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The dermal microvascular unit (DMU) is a perivascular functional unit in the dermis. It

is composed of microvascular and capillary lymphatics surrounded by immune cells.

In this study, jet needle-free injection system was used to injected biocompatible

carbon nanoparticles into the cervical skin of domestic pigs (Sus scrofa domestica) and

assessed the morphological distribution of DMUs by hematoxylin erythrosine staining,

immunohistochemistry (IHC), and transmission electron microscopy (TEM), and TEM

was also used to observe the ultrastructural changes of DMUs after jet needle-free

injection. Following our study, we identified DMUs in the dermis stratum papillare and

similar structures in the dermis stratum reticulare, but the aggregation of CD68+ and

CD1a+ cells in the dermis stratum papillare of DMUs by IHC confirmed that DMUs act as

reservoirs of dermal immune cells, while similar structures in the dermis stratum reticulare

should not be considered as DMUs. Ultrastructure of DMUs was revealed by TEM.

Marvelous changes were found following xenobiotics attack, including the rearrangement

of endothelial cells and pericytes, and the reactivity of immune cells. Novel interstitial cell

telocyte (TC) was also identified around the microvasculature, which may have been

previously known as the veil cell. Our results successfully identified the distribution of

DMUs in the skin of domestic pigs, which might act as reservoirs of immune cells in the

skin and play a role in immune surveillance and immune defense.

Keywords: dermal microvascular unit, domestic pigs (Sus scrofa domestica), macrophages, jet needle-free

injection, skin immunity, veil cells, telocyte

INTRODUCTION

The skin is the first line of defense against the outside world in higher vertebrates. Not until Streilein
introduced the concept of skin-associated lymphoid tissue (SALT) did people regard the skin as
having dual roles as physical barrier and immune function. It is found that the dermis is the major
site where immune function occurs and contains twice as many immune cells in the circulatory
system. These immune cells are not randomly distributed in the dermal structures, but share a close
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anatomical relationship with the microvessels of the dermal
superficial vascular plexuses (DSVPs) (1, 2). The dermal
microvascular unit (DMU) is the basic model for this
constellation of dermal cells centered on the vasculature. In
the original study, DMUs were considered to contain dermal
microvascular endothelial cells (DMECs), dermal perivascular
dendrocytes (DPDCs, including dendritic-like macrophages and
dendritic cells), dermal perivascular T cells (DPTCs), dermal
perivascular mast cells (DPMCs) and other cells unrelated to
immunity (e.g., fibroblasts, and pericytes), which could not
completely reveal the mechanism of its involvement in cutaneous
immunity as a functional unit. Therefore, recent studies
have complemented the original theory by including capillary
lymphatics, which share an intimate anatomical relationship with
these structures, in DMUs (3, 4).

Since capillary lymphatics and capillaries are not easily
identifiable in routine histological evaluation, electron
microscopy remains the best method for identifying DMUs
(5). Ultrastructural evidences suggest that the center of DMUs is
composed of DMECs that originate from the horizontal papillary
plexuses (6). These structures are responsible for the blood
supply to the dermis stratum papillare and are responsive to
injury (7), hypoxia (8), and stress (9, 10), which manifests in
the ultrastructure by gap formation and altered deposition in
the basement membrane material of the vascular wall (11–13).
Pericytes are located adjacent to or above endothelial cell
junctions, which can control the contraction of DMECs by
upregulating endothelin-1 (ET-1) and downregulating of iNOS
expressed by DMECs (14, 15). During inflammation, pericytes
can cover the endothelial cell gap through rearrangements,
which is important in the study of skin pathology (16, 17).
The existence of DPDCs, DPTCs and DPMCs located on the
periphery of pericytes allows the DMU to act as a functional
unit of cutaneous immunity, these cells accumulate near DMECs
and serve as a possible reservoir for lymphocyte recirculation
in the skin (18, 19). The capillary lymphatics that comprise
belonging to DMUs are superficial dermal lymphatic plexuses
and not mentioned in the manuscript originally introducing the
concept of DMUs, but their unique immunological role in the
dermis has encouraged the possibility of exploring them as part
of DMUs (3, 4). It has been found that during the inflammatory
or immune response phase, lymphendothelial cells (LECs) guide
the directional migration of dermal dendritic cells (d DCs,
10–15%) and T cells (80–90%) via CCL21 and sphingosine-1
phosphate (S1P) signaling, and LYVE-1 has also been identified
to guide the migration of d DCs (20–23).

Domestic pigs (Sus scrofa domestica) are economically
important animals and a major source of meat in many
countries. Vaccination of domestic pigs is usually performed
by injection, but this may cause lesions in pork carcasses and
losses to the pig industry (24). In recent years, transdermal
immunization methods including transdermal delivery system
(TDS), transdermal needle-free injection (NFI) and solid
microstructured transdermal system (sMTS) have endeavored
to solve the problems caused by traditional injections, which
have been used on a small scale with good effects (25–27).
However, there are no reports confirming the presence of DMUs

in domestic pigs, and even a few studies have dug deep into
the ultrastructural changes of DMUs during xenobiotics (i.e.,
antigenic or non-antigenic substance) attack on the skin of
domestic pigs. In this study, the presence of DMUs in domestic
pig skin was confirmed for the first time by histological analysis
and immunohistochemistry (IHC), and DMUs were identified
as reservoirs of immune cells for the first time. In addition,
transmission electron microscopy (TEM) was employed to
analyze the ultrastructural changes of DMUs after attack of the
skin by xenobiotics, which have elucidated the ultrastructure
of DMUs and validated the potential role of DMUs involved
in passive skin immunity. Our results will contribute to a
profound understanding of the mechanisms of passive skin
immunity under foreign substance attack and provide new ideas
for the development of transdermal immunization methods in
domestic pigs.

MATERIALS AND METHODS

Animals and Ethics Statement
Three-month-old male domestic pigs, 45 to 49 kg, were
purchased from Jiangsu Zhongcheng Company (Yancheng,
China). Pigs were randomly divided into two groups: Control and
5% biocompatible carbon nanoparticles, five pigs in each group.
Under pentobarbital sodium (30 mg/kg, Sinopharm Chemical
Reagent Co., Shanghai, China) anesthesia, biocompatible carbon
nanoparticles was injected into the cervical skin by group
through the POK-MBX jet needle-free injection system (DERM-
G1-2, German Derm Co., Hong Kong, China), and the control
group was left untreated. One hour later, animals were sacrificed
and the cervical skin was collected.

The study protocol was approved by the Animal Ethics
Committee of Nanjing Agricultural University. The animals
were housed in the experimental animal center of Nanjing
Agricultural University and leave libitum access to filtered
water and food, adaptive feeding was given for 5 days before
the experiment.

Histological Evaluation
Cervical skin was fixed in 4% paraformaldehyde for 48 h,
embedded in paraffin, sectioned at a thickness of 7µm. After
deparaffinization, the sections were stained with hematoxylin
eosin staining solution (Leagene biotechnology, Beijing, China)
for light microscopic analysis using Olympus microscope (DP73,
Tokyo, Japan).

Immunohistochemistry
Paraffin sections (7µm) were deparaffinized on positively
charge slides, blocked endogenous peroxidase with 3% hydrogen
peroxide for 10min at 37 ◦C, and used sodium citrate buffer
(0.01M, pH 6.0, 95◦C) to expose antigenic epitopes. Treated
samples were blocked with 5% bovine serum albumin for
40min (BSA, Boster Biological Technology, Wuhan, China)
and incubated with rabbit anti-CD68 antibody (1:100, Boster
Biological Technology, Wuhan, China), rabbit anti-CD1c
antibody (1:100, Bioss Biological Technology, Beijing, China),
and rabbit anti-CD1a antibody (1:100, Boster Biological
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Technology, Wuhan, China) overnight at 4◦C, negative
controls were set up with phosphate buffered saline (PBS,
0.1M, pH 7.4) instead of primary antibody. The next day,
samples washed with PBS (0.1M, pH 7.4) were incubated
with anti-rabbit IgG antibody (1:100, Servicebio Technology,
Wuhan, China) at 37◦C for 1 h, washed again and analyzed
for peroxidase activity with diaminobenzidine (DAB, Boster
Biological Technology, Wuhan, China), and nuclei were stained
with hematoxylin.

Transmission Electron Microscopy
Skin tissue sectioned to 1 mm3 in size was fixed overnight in
2.5% glutaraldehyde at 4◦C. After PBS (0.1M, pH 7.4) rinsing, 1%
osmium tetroxide (Polysciences Inc. Warrington, Pennsylvania,
USA) was used to fix the tissue at room temperature. Following
the dehydration treatment, the tissue was embedded in Epon812
(Merck & Co Inc., New Jersey, USA) for 3 days at 60◦C.
The treated tissue samples were fine-sliced into 50 nm ultrathin
sections and anchored on copper grids. Sections were stained
with uranyl acetate and lead citrate, observed under the Hitachi
TEM system (H-7650, Tokyo, Japan).

Statistical Analysis
Ten randomly selected DMUs and similar structure consisting of
deep dermal vascular plexuses (DDVPs) in the dermis stratum
reticulare from the same immunohistochemical section were
photographed under the same field of view, and gray-scale
analysis of the integral optical density (IOD) was done by
using Imagepro Plus 6.0. Statistical differences between the
two groups were analyzed by student’s t-test (R version 4.1.1
and Rstudio version 1.4). The ggplot 2 visualization package
(version 3.3.5) for the R (version 4.1.1) programming language
was used to generate box plots, P < 0.05 was considered
statistically significant.

RESULTS

Distribution and Identification of DMUs
HE results of pig neck skin showed that the DMU was
composed of capillary lymphatic, microvessel and peritubular
cells (Figure 1A). However, the morphology of capillary
lymphatics in HE results is often “collapsed” and difficult to
identify. Nevertheless, we can observe that DMUs were observed
to be widely distributed in the dermis, mainly in the papillary
dermis near the epidermis (Figure 1A) rather than in the dermis
stratum reticulare. Although blood vessels and lymphatics are
also distributed in the dermis stratum reticulare, they tend to be
separate and do not function in concert (Figure 1A). Based on
previous knowledge and this study, we drew a model diagram to
describe the spatial position of the DMUs in themicrocirculation:
Blood vessels and lymphatic vessels are widely distributed in the
dermis, with the DMUs found mainly in the papillary dermis,
consisting of a network of microvessels belonging to DSVPs and
lymphatic vessels belonging to the superficial dermal lymphatic
plexuses. The reticular dermis is blood supplied by DDVPs
and few immune cells existed, although it also has a similar
structure of intertwined vascular lymphatic vessels. Immune

FIGURE 1 | Location of DMUs in the skin with HE staining. (A) Localization of

DMUs as well as DDVPs in the skin; (B) Describe the distribution and structure

of DMUs in the skin. DMU, dermal microvascular unit; DSVPs, dermal

superficial vascular pleauxes; DDVPs, deep dermal vascular plexuses; dLN,

draining lymph node; Scale bar in circular region denotes 100µm and scale

bar in square area denotes 20µm.

cells in the skin can enter the draining lymph nodes through
DMUs from lymphatic vessels or high endothelial microvessels
(Figure 1B).

Immunological Structural Characteristics
of DMUs
IHC was used to identify the relationship between immune
cells and DMUs in the dermis. We labeled immune-associated
cells in DMUs with CD68, CD1a, and CD1c. CD68+, CD1a +

and CD1c+ cells were observed in the interwoven lymphatic
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FIGURE 2 | The immunological structure of DMUs identified by IHC. (A) DMUs in pig cervical skin marked by CD68; (B) DMUs in pig cervical skin marked by CD1a;

(C) DMUs in pig cervical skin marked by CD1c; (D) DDVPs in pig cervical skin marked by CD68; (E) DDVPs in pig cervical skin marked by CD1a; (F) DDVPs in pig

cervical skin marked by CD1c; (G) CD68+ expression quantified by IOD in DMUs and DDVPs; (H) CD1a+ expression quantified by IOD in DMUs and DDVPs; (I)

CD1c+ expression quantified by IOD in DMUs and DDVPs. (J) The anatomical location of DMUs in the skin and the structure of DMUs are presented in a schematic

diagram. ns indicates no significant difference; *P < 0.05 indicates significant difference. Asterisks (*) point to microvasculature and arrows (→ ) point to capillary

lymphatics; DMU, dermal microvascular unit; DDVPs, deep dermal vascular plexus; IOD, integrity optical density; scale bar (A–E) = 20µm.

