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Abstract

Background: Since the domestication of chicken, various breeds have been developed for food production, entertainment,
and so on. Compared to indigenous chicken breeds which generally do not show elite production performance, commercial
breeds or lines are selected intensely for meat or egg production. In the present study, in order to understand the molecular
mechanisms underlying the dramatic differences of egg number between commercial egg-type chickens and indigenous
chickens, we performed a genome-wide association study (GWAS) in a mixed linear model.

Results: We obtained 148 single nucleotide polymorphisms (SNPs) associated with egg number traits (57 significantly, 91
suggestively). Among them, 4 SNPs overlapped with previously reported quantitative trait loci (QTL), including 2 for egg
production and 2 for reproductive traits. Furthermore, we identified 32 candidate genes based on the function of the
screened genes. These genes were found to be mainly involved in regulating hormones, playing a role in the formation,
growth, and development of follicles, and in the development of the reproductive system. Some genes such as NELL2 (neural
EGFL like 2), KITLG (KIT ligand), GHRHR (Growth hormone releasing hormone receptor), NCOAT (Nuclear receptor coactivator 1),
[TPR1 (inositol 1, 4, 5-trisphosphate receptor type 1), GAMT (guanidinocacetate N-methyltransferase), and CAMK4 (calcium/
calmodulin-dependent protein kinase IV) deserve our attention and further study since they have been reported to be closely
related to egg production, egg number and reproductive traits. In addition, the most significant genomic region obtained in
this study was located at 4861-4884 Mb on GGAS. In this region, we have repeatedly identified four genes, in which YYT (YY1
transcription factor) and WDR25 (WD repeat domain 25) have been shown to be related to oocytes and reproductive tissues,
respectively, which implies that this region may be a candidate region underlying egg number traits.

Conclusion: Our study utilized the genomic information from various chicken breeds or populations differed in the average
annual egg number to understand the molecular genetic mechanisms involved in egg number traits. We identified a series of
SNPs, candidate genes, or genomic regions that associated with egg number, which could help us in developing the egg
production trait in chickens.
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Background

Reproduction traits, especially egg production, are the most
important economic cares in chickens [1]. Laying perform-
ance usually reflects a chicken’s reproductive performance
[2]. As an important source of animal protein, the con-
sumption of poultry eggs worldwide has increased signifi-
cantly over the past few decades [3]. Each person consumes
approximately 12.5 kg of eggs per year [4]. Egg consump-
tion may continue to increase with accretion in urban pop-
ulations [5, 6]. Therefore, