) the model predic-

tions as displayed, for instance, in Figure 2.

Finally, the model shows interesting out-of-equilibrium features

around threshold which could be experimentally testable (see

Figure S3 in File S1). In particular the peculiar response time

profile as a function of the distance from the threshold could be

directly measured by means of quantitative time-lapse fluorescence

microscopy [44] and flow cytometry to monitor ceRNAs

dynamics. To monitor the dynamics of two ceRNAs, one could

conservatively construct a two color fluorescent reporter system

that allows for simultaneous monitoring of protein levels (see

again[11,17]). Of course larger networks could be potentially

monitored using multiple colors.

Although a quantitative understanding of the impact of miRNA

target cross-talk is still lacking, its mathematical characterization

should specifically be addressed in the context of different

regulatory conditions. For example, the presence of feedback or

feedforward loops can confer peculiar features to a network, as the

capability of enhancing or reducing noise at a particular node.

However, threshold, cross-talk and increased correlation near the

threshold seem to be a general characteristic due to the titrative

miRNA/target interaction.

Materials and Methods

Stochastic simulations
Stochastic simulations have been performed via implementation

of Gillespie’s first reaction algorithm [45].

Theoretical framework: stochastic model. In analogy

with Figure 1B, for each gene belonging to the miRNA-target

network in Figure 1A we consider the key steps of transcription,

degradation and titrative interaction among transcripts. Thus, the

system is described by MzN variables (M miRNAs Si and N
target mRNAs Rj transcribed from MzN different genes) and the

probability of finding in a cell exactly

R,S : ~S1, . . . ,SM ,R1, . . . ,RN molecules at time t satisfies the

following master equation:

LtP~
XM
i~1

kSi
(PSi{1{P)z

XN

j~1

kRj
(PRj{1{P)z ð1Þ

z
XM
i~1

gSi
((Siz1)PSiz1{SiP)z

XN

j~1

gRj
((Rjz1)PRjz1{RjP)z

za
XM
i~1

XN

j~1

gij((Siz1)(Rjz1)PSiz1,Rjz1{SiRjP)z

z(1{a)
XM
i~1

XN

j~1

gijSi((Rjz1)PRjz1{RjP) ,

with P~PX1,...,Xk ,...,XMzN
and PXk+1~PX1,...,Xk+1,...,XMzN

. In

Equation 1 kSi
and kRj

are transcription rates and gSi
and gRj

degradation rates for the i-th miRNA and the j{th target mRNA

respectively. gij is the effective association rate for miRNA Si and

its target Rj . a is the catalyticity parameter described above.

By defining the generating function,

F (z,qDt)~
X
S,R

P
M

i~1
P
N

j~1
z

Si
i q

Rj
j PR,S , ð2Þ

where z,q : ~z1, . . . ,zM ,q1, . . . ,qN , we can convert Equation 1

into the following second-order partial differential equation:

LtF(z,qDt)~H(z,q)F (z,qDt) ð3Þ

where the operator H(z,q) is defined as:

H(z,q)~
XM
i~1

kSi
(zi{1)z

XN

j~1

kRj
(qj{1)z ð4Þ

z
XM
i~1

gSi
(Lzi

{ziLzi
)z
XN

j~1

gRj
(Lqj

{qjLqj
)z

za
XM
i~1

XN

j~1

gij(L2
zi ,qj

{ziqjL2
zi ,qj

)z(1{a)
XM
i~1

XN

j~1

gijzi(L2
zi ,qj

{qjL2
zi ,qj

) :

The moment generating function has the following properties:

F(z~1,q~1)~1 , ð5Þ

Lzi
F Dz~1,q~1~SSiT ,

Lqj
F Dz~1,q~1~SRjT ,

L2
zi

F Dz~1,q~1~SS2
i T{SSiT ,

L2
qj

F Dz~1,q~1~SR2
j T{SRjT ,

L2
zi ,qj

F Dz~1,q~1~SSiRjT : ð6Þ

Considering higher order derivatives in Equation 3 at steady

state (LtF~0), and assuming that all derivatives are computed in

z~1,q~1, we find:

SSiT~Lzi
F~

kSi
{a

PN
j~1

gijL2
zi ,qj

F

gSi

, ð7Þ
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SRjT~Lqj
F~

kRj
{
PM
i~1

gijL2
zi ,qj

F

gRj

,

SS2
i T~L2

zi
FzLzi

F~

kSi
(1zLzi

F ){a
PN
j~1

gij(L3

z2
i

,qj
FzL2

zi ,qj
F )

gSi

,

SR2
j T~L2

qj
FzLqj

F~

kRj
(1zLqj

F){
PM
i~1

gij(L3

zi ,q
2
j

FzL2
zi ,qj

F )

gRj

,

SSiRjT~

kRj
Lzi

FzkSi
Lqj

F{
PM
l~1

gljL3
zi :zl ,qj

F{a
PN
l~1

gilL3
zi ,qj ,ql

F

gijzgSi
zgRj

,

etc::: :

The moment-generating function defined in Equation 3 is

unfortunately too complicated to be computed analytically even at

steady state, as all moments depend on higher ones and the system

is not closed, as shown in Equations 7. In the following we will

present a series of increasingly accurate approximations for

analyzing it.

