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The Asian citrus psyllid (ACP), Diaphorina citri (Kuwayama) (Hemiptera: Liviidae), is a
notorious Rutaceae plant pest. Frequent and extensive use of pesticides has resulted
in severe insecticide resistance in ACP populations. Fully understanding the mechanism
of ACP resistance to pesticides is vital for us to control or delay the development of
resistance. Therefore, we compared the difference in resistance to imidacloprid and
thiamethoxam between Hunan (Yongzhou, Chenzhou) and Guangdong (Guangzhou)
ACP populations and analyzed the correlations between the resistance level and genes
and symbiotic fungi. The results showed that the resistance of the Guangdong ACP
population to imidacloprid and thiamethoxam was lower than that of Hunan ACP
population, and the relative expression of genes associated with P450 mono-oxygenase
and acetylcholinesterase was significantly lower in the Guangdong ACP population than
in Hunan ACP population. The differences of mean relative abundances of four symbiotic
bacteria among three populations were marginally significant; however, the mean relative
abundance of 16 fungi among three populations was significantly different, and positive
linear correlations were observed between the resistance level and two fungi (Aspergillus
niger and Aureobasidium pullulans) and two genes (CYP4C70 and CYP4DB1). Negative
correlations were only observed between the resistance level and two fungi (Golubevia
pallescens and Acremonium sclerotigenum). Moreover, four fungi were unique to
the Chenzhou population which was the highest resistance to imidacloprid and
thiamethoxam. These findings suggested the P450 mono-oxygenase and symbiotic
fungi together affected ACP resistance to imidacloprid and thiamethoxam. In the future,
we may use environmental G. pallescens and A. sclerotigenum to control or delay
ACP resistance.

Keywords: Asian citrus psyllid (ACP), symbiotic fungus, resistance, imidacloprid, thiamethoxam

INTRODUCTION

Chemical control is the most important and widely used measure in controlling most agricultural
pests (Dang et al., 2017). The resistance level of pests is increasing with the intensive and
frequent use of insecticides, reducing the efficiency of pesticides, increasing costs in the agricultural
industry, and causing serious environmental pollution and potential risks to human health. Fully
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understanding the mechanisms of pesticide resistance is vital
for us to control or delay the development of resistance.
Therefore, the analysis of metabolic enzyme activity, application
of insecticide synergists, and expression of genes have been used
to explore the mechanisms of pesticide resistance. Wu et al.
(2018) found that the CYP6ER1 gene in Drosophila melanogaster
conferred resistance to imidacloprid, thiamethoxam, and
buprofezin. Garrood et al. (2016) found that the CYP6ER1
gene provided the brown planthopper (BPH) (Nilaparvata
lugens) resistance to imidacloprid and ethiprole. Increased
activity and reduced sensitivity of acetylcholinesterase affected
oriental migratory locust resistance to the organophosphate
insecticide malathion (Yang et al., 2009). Liu et al. (2005)
confirmed that nicotinic acetylcholine receptor (nAChR)
genes, as targets of neonicotinoid insecticides, affected BPH
resistance to imidacloprid. Overall, most studies on insecticide
resistance mechanisms have focused on evolutionary changes
in pest insect genomes, such as the alteration of pesticide target
sites, increase in pesticide excretion rates, and upregulation
of ATP binding protein and metabolic enzymes, including
general esterase, glutathione S-transferase, and cytochrome
P450 mono-oxygenase (Cao et al., 2008; Kikuchi et al.,
2012; Wei et al., 2015; Safi et al., 2017; Tian et al., 2018;
Wang et al., 2019).

In fact, insects are multiorganismal symbionts and harbor
many microbes that also mediate insecticide resistance
(Douglas, 2015). An early study found that Pseudomonas
melophthora, an obligate symbiont, helped an insect host (apple
maggot, Rhagoletis pomonella) degrade 6 insecticides (Boush
and Matsumura, 1967). The densities of symbiotic bacteria
Arsenophonus, Rickettsia, and Wolbachia from the Q biotype
whitefly associated with the host’s susceptibility to thiamethoxam,
imidacloprid, pyriproxyfen, and spiromesifen (Ghanim and
Kontsedalov, 2009). The symbiotic bacteria Burkholderia
mediated the resistance of its insect host, Riptortus pedestris, to
the organophosphate pesticide fenitrothion by degrading the
pesticide (Kikuchi et al., 2012). Cheng et al. (2017) found that
the gut symbiont Citrobacter sp. helps the host insect fruit fly
Bactrocera dorsalis degrade the organophosphate insecticide
trichlorphon. Pang et al. (2018) found that Arsenophonus strains
(S-type Arsenophonus) in the BPH negatively affected the
insecticide resistance of the host by downregulating xenobiotic
metabolism and increasing amino acid accumulation.

In addition to the many studies focused on bacteria, the
degradation of pesticides by fungi has also been explored.
Marecik et al. (2008) found that Volutella ciliata degraded
atrazine in soil. Cladosporium cladosporioides displayed
maximum degradation of chlorpyrifos in soil (Bisht et al.,
2019). The symbiotic fungus (Candida lipolytica) of the BPH
(N. lugens) participated in resistance to imidacloprid (Li et al.,
2010). Symbiotic yeast (Symbiotaphrina kochii) helps host
cigarette beetles (Lasioderma serricorne) resist toxins (Dowd
and Shen, 2011). Aspergillus fumigatus plays an important role
in azole resistance (Howard et al., 2006). Aspergillus flavus can
produce terreulactone with antiacetylcholinesterase activity and
phosphohydrolases to help pest host detoxification to pesticides
(Rudramurthy et al., 2019). Moreover, a previous study showed

that Thysanophora penicillioides and Dothideomycetes affected
the sensitivity of the Q biotype whitefly to Beauveria bassiana (a
biological pesticide) (Hong et al., 2016). Therefore, microbes can
influence host insect resistance to pesticides.

The Asian citrus psyllid (ACP), Diaphorina citri (Kuwayama)
(Hemiptera: Liviidae), is a notorious Rutaceae plant pest.
The ACP, a phloem-sap feeding pest, directly causes nutrient
depletion within the plant, affecting the growth and death of
young foliage at high population densities (Gottwald, 2010).
Furthermore, ACP secretes honeydew, reducing photosynthesis
and resulting in sooty mold (Grafton-Cardwell et al., 2013).
Moreover, ACP is a natural vector of Candidatus Liberibacter
asiaticus (CLas) and Candidatus Liberibacter americanus (CLam),
which result in one of the most devastating citrus diseases
worldwide, Huanglongbing (HLB) (Duan et al., 2009). HLB
causes small and bitter fruits, blotchy mottling, twig dieback,
poor root growth, and, ultimately, plant death within 5 years.
This disease has resulted in severe economic damage to the
Florida citrus industry, with up to $8.9 billion/year in damage
since 2006 (Eason et al., 2018). Currently, chemical control
is the most effective measure to manage the ACP and HLB
because there is a lack of HLB-resistant cultivars. However,
the frequent and extensive use of pesticides has also resulted
in insecticide resistance in ACP populations. Tiwari et al.
(2011) reported that ACP populations from Florida have a
high level of resistance to imidacloprid. However, Kanga et al.
(2015) showed that ACP populations from Florida in the
United States have no resistance to imidacloprid. Pardo et al.
(2018) showed that the insecticide resistance of adults and
nymphs from ACP populations was significantly different. Tian
et al. (2018) found that ACP populations from Guangdong in
China have a high level of resistance to imidacloprid. This result
indicated that ACP populations from different locations had
different resistance levels to the same insecticide, which may
result from different resistance mechanisms. Wang et al. (2019)
found that the ABC (ATP-binding cassette) transporters of the
ACP may affect resistance to imidacloprid. Whether there is
a difference in resistance to imidacloprid and thiamethoxam
between different ACP populations is unclear. Whether genes
associated with acetylcholinesterase and cytochrome P450 mono-
oxygenase affected the resistance of ACP from populations in
different geographical areas is also unclear.

The ACP harbors the primary endosymbionts Candidatus
Carsonella ruddii and Candidatus Profftella armature, located
on the surface and inside of the bacteriome, respectively
(Nakabachi et al., 2013). The ACP also harbors secondary
symbionts (Rickettsia, Wolbachia, and Arsenophonus), which are
located in organs other than the bacteriome (Subandiyah et al.,
2000; Saha et al., 2012; Nakabachi et al., 2020). Studies have
suggested that Profftella and Wolbachia affect the acquisition
and transmission of Candidatus Liberibacter spp. through the
toll-signaling pathway, which regulates immunity and resistance
(Ramsey et al., 2015; Zhang et al., 2016; Ren et al., 2018).
Gandarilla-Pacheco et al. (2013) suggested B. bassiana and
Isaria fumosorosea could be used to biocontrol to ACP in
México. However, whether symbiotic bacteria and fungi affect the
resistance of the ACP to insecticides is unclear.
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In this study, we hypothesized that there are differences
in the insecticide resistance level of ACP populations from
Hunan and Guangdong to imidacloprid and thiamethoxam and
that the resistance differences were affected by the expression
of genes associated with cytochrome P450 mono-oxygenase
or acetylcholinesterase or the microbial community, either
separately or together. To test this hypothesis, we determined
(1) the resistance level of A from Hunan and Guangdong
to imidacloprid and thiamethoxam, (2) the expression of
genes associated with cytochrome P450 mono-oxygenase
(CYP4C67, CYP4C68, CYP4G70, CYP4DA1, and CYP4DB1) and
acetylcholine esterase (AChE -1–like and ChE-2–like, ACH1 and
ACH2), and (3) the composition and abundance of the symbiotic
bacteria and fungi associated with the ACP.