and microvascular areas (Figures 2A–C). Although a small
number of CD68+, CD1a+ and CD1c+ cells accumulated
near vessels in DDVPs, they were not common and some of
these immune-positive cells were not even found near DDVPs
(Figures 2D–F). We performed student’s t-test on mean IOD
of the positive results presented by the IHC to show that there
were significantly more CD68+ cells (P < 0.05, Figure 2G) and
CD1a+ cells (P < 0.05, Figure 2H) clustered near lymphatic
vessels and blood vessels of DMUs than DDVPs. CD1c+

cells located in DMUs were slightly more than those near
DDVPs, but the statistical significance was not recognized (ns,
Figure 2I).

Ultrastructural Analysis of DMUs
TEM evaluation observed that the capillary wall was mainly
composed of a layer of endothelial cells and basal membrane
(Figures 3A,B). The thin cross section of capillaries was
surrounded by a single endothelial cell (Figure 3c), and the
thicker capillaries were surrounded by multiple endothelial
cells (Figure 3a). A little connective tissue was found outside

the basal membrane of endothelial cells. Kinds of flat and
protuberant pericytes, which forms a tight connection with the
endothelial cells through the rupture of the basal membrane
were found between the endothelial cells and the basal
membrane (Figure 3a). DPMCs, macrophages (Figure 3A), and
d DCs (Figure 3B) were seen around the microvasculars.
Among them, mast cells are oval with irregular membrane
and a large number of basophilic particles can be seen
in cytoplasm (Figure 3b). Capillary lymphatics were thin-
walled lumens made up of monolayer lymphatic endothelial
cells (Figure 4A), which have very thin cytoplasm except for
the perinuclear region. The connections between LECs were
loose, lacking tight connections and adhesion connections,
and intercellular stacked tile-like structures at the junctions
existed at adjacent endothelial cell connections (Figure 4a).
The lymphatic vessels also contain a variety of cells: T
cells (Figure 4b), dendritic cells (Figure 4c), and macrophages
(Figure 4d). This led us to draw a pattern of DMUs:
microvascular and capillary lymphatic in the region share an
intimate anatomical relationship, and DPMCs, macrophages, d
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FIGURE 3 | Ultrastructural analysis of microvessels at the steady state via TEM. (A,B) Ultrastructure of microvessels and surrounding cells in steady state; (a) is the

magnification of the microvessel in (A); (b) is the magnification of the mast cells in (A); (c) is the magnification of microvessels in (B). RBC, red blood cell; EC,

endothelial cell; P, pericyte; MC, mast cell; Mφ, macrophage; Cf, collagen fiber; Bv, blood vessel; DC, dendritic cell; →, Tight junctions between the pericyte and the

endothelial cell. Scale bar (A,B) = 4µm; (a–c) = 2µm.

DCs, and T cells were present around or in the lumen of the
vessels (Figure 4B).

Ultrastructural Changes in DMUs After Jet
Needle-Free Injection
After needlefree injection of biocompatible carbon nanoparticles,
we observed via TEM that the DMECs showed varying degrees
of swelling, with increased cytoplasm in the area surrounding the
nucleus (Figures 5A,a). d DCs (Figures 5b,c), T cells (Figure 5c)
and macrophages (Figure 5B) surrounded the microvessels, and
the number of cells gathered was larger than before. Carbon
nanoparticles also appears in the phagocytes of surrounding
macrophages (Figure 5B). We also observed thickening of the
basement membrane of blood vessels was observed (Figure 6b),

and the connection junction between DMECs and pericytes was
tighter (Figure 6B). In addition, the number of perivascular
neutrophils increased (Figure 6a), and magnification viewing
revealed the presence of obvious nanocarbon particles around
the neutrophils (Figure 6a). In addition, some of DMECs already
showed degranulation (Figure 6C). Similarly, the LECs appeared
significantly swollen. There were fewer cells in the lumen of
the lymphatic vessels than before, but dendritic cells appeared
outside the lumen (Figure 6D).