Independent molecular-species approximation
As a first step for determining analytically the behavior of the

system, we will assume that the probability distribution P is

factorized:

Pind(R,S) : ~ P
M

i~1
PS

i (Si) P
N

j~1
PR

j (Rj) ð8Þ

Under this assumption it turns out that the steady state solution

for the PS
i (Si), and PR

j (Rj) are Poisson distributions whose mean

value can be expressed solving the following second order system

of equations,

SSiTind~

kSi
{aSSiTind

PN
j~1

gijSRjTind

gSi

1ƒiƒM ð9Þ

SRjTind~

kRj
{SRjTind

PM
i~1

gijSSiTind

gRj

1ƒjƒN :

Analytic solutions for the system of Equations 9 can be easily

written in the case gRj
~gR, gSi

~gS and gij~g for all Rj and Si:

SSqTind~
kSq

2gS

PM
i~1

kSi

kSqz
XM
i=q

kSi
{a
XN

j~1

kRj
{

gRgS{
ffiffiffiffi
A
p

g

 !
,ð10Þ

SRpTind~
kRp

2gR

PN
j~1

kRj

kRpz
XN

j=p

kRj
{
XM
i~1

kSi
{

gRgS{
ffiffiffiffi
A
p

ag

 !
,

with

A~4ggSgRa
XN

j~1
kRj

z(gRgSzg(
XM

i~1
kSi

{a
XN

j~1
kRj

))2.

In the more general and biologically relevant case of different

molecules half-lives and complex affinities gij , solutions can still be

found, but they turn out to be too complex and long to be reported

here.

Locating the threshold
The simplest way to locate the threshold is to solve the system of

Equations 9 in the limit of strong miRNA-target interaction (high

gij ) thus finding:

SSiTind,ss?

kSi
{a
PN
j~1

kRj

gSi
if a

PN
j~1

kRj
v

PM
i~1

kSi

0 otherwise

8>>>>><
>>>>>:

ð11Þ

SRjTind,ss?

kRj
{
PM
i~1

kRj
kSi

=(a
PN
j~1

kRj
)

gRj
if a

PN
j~1

kRj
§

PM
i~1

kSi

0 otherwise

8>>>>><
>>>>>:

The threshold position is determined by the relative amount of

miRNAs and their targets (see Equation 11). For fixed kRj
and kSi

,

with j~f1,:::,q{1,qz1,:::,Ng and i~f1,:::,Mg, the threshold is

set by kRj
and by all miRNA transcription rates kSi

. Thus, as long

as the q-th mRNA target transcription rate kRq
is below its

threshold level k�Rq
~(
XM

i~1
kSi

{a
XN

j=q
kRj

)=a all targets are

bound in complexes and their free molecule amount is very low

(while miRNAs are expressed), or, in other terms, the threshold is

located at near-equimolar concentration of the different chemical

species.

In principle there is no reason for the parameter a to be the

same for all the miRNAs. As a first approximation we could

assume that a is only target dependent. The result will be a shift in

the threshold position (k�Rq
~(
XM

i~1
kSi

{
XN

j=q
ajkRj

)=aq). Un-

fortunately no explicit form exists for the general case where a
depends both on targets and miRNAs (aij ). Given the poor

knowledge of the specific value for a, in the following we will

assume a constant value for it.

Increasing kRq
beyond its threshold results in the expression of

all the other targets (while miRNAs will be all bound in

complexes), see Figure 2A.
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Within the independent chemical species approximation in

Equation 8 the Fano factor (noise index fSXT~s2
SXT=SXT) for

each molecular species is 1. The factorized approximation is good

enough in showing the threshold effect, but fails in determining

correlations among molecular species (see symbols, which are the

results of Gillespie’s simulations, in Figures 2A and 3A).

Gaussian Approximation
The simplest approximation beyond mean-field is a Gaussian one.

We denote ~XX~(X1, . . . ,XNzM ) : ~(R1, . . . ,RN ,S1, . . . ,SM ). The

approximation assumes that ~XX is distributed as a multivariate Gaussian:

P(~XX )~

exp {
1

2
(~XX{~mm)T C{1(~XX{~mm)

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2p)NzMdet(C)

q , ð12Þ

where the covariance matrix C has coordinates

cij : ~E(XiXj){E(Xi)E(Xj), the vector ~mm has coordinates

mi : ~E(Xi), and the expectation value E(:) is with respect to the

Gaussian measure P defined in Equation 12. All moments of a

Gaussian multivariate measure can be expressed in terms of mi and cij .

Therefore the moments derived from the generating function in

Equation 7 can be expressed in terms of mi and cij . In the

Supplementary Material File S1 we describe in details the computation

of the specific N~M~2 case, and we compare the performance of the

Gaussian approximation with the linear-noise approximation.

Supporting Information

File S1 Supporting information.

(PDF)
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