MATERIALS AND METHODS

Insecticides and Insect Collections
In this study, three geographically distinct populations were
collected using aspirators. Two populations were collected
from commercial citrus orchards located in Jiangyong County
of Yongzhou city (111.33E-25.28N) and Yongxing County
of Chenzhou city (113.10E-26.13N) in Hunan Province. The
third ACP population came from a commercial Murraya
paniculata Jack grove located in the Xinfang village of the Liwan

district, Guangzhou city (113.23E, 23.16N), Guangdong Province
(Figure 1). To enlarge the populations and ensure that all the
ACPs were maintained under the same conditions, field ACP
populations were cultured for one generation on M. paniculata
Jack in an air-conditioned glasshouse maintained at 28◦C ± 2◦C
and 70% ± 10% RH under natural light. Technical-grade
samples (>98% purity) of imidacloprid and thiamethoxam were
purchased from Shanghai Focus Trade Co., Ltd. (Shanghai) and
Zhejiang Haizheng Chemical Co., Ltd. (Taizhou), respectively.

Assessment of ACP Resistance to
Insecticides
To compare the difference in resistance between the Hunan and
Guangdong ACP populations, the previously described glass vial
bioassay technique was used to detect the resistance of ACP to
imidacloprid and thiamethoxam (Kanga et al., 2015). Different
concentrations of insecticides dissolved in acetone were used
to treat the glass scintillation vials (10 mL), and young leaves
were soaked for 30 s and dried naturally. Control vials were
treated with acetone only. The concentration of imidacloprid was
diluted from 80 mg/L to 1.25 mg/L (and 0.625–40 mg/L used
in Guangzhou ACP), and the concentration of thiamethoxam
was diluted from 80 mg/L to 1.25 mg/L according to 1:2
ratio (twofold). The concentrations were based on preparative
experiment. Ten ACPs were placed in each treatment and control
vial with fresh young leaves with and without insecticides,

FIGURE 1 | Map of China with red dots indicating locations where the studied samples were collected.
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respectively, and held at room temperature (28◦C ± 1◦C and
70% RH; a vial served as a replicate for each concentration
tested). Three biological replicates and three technical replicates
were performed for each concentration of each insecticide in the
study. In total, 1,440 (3 × 3 × 10 × 8 × 2) ACPs were used
in the bioassays. Mortality was determined and recorded 24 h
after exposure. ACPs unable to walk (>5 mm) after probing with
a fine brush were recorded as dead. The resistance difference
among the populations from different geographic locations was
determined by the resistance ratio (RR) based on the median
lethal concentrations (LC50) of the highly resistant population
divided by the LC50 of the low-resistance population. The
virulence regression equation, LC50, were estimated and the χ2

test was performed using DPS software.

Relative Gene Expression Associated
With Resistance to Insecticides
To explore whether changes in gene expression altered ACP
resistance to insecticides, we determined the ACP mRNA levels
of the genes associated with cytochrome P450 mono-oxygenase
(CYP4C67, CYP4C68, CYP4DA1, CYP4DB1, and CYP4G70)
and acetylcholine esterase [AChE-1–like (ACH1) and ChE-2-like
(ACH2)]. Approximately 100 live ACP individuals/population
were used to extract total RNA and to synthesize cDNA at
the same time as the bioassay, and resistance was assayed. To
further verify the functions of P450 mono-oxygenase in ACP
resistance to insecticides, total RNA was extracted, from ACP
treated with imidacloprid (LC50) after 12, 24, and 48 h. Extraction
was performed using Trizol according to the manufacturer’s
protocols. The RNA was quantified by a NanoDrop 2000
spectrophotometer (ND 2000) (NanoDrop Technologies Inc.,
Wilmington, DE, United States). Fifty nanograms of total RNA in
a 20-µL volume was used for cDNA synthesis with a transcriptor
first-strand cDNA synthesis kit (Trans Gen Biotech, Beijing,
China) according to the manufacturer’s protocols. To obtain
reliable normalization of the reverse transcriptase–quantitative
polymerase chain reaction (RT-qPCR) data, threefold diluted
cDNA templates were used to verify each of the primer pairs to
find the optimal concentration range for the RT-qPCRs (Hong
et al., 2017, 2019). The optimal cDNA concentration was used
in each of the RT-qPCR mixtures (10 µL), and three randomly
selected optimal cDNA concentrations were used to validate
the stability of the housekeeping gene (actin). RT-qPCRs were
performed using SYBR Green I (Trans Gen Biotech, Beijing,
China) and Bio-Rad software (Bio-Rad, United States). The
thermal cycling conditions were as follows: 95◦C for 2 min
followed by 40 cycles of 95◦C for 15 s and Tm temperature
for 30 s; this was followed by a dissociation curve analysis,
with a ramp-up from 65◦C to 95◦C and a read every 0.5◦C.
Ten biological replicates with three technical replicates were
performed. The relative quantification of RNA was performed
using the Livak method (2−1CT) (Livak and Schmittgen, 2001),
and the values obtained for each mRNA were normalized to the
ACP Actin. The linear relationship between RR50 values and the
relative expression of the genes was analyzed.