Association Between TCs and DMUs
In addition, when observing DMUs, we found that interstitial
cell telocyte (TC) newly discovered in recent years was
inextricately related to DMUs (Figures 7, 8). The morphology

Frontiers in Veterinary Science | www.frontiersin.org 5 April 2022 | Volume 9 | Article 891286

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Meng et al. DMUs in Domestic Pigs

FIGURE 4 | Ultrastructural analysis of lymphatic vessels at the steady state via TEM. (A) The ultrastructure of lymphatic vessel and surrounding cells in the steady

state; (a) is the enlargement of lymphatic endothelium in (A); (b) is the enlargement of T cells in (A); (c) is the enlargement of the dendritic cell in (A); (d) is the

enlargement of the macrophage in (A); (B) Pattern diagram of DMUs in the steady state. EC, endothelial cell; Mφ, macrophage; DC, dendritic cell; →, Imbricate

overlap of endothelial cells. The scale bar (A) = 6µm; (a–d) = 1µm.

and distribution of TCs are very similar to the characteristics
of veil cells described in the previous article. The cell bodys
of TCs are small and fusiform, with a spindle or oval nucleus
whose processes extend tens or even hundreds of microns in
length (Figures 7A,B). The elongated protuberations of TCs
allow it to contact other components such as microvessels
(Figure 7B), DPMCs (Figure 7a), T cells (Figure 7b), and d
DCs (Figure 7c) in the DMUs, forming homomorphic or
heteromorphic connections and complex three dimensions
(3D) networks. In addition, a portion of TCs were located
between DMUs and collagen fiber (Figure 7C), which may be
the barrier between DMUs and the dermis. A large number
of unreleased vesicles were observed in the telopodes (Tps,
cytoplasmic protrusion of TCs), (Figures 7B,C). However, after
jet needle-free injection of carbon nanoparticles, it was observed

that the TCs around the DMUs releasedmany vesicles of different
sizes (Figures 8A–D).

DISCUSSION

The immune mechanism of the skin remains poorly understood
despite SALT has been proposed for a long time. The
dermal microvascular unit, or the DMU, a unique immune
structure in the skin, is considered to be significant for the
immune function of the skin (3, 4). With the innovation
of modern veterinary medicine, there is a recognized need
for non-invasive and efficient injection methods that can be
used to reduce injection costs and prevent animal stress,
and DMUs naturally became a widely acknowledged research
point. An initial aim of this project was to identify the
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FIGURE 5 | Ultrastructural analysis of microvascular groups via TEM after jet needle-free injection. (A) Ultrastructure of microvessels and surrounding cells after jet

needle-free injection; (a) is the enlargement of the capillarie in (A); (b) is the enlargement of the dendritic cell in (A); (c) is the enlargement of dendritic cells and the T cell

in (A); (B) Macrophages that engulf carbon nanoparticles. Bv, blood vessel; EC, endothelial cell; DC, dendritic cell. The scale bar (A) = 4µm; (B) (a–c) = 1µm.

predictive ability of DMUs in domestic pigs, which is an
important consideration, especially when manipulating them
for immunoprophylaxis.

This is the first study that confirms that DMUs is significantly
associated with intradermal immune responses based on jet
needle-free injection technology in domestic pigs. These findings
correlate with previous description of the ultrastructure of
DMUs and further support a role of DMUs in Transdermal
passive immunity. DMUs are composed of microvessels, capillary
lymphatics and peritubular cells, which jointly constitute the
immune units within the dermis and acts as reservoirs for skin
immune cells. We also found that DMUs undergo ultrastructural
changes, including endothelial cell changes and migration of
immune cells, in response to xenobiotics attack. Surprisingly, a
type of novel interstitial cell TC has been found to participate in

the composition of DMUs, perhaps what used to be known as
veil cells.

In histological analysis, DSVPs and DDVPs were identified
as responsible for the blood supply to the papillary and
dermis stratum reticulare, respectively, and DSVPs also have
an intimate anatomical relationship with the superficial dermal
lymphatic plexuses (28). CD1a, CD1c and CD68 are all
faithful markers of immune cells within the skin. Interestingly,
there are significantly more CD1a+, CD1c+, and CD68+ cells
around DSVPs intertwined with superficial dermal lymphatic
plexuses (i.e., DMUs) than in similar structures composed
of DDVPs (28, 29). This perivascular immune structure is
often mediated by vascular endothelial growthfactor receptors
(VEGFR) family, monocyte chemoattractant protein-1 (MCP-
1) and endogenous nitric oxide (NO) and is important

Frontiers in Veterinary Science | www.frontiersin.org 7 April 2022 | Volume 9 | Article 891286

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Meng et al. DMUs in Domestic Pigs

FIGURE 6 | Ultrastructural analysis of the microvessel via TEM after jet needle-free injection. (A) Ultrastructure of the microvessel and surrounding cells after jet

needle-free injection; (a) is the enlargement of neutrophils in (A); (b) is the enlargement of blood vessels in (A); (B) Swollen microvessels after jet needle-free injection;

(C) Mast cell that is degranulating after jet needle-free injection. (D) Swollen lymphatic vessel and surrounding dendritic cell after jet needle-free injection. Bv, blood

vessel; NEUT, neutrophil; DC, dendritic cell; Lv, lymphatic vessel. The scale bar (A) = 6µm; (B,D) (b) = 2µm; (C) (a) = 1µm.

evidence that DMUs play an immune surveillance role at steady
state (30–33).

At steady state, immune cells in the skin of domestic pigs
were found to be clustered around capillaries and in capillary
lymphatics via TEM. Macrophages, DPMCs, d DCs and T
cells were regularly distributed around the microvasculature.
DPMCs were often found at the peripheral edge of the pericytes,
and intercellular gap junctions were observed. In contrast,
other immune cells were often located at the periphery of
mast cells, within collagen fibers. We also noted immune cells
within the stacked LECs, which lack the regularity of the
vascular microenvironment but bridging the skin to the draining
lymph nodes. Recent studies have indicated that DPMCs and
macrophages can stimulate angiogenesis through potent pro-
angiogenic factors, and secretory DPMCs, macrophages and T
cells have also been noted to affect adjacent non-endothelial
cells or to recruit each other via chemotactic signals, and
these potential factors jointly maintain the stability of the skin
microenvironment (34, 35).Marvelous ultrastructural changes

appeared during xenobiotics attack. Pericytes underwent tighter
junctions with DMECs but did not generate the pathological
changes of gap formation (9, 10, 36–40). We tend to identify it
as a physiological change caused by altered local permeability
pressure after needle-free injection, since pericytes play an
important role in regulating microvascular permeability, which
would permit more hemolymph exchange to proceed (41).
Postcapillary microvenules and lymphatic vessels have been
considered to be important channels for the entry and exit of
immune cells into draining lymph nodes, as well as constituting
an important component of DMUs. TEM evaluation revealed
a large number of macrophages, d DCs and T cells clustered
around postcapillary microvenules, concomitant hypertrophy
and linkage rearrangement of lymphatic endothelial cells (29),
which providing direct cytological evidence for the synergistic
involvement of the components of DMUs in the immune
response. We therefore concluded with caution that the large
number of immune cells in the dermis and surrounding blood
vessels during the immune response may be partly derived
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FIGURE 7 | Ultrastructural analysis of TCs in the steady state via TEM. (A) Location of TC in the DMUs in the steady state; (a) is the enlargement of the mast cell and

surrounding TCs in (A); (b) is the enlargement of T cells and surrounding TCs in (A); (B) TCs surrounds the DMUs; (C) TC between collagen fibers and dendritic cells.

RBC, red blood cell; EC, endothelial cell; P, Pericyte; MC, mast cell; Mφ, macrophage; TC, telocyte; Tp, telopode; Cf, collagen fiber; DMU, dermal microvascular unit;

DC, dendritic cell; Blue mark, telocytes. The scale bar (A) = 10µm; (B) (a,b) = 2µm; (C) = 1µm.

from blood-lymphatic exchange within the skin, as these cells
are abundant in normal cutaneous lymphatic vessels and rare
around microvessels.