The Composition and Abundance of the
Microbial Communities
To explore whether changes in the microbial communities
affected ACP resistance to insecticides, we determined the
composition and abundance of the bacterial and fungal
communities from Hunan and Guangdong provinces by 16S and
ITS sequencing. Approximately 30 live ACPs/population/time
were frozen for 3–5 min (0◦C), soaked in 75% (vol:vol)
ethanol for 2–3 min, washed three to five times, and used
to extract the genomic DNA of the microbe using an insect
DNA extraction kit (Mobio, Carlsbad, CA, United States).
Sterile water was used as negative controls in the extracted
DNA. The quality and concentration of the purified DNA
were assessed by an ND 2000 spectrophotometer. The bacterial
universal primers 338F (5′-ACTCCTACGGGAGGCAGCA-3′)
and 806R (5′-GGACTACHVG GGTWTCTAAT-3′) were used
to amplify the V3–V4 region of the bacterial 16S rRNA
(Caporaso et al., 2011). The fungal universal primers ITS3-
2024 (5′-GCATCGATGA AGAACGCAGC-3′) and ITS4-2409
(5′-TCCTCCGCTTATTGATATGC-3′) were used to amplify the
ITS 3/4 region of the fungal ribosomal locus (White et al., 1990).
The PCR amplifications were conducted in a 20-µL mixture
containing 4 µL of 5 × Fast-Pfu buffer, 2 µL of 2.5 mM dNTPs,
0.8 µL of each primer (5 µM), 0.4 µL of Fast-Pfu polymerase,
and 10 ng of template DNA, for which the barcode is an eight-
base sequence unique to each sample. The PCR reactions were
performed in triplicate (95◦C for 2 min followed by 25 cycles
at 95◦C for 30 s, 55◦C for 30 s, and 72◦C for 30 s with a final
extension at 72◦C for 5 min). Amplicons were extracted from 2%
agarose gels and purified using an AxyPrep DNA Gel Extraction
Kit (Axygen Biosciences, Union City, CA, United States)
according to the manufacturer’s instructions and quantified
using QuantiFluorTM-ST (Promega, United States). The purified
amplicons were pooled in equimolar and paired-end sequenced
on an Illumina MiSeq PE300 platform according to standard
protocols. Raw Fastq files were demultiplexed and quality-filtered
using QIIME (version 1.17). The sequencing reads were assigned
to each sample according to the unique barcode of each sample,
and pairs of reads from the original DNA fragments were merged
using FLASH (Martin, 2011). Reads that could not be assembled
were discarded, and the number of sequences in each sample was
greater than 10,000. Operational taxonomic units (OTUs) were
clustered with a 97% similarity cutoff using UPARSE (version
7.1), and chimeric sequences were identified and removed using
UCHIME. The taxonomy of each 16S rRNA gene sequence was
analyzed by RDP Classifier against the SILVA (SSU115) 16S
rRNA database using a confidence threshold that sequences with
≥97% similarity are assigned to the same species, whereas those
with ≥95% similarity are assigned to the same genus (Breglia
et al., 2010). For each representative sequence from ITS, the
Unite Database1 was used basing on BLAST algorithm, which
was calculated by QIIME software (version 1.9.1)2 to annotate
taxonomic information using a confidence that sequences with
≥97% similarity are assigned to the same species, whereas those

1https://unite.ut.ee
2http://qiime.org/scripts/assigntaxonomy.html
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with ≥95% similarity are assigned to the same genus (Breglia
et al., 2010). OTU abundance information was normalized using
a standard of sequence number corresponding to the sample with
the least sequences. The relative abundance was the number of
species sequences divided by the total sequences in a sample.
The demultiplexed sequence data have been deposited in the
National Center for Biotechnology Information3 (16s accession
PRJNA646487 and ITS accession: PRJNA646485). In this study,
15 microbial samples from three geographical populations (five
samples/population) were used to analyze the composition
and abundance of the bacterial and fungal communities. We
evaluated the differences in the relative abundances of the
different geographic populations based on OTUs and species
and genus after removing some microbiota that appeared only
once and in only one sample. The linear relationship between
the RR50 value and the mean relative abundance of fungi and
the linear relationship between the mean relative abundance of
fungi and the mean relative expression of genes were analyzed. To
further verify fungi function, the species classification tree based
on the top 20 species with the largest relative abundance was
constructed. Finally, in the discussion, we inferred the ecological
function of the significant fungi based on Fun-Guild and
published literatures on fungi detoxification (Luan et al., 2012,
2017; Selvam et al., 2013; Fattahi et al., 2014; Nguyen et al., 2016).

Statistical Analyses
The percentage of mortality in the treatments was corrected for
control mortality by using Abbott’s formula (Abbott, 1925). The
virulence regression equation and median lethal concentrations
(LC50) were estimated, and the χ2 test was performed using
DPS software. The RR was determined as the LC50 of the
high-resistance population (Chenzhou or Yongzhou) divided by
that of the population with the lowest resistance (Guangzhou).
Multivariate analysis and, specifically, a general linear model
were used to analyze the relative expression of genes and the
relative abundances of the microbial communities; the level
of significance was set at P < 0.05. The model fit was based
on the mean value and the standard deviation (SD) of the
corresponding element. The statistical analyses were conducted
using SPSS 21.0 (IBM, United States). To further analyze
the link between the ACP population resistance (RR50) to

3https://www.ncbi.nlm.nih.gov/sra

imidacloprid and the microbiota abundance and gene expression,
we established several linear regression equations and determined
their correlation coefficients.

RESULTS

Assessment of ACP Resistance to
Insecticides
The resistance of the ACP to thiamethoxam and imidacloprid
appeared to be significantly different among the three
geographical populations based on LC50 and LC95. Regardless
of insecticide type (i.e., either thiamethoxam or imidacloprid),
at a given concentration, the ACP population from Guangdong
Province has the highest probability of mortality and the lowest
resistance to thiamethoxam or imidacloprid. The value of the
RR for thiamethoxam between the Chenzhou ACP population
and Guangzhou ACP population was up to 3.85 for the RR50.
The value of the RR for thiamethoxam between the Yongzhou
ACP population and Guangdong ACP population was 2.18
for the RR50. Similarly, the level of resistance of the Hunan
ACP populations (Chenzhou and Yongzhou) to imidacloprid
was significantly higher than that of the Guangdong ACP
population (Table 1 and Figure 2A). And the levels of
resistance of Yongzhou and Chenzhou ACP populations to
thiamethoxam at LC50 were higher than that to imidacloprid
(Table 1 and Figure 2).

Relative Gene Expression Associated
With Resistance to Insecticides
The relative expression of all the genes except ACH2 was
significantly different among the three populations, and the
relative expression of all the genes was the lowest in the
Guangzhou population. In fact, among the three populations,
extremely significant differences were found for CYP4C67
[F(2,27) = 21.056, P < 0.001], CYP4C68 [F(2,27) = 14.979,
P < 0.001], CYP4C70 [F(2,27) = 28.084, P < 0.001], and CYP4DB1
[F(2,27) = 19.673, P < 0.001]. CYP4DA1 [F(2,27) = 6.991,
P = 0.004] was moderately significantly different (Figure 3A
and Supplementary Table S1). To further verify the effect
of P450 on ACP resistance to insecticides, we determined
the relative expression of P450 in the Guangzhou population
during treatment with semilethal doses (LC50) of imidacloprid

TABLE 1 | Toxicity regression equations and χ2 test and relative parameter of the logarithm of pesticides concentration to probability of death of different ACP
populations exposed to different insecticides.

Insecticide Population Toxicity regression equations LC50
a (95% CI) (mg/L) χ2 RR50

b

Thiamethoxam Guangzhou Y = 1.466x − 1.341 8.214 (6.612–10.388) 7.711 1

Yongzhou Y = 1.543x − 1.932 17.866 (14.481–22.445) 8.769 2.18

Chenzhou Y = 1.331x − 1.996 31.6 (24.388–43.422) 9.046 3.85

Imidacloprid Guangzhou Y = 1.253x − 0.957 5.802 (4.541–7.459) 9.626 1

Yongzhou Y = 1.222x − 1.452 15.408 (11.857–19.766) 5.623 2.66

Chenzhou Y = 1.339x − 1.976 29.9 (23.740–38.349) 8.141 5.16

aLC50 values followed by different letters within each group were significantly different from one another, based on non-overlapping of 95% confidence limit. aLC50 values
were measured for each insecticide and population. CL, confidence limit. bRR (resistance ratios) = LC50 of (Yongzhou or Chenzhou) ACP/LC50 of Guangzhou ACP.
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FIGURE 2 | Regression analysis on the logarithm of concentration of insecticides to the probability of death of ACP from Guangzhou, Yongzhou, and Chenzhou.
Y-axis was the probability of death, which was subjected to probit transformation based on mortality (according to conversion table of biostatistics probability value).
The median lethal concentrations (LC50) were estimated using DPS software. (A) Regression analysis on the logarithm of imidacloprid concentration to the
probability of death of ACP. The dilution concentration of imidacloprid was from 40 mg/L to 0.625 mg/L according to 1:2 ratio and the X-axis was –0.204, 0.097,
0.398, 0.699, 1, 1.301, 1.602, and 1.903 (logarithmic of imidacloprid concentration). (B) Regression analysis on the logarithm of thiamethoxam concentration to the
probability of death value of ACP. The dilution concentration of thiamethoxam was from 80 mg/L to 1.25 mg/L according to 1:2 ratio, and the X-axis was 0.097,
0.398, 0.699, 1, 1.301, 1.602, and 1.903 (logarithmic of thiamethoxam concentration). Blue dot was for Guangzhou ACP population, orange dot was for Yongzhou
ACP population, and gray dot was for Chenzhou ACP population.

for 12–48 h. The relative expression of all the genes was up-
regulated, and the highest relative expression occurred after 12 h.
However, the differences among four of the genes (excluding
CYP4C67) were not significant (Figure 3B and Supplementary
Table S2). Moreover, positive linear relationships between the
RR50 value and relative expression of CYP4DB1 and CYP4C70
were observed, and positive linear relationships between the
relative abundance of Aspergillus niger and Aureobasidium
pullulans and relative expression of CYP4DB1 and CYP4C70 were
observed (Figures 4C–H).