DPMCs, as immune sentinel cells within the skin, have
been found to degranulate and migrate following xenobiotic
attack. Neutrophils were observed after needle-free injection.
Recent studies have suggested that neutrophil recruitment may
be related to the synthesis of MIP-2 and tumor necrosis
factor (TNF) by mast cell degranulation (42–44). Similarly,
histamine released by DPMCs degranulation contributes to
increased endothelial permeability and promotes hemolymph
exchange. Histamine also enhances the modulatory effects of
macrophages and interleukin-8 (IL-8) by increasing granulocyte-
macrophage colony-stimulating factor (GM-CSF) production,
which facilitates an efficient immune response (45, 46).
These factors, although increased immune efficiency, may
trigger unnecessary inflammation. Therefore, how transdermal
immunity controls the stability of mast cell membranes

to mitigate possible inflammatory responses remains to be
investigated thoroughly.

TC is a novel type of interstitial cell, similar in morphological
characteristics with the interstitial cells of Cajal (ICCs), and
was named interstitial Cajal-Like cells (ICLCs) at a time until
Popescu identified it as a completely new interstitial cell (47).
According to the identification criteria proposed by Popescu,
we identified TCs in DMUs (48). TCs were mainly distributed
in the periphery of microvessels, separating DMUs from the
dermis, and we also found TCs in the periphery of dendritic
cells, T cells, mast cells, and macrophages, suggesting that TCs
may be involved in the regulation of skin immunity (49).
Following attack by xenobiotics, TCs were observed to produce
vesicles of varying sizes, which were believed to contain proteins,
lipids, microRNA (miRNA), long non-coding RNA (lncRNA)
and mRNA, indicating that TCs play a crucial role in signaling
skin immunity and potentially control the transcriptional activity
of the cells involved (50–52).

Frontiers in Veterinary Science | www.frontiersin.org 9 April 2022 | Volume 9 | Article 891286

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Meng et al. DMUs in Domestic Pigs

FIGURE 8 | Ultrastructural analysis of TCs after jet needle-free injection via TEM. (A–D) After jet needle-free injection, TCs at different locations in the DMUs releases a

large number of vesicles. BV, blood vessels; Mφ, macrophage; TC, telocyte; Tp, telopode; Cf, collagen fiber; SMC, smooth muscle cell; EC, endothelial cell; Blue

mark, telocytes; Red mark, vesicles. Scale bar (A–D) = 1µm.

It is worthmentioning that amysterious cell called veil cell was
proposed in early studies and it was thought to form part of the
DMU (53). Veil cells were described as separating the DMU from
the dermis, 3D computer reconstruction showed their cell bodies
with multiple wing-like projections, and were factor XIIIa+ (54).
TEM evaluation revealed veil cells with vesicles and candy-like
protrusions, and showed non-specific morphological changes in
response to microenvironmental alterations (55, 56). Since TCs
had not been discovered at that time and the characteristics of
veil cells were similar to TCs, we cautiously inferred that veil cells
might be the same type of cells as TCs, a speculation that needs
further proof by immunological means.

In a nutshell, our results firstly identified DMUs consisting
of DSVPs and capillary lymphatics in domestic pig skin,
which occur in the dermis stratum papillare and confirmed

as reservoirs of immune cells via IHC. TEM evaluation was
used to understand the ultrastructure of DMUs in the dermis
stratum papillare, which underwent ultrastructural changes and
migration of immune cells after attack with xenobiotics. These
changes supported the involvement of lymphatic vessels and
microvessels as a whole unit in the cutaneous immune response.
The role of lymphatic vessels during jet needle-free injection
may be substantial because of their uncharacteristic endothelial
ultrastructural changes. Evidence to date is lacking to confirm
the role arising from endothelial changes in lymphatic vessels,
which is potentially fertile ground for cutaneous immune studies.
TCs was found to produces heterogeneous junctions with
DPMCs, T cells, d DCs and DMECs in DMUs and separates
microvessels from dermal collagen fibers. The ultramorphology
of TCs resembles that of veil cells aroundmicrovessels in the early
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literature, unfortunately, we did not further demonstrate whether
they are the same type of cells. This study provides morphological
evidence for DMUs as reservoirs of immune cells and channels
of passive immunity in the skin, and morphological evidence for
the possible role of TCs in regulating the function of DMUs is
also revealed.
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