The Composition and Abundance of the
Microbial Communities
A total of 528 OTUs were generated, and 315 genus and
152 species were annotated in all samples by 16S sequencing.
The known primary symbiont (Candidatus Profftella) and
secondary symbionts (Wolbachia) of ACP were assigned by

our analytical procedure for the 16S amplicon sequence.
And the relative mean abundance of primary symbiont was
more than 0.8 (≥80%), the relative mean abundance of
secondary symbiont was more than 0.1(≥10%). One hundred
sixteen OTUs were unique to Guangzhou ACP population,
134 OTUs were unique to Yongzhou ACP population, and
39 OTUs were unique to Chenzhou ACP population (Venn
diagram Supplementary Figure S1).

A total of 1,008 OTUs were generated, and 239 genus and
265 species were annotated in all samples by ITS sequencing.
One hundred thirteen OTUs were unique to Guangzhou
ACP population, 147 OTUs were unique to Yongzhou ACP
population, and 117 OTUs were unique to Chenzhou ACP
population (Venn diagram Supplementary Figure S2).

The numbers of unique OTUs in bacteria and fungi from
Yongzhou ACP populations was the biggest, and that from
Chenzhou ACP populations was the smallest in bacteria, and
that from Guangzhou ACP population was the smallest in fungi
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FIGURE 3 | The relative expression of genes associated with cytochrome P450 mono-oxygenase (CYP4C67, CYP4C68, CYP4DA1, CYP4DB1, and CYP4G70) and
acetylcholine esterase [AChE-1-like (ACH1) and ChE-2-like (ACH2)]. (A) The relative expression of genes associated with cytochrome P450 mono-oxygenase and
acetylcholine esterase from different ACP populations. (B) The relative expression of genes associated with cytochrome P450 mono-oxygenase from Guangzhou
ACP at different times after LC50 imidacloprid treatment. Black bar was from Guangzhou ACP population, red bar was from Yongzhou ACP population, and blue bar
was from Chenzhou ACP population *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.

TABLE 2 | ANOVA results (P-values) for the difference level of three ACP populations.

Pop fungi Guangzhou SD Yongzhou SD Chenzhou SD P

Aspergillus_ tabacinus 0.00874 0.00027 0.01063 0.00316 0.00364 0.00147 0.045

Aspergillus_ sydowii 0.02120 0.00660 0.03458 0.0096 0.01093 0.00429 0.039

Aspergillus_ creber 0.00433 0.00058 0.00616 0.00177 0.00100 0.00043 0.014

Aspergillus_ niger 0.00012 0.00044 0.00062 0.00035 0.00119 7.91E-05 0.031

Aureobasidium_ puUulans 0 1.22E-05 2.30E-05 1.99E-05 6.04E-05 0 0.013

Acremonium_sc lerotigenum 0.02038 0.00148 0.00212 0.00120 0.00122 0.01096 0.039

Golubevia _ pallescens 0.00116 1.22E-05 2.88E-05 4.98E-05 0.00058 8.63E-06 0.022

Penicillium_ citreonigrum 0.00032 4.88E-05 0.00037 9.8152E-05 8.16E-05 3.45E-05 0.015

Fusarium_ incarnatum 0.00018 0.00172 7.48E-05 3.59E-05 0.00232 0.00026 0.049

Microcera_ larvarum 0.00013234 1.22E-05 0.00019 2.99E-05 7.77E-05 9.97E-06 0.005

Cladosporium_c ycadicola 5.18E-05 0 0 0 1.73E-05 0 0.004

Acremonium_pe rsicinum 0 0 2.30E-05 9.97E-06 0 0 0.011

Moesziomyces_a ntarcticus 0 1.22E-05 0 0 4.32E-05 0 0.0005

Volutella_ ciliata 0 0 0 0 1.73E-05 0 0

Cladosporium_l imoniforme 0 2.44E-05 0 0 5.18E-05 0 0.006

Strelitziana_ africana 0 1.22E-05 0 0 2.59E-05 0 0.006

Bold font indicates positive or negative correlation with resistance level; the blue was unique to Chenzhou ACP population.

(Supplementary Figures S1, S2). At the same time, 59.5% OTUs
were unnamed species in fungi, and 90.2% OTUs were unnamed
species in bacteria. Although the numbers of OTUs from 16S
sequencing among three ACP populations were different, but
the difference level of composition and abundance of bacteria
at species or genus level was not significant. For example, the

high difference of four bacteria from three ACP populations,
Staphylococcus sciuri [F(2,12) = 4.638, P = 0.073], Brevibacterium
epidermidis [F(2,12) = 4.937, P = 0.066], Ileibacterium valens
[F(2,12) = 4.597, P = 0.074], and Bacteroides acidifaciens
[F(2,12) = 5.031, P = 0.063], were marginally significantly
different (0.05 < P < 0.1). However, the mean abundances
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FIGURE 4 | The positive linear correlations picture. (A) Linear relationship between RR50 of imidacloprid and the relative abundance of A. niger. (B) Linear
relationship between RR50 of imidacloprid and the relative abundance of A. pullulans. (D) Linear relationship between RR50 of imidacloprid and relative expression of
CYP4DB1. (C) Linear relationship between RR50 of imidacloprid and relative expression of CYP4C70. (E) Linear relationship between A. niger and CYP4DB1.
(G) Linear relationship between A. niger and CYP4C70. (F) Linear relationship between A. pullulans and CYP4DB1. (H) Linear relationship between A. pullulans and
CYP4C70. X-axis of panel (A–D) shows the RR50 value; the first dot was for Guangzhou ACP resistance (=1), the second dot was for Yongzhou ACP RR50, and the
third dot was for Chenzhou ACP RR50. X-axis of panel (E–H) was relative abundance of fungi; the first dot was for Guangzhou ACP, the second dot was for
Yongzhou ACP, and the third dot was for Chenzhou ACP. Y-axis of panels (A,B) shows the relative abundance of fungi, and Y-axis of panels (D,H) shows the relative
expression of genes.
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FIGURE 5 | Comparing the relative abundance of the fungi from different ACP populations. Black bar was from Guangzhou ACP population, red bar was from
Yongzhou ACP population, blue bar was from Chenzhou ACP population. (A) Relative high abundance fungi. (B) Relative low abundance fungi. Y-axis shows the
relative abundance (0–1) of symbiotic fungi of ACP; that is, the OTUs of every fungus were divided by total OTUs. X-axis shows the name of the fungi. *P ≤ 0.05,
**P ≤ 0.01, ***P ≤ 0.001.

of sixteen fungi were significantly different among the three
ACP populations. Among them, four fungi were unique to the
Chenzhou ACP population, and only one fungus was unique
to the Guangzhou and Yongzhou ACP populations (Table 2
and Figure 5). Moreover, positive linear correlations were also
observed between the mean abundances of two fungi and ACP
resistance to pesticides (Figures 4A,B), and negative correlations
were observed between only the mean abundances of two fungi
and ACP resistance to pesticides, and positive linear correlations
were also observed between the mean abundances of two
fungi and the mean expression of two genes (Figures 4E–H).
The species classification tree (Figure 6) showed Aspergillus,
Acremonium, Penicillium, and Cladosporium were of high
abundance and may be associated with ACP resistance. Recently,
we assessed A. niger and A. pullulans resistance to pesticides
by plate confrontation in vitro. The result showed A. niger and
A. pullulans could grow in PDA with up to 160 mg/L imidacloprid
and up to 96 mg/L thiamethoxam, and the concentration of
pesticides negatively affected the diameter of fungi disk in 48 h,
and the diameters of fungi disk grown on treatment and control
PDA were not different after 72 h (Supplementary Figure S3).

DISCUSSION

As a notorious Rutaceae plant pest, ACP not only affects the
growth of young foliage by direct feeding but also transmits

C. Liberibacter asiaticus (Las) and C. Liberibacter americanus
(Lam), resulting in one of the most devastating citrus diseases
worldwide, HLB (Duan et al., 2009; Gottwald, 2010; Grafton-
Cardwell et al., 2013; Shimwela et al., 2016). Organophosphates,
carbamates, pyrethroids, phenylpyrazoles, and neonicotinoids
have been used extensively to control all kinds of insect pests,
resulting in different resistance levels to major pesticides (Wang
et al., 2009; Wen et al., 2009). In this study, we found that the
ACP population in China had resistance to imidacloprid and
thiamethoxam and that the Hunan ACP populations had higher
resistance levels than the Guangzhou ACP population. The
results were consistent with previous studies showing that ACP
populations from different geographic locations had different
levels of resistance to imidacloprid (Tiwari et al., 2011; Kanga
et al., 2015; Tian et al., 2018).

Many studies have also shown that increased activities
of general esterase and P450 mono-oxygenase are common
insecticide resistance mechanisms against organophosphate,
pyrethroid, and neonicotinoid insecticides in some insect pests
(Cao et al., 2008; Zhang et al., 2014; Garrood et al., 2016). Studies
have shown that enhanced expression of genes associated with
cytochrome P450 mono-oxygenase contributes to neonicotinoid
resistance in BPHs (Puinean et al., 2010; Bass et al., 2011;
Tian et al., 2018). In this study, the positive linear relationship
between the relative expression of two genes (CYP4C70 and
CYP4DB1) associated with P450 mono-oxygenase and the ACP
RR50 to imidacloprid and the positive linear relationship between
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FIGURE 6 | Species classification tree. The circles of different colors indicate different classification levels, corresponding to the legend on the left; the size of the
circle represents the relative abundance of the category; the two numbers below the category name both indicate the relative abundance percentage; the former
indicates that the category occupies the sample. The percentage of all classified species in the sample; the latter indicates the percentage of the classification in the
classified species selected in the sample. The classification in red font indicates that the classification annotation does not exist in the sample, but it exists in other
analyzed samples.

the relative expression of CYP4C70 and CYP4DB1 and the
relative abundance of A. niger and A. pullulans were observed,
suggesting A. niger and A. pullulans and P450 together affected
ACP resistance to imidacloprid and thiamethoxam. Moreover,
the relative expression of all the genes from the Guangzhou
population, which is associated with cytochrome P450, increased

after insecticide treatment; the expression level was highest 12 h
after treatment and then declined. The results were similar with
literature that cytochrome P450 mono-oxygenase was mainly
involved in ACP resistance to imidacloprid and thiamethoxam
(Guitard et al., 2014; Tian et al., 2018). The literature shows
that CYP6ER1 affects the resistance of N. lugens to imidacloprid,
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thiamethoxam, buprofezin, and ethiprole (Wu et al., 2018),
whereas in this study, CYP4C70 and CYP4DB1 affected ACP
resistance to imidacloprid and thiamethoxam; these findings
may be due to the same enzyme being regulated by different
microbiology in different species.

The literature also shows that bacteria such as
Stenotrophomonas maltophilia, Bacillus licheniformis, Bacillus
megaterium, Rahnella aquatilis, and fungi such as Umbelopsis
isabellina, V. ciliata, and Botrytis cinerea can degrade atrazine,
which is the most commonly detected pesticide in food and
drinking water (Marecik et al., 2008; Singh et al., 2018). In this
study, the relative abundance of all the bacteria among the three
ACP populations was not significant. This result suggested that
the symbiotic bacteria of the ACP were not similar to those of
Wolbachia in the whitefly and the mosquito Culex pipiens L.
(Diptera: Culicidae), which may be involved in host’s resistance
to imidacloprid and thiamethoxam (Ghanim and Kontsedalov,
2009). Furthermore, there were significant differences in the
resistance mechanisms of different species to the same pesticides
(Kanga et al., 2015; Tian et al., 2018; Wang et al., 2019). Moreover,
that there was not significantly different bacterial community
among ACP populations at species level may be due to 90.2%
OTUs being unnamed species in bacteria.

FunGuild is a fungal environmental function database. Based
on the support of existing literature, the ecological function of
fungi is classified, and the FunGuild database is constructed.
Based on species information obtained from amplicon analysis,
the ecological functions of existing species in the literature can
be queried in the environment. Because FunGuild was mainly
used in analysis on environmental microbiology and limited to
existing literature, the fungi from ACP were associated plant
pathogen and animal pathogen (Gandarilla-Pacheco). Although
FunGuild analysis did not find significantly different fungi that
were associated with ACP resistance to pesticides, yet the species
classification tree (Figure 6) showed Aspergillus, Acremonium,
Penicillium, and Cladosporium were dominant strains.

A. pullulans and A. niger can exist in different agroecological
niches, and they produce a neutral polysaccharide, antimycotic
aureobasidin, antibacterial compounds, melanin, liamocins,
siderophore, and extracellular enzymes such as P450 (Franken
et al., 2014; Molnárová et al., 2014; Prasongsuk et al.,
2018). Polysaccharides, antimycotic aureobasidins, antibacterial
compounds, and melanin play important roles in insect immune
and defense systems (Luan et al., 2012, 2017; Selvam et al., 2013).
P450 was involved in insecticide resistance of pest (Li et al.,
2010; Puinean et al., 2010; Safi et al., 2017; Tian et al., 2018;
Wang et al., 2019). Although the role of symbiotic fungi in the
degradation of insecticides has not been studied extensively, roles
of A. niger in the immunity and growth of insect and animal have
been reported (Medeiros et al., 2009; Fattahi et al., 2014). In this
study, four Aspergillus species, A. tabacinus, A. sydowii, A. creber,
and A. niger, were significantly different among the three
populations. Positive linear correlations were observed between
the relative mean abundances of A. niger and A. pullulans and
ACP resistance to imidacloprid, and positive linear correlations
were also observed between the relative mean abundances of

A. niger and A. pullulans and the relative mean expression
of CYP4DB1 and CYP4C70. Recently, we assessed A. niger
and A. pullulans resistance to pesticides by plate confrontation
in vitro. The result showed A. niger and A. pullulans could grow
in PDA with 160 mg/L imidacloprid and 96 mg/L thiamethoxam,
and the concentration of pesticides negatively affected the
diameter of fungi disk in 48 h, and the diameters of fungi disk
grown on treatment and control PDA were not different after
72 h (Supplementary Figure S3). These findings suggested that
A. niger and A. pullulans may be positively affect ACP resistance,
and G. pallescens and A. sclerotigenum may be negatively affect
ACP resistance. Whether ACP symbiotic fungi affect insect host
resistance to pesticides by producing compounds associated
with ACP immunity, such as polysaccharide, antimycotic
aureobasidin, antibacterial compounds, melanin, liamocins,
siderophore, or producing P450 to degrade pesticides, remains to
be elucidated, which will be our work in the future. Moreover,
four fungi, Moesziomyces antarcticus, V. ciliata, Cladosporium
limoniforme, and Strelitziana africana, were unique to the
Chenzhou population, which had the highest resistance level
among the ACP populations. Whether they were associated with
ACP resistance needs further study.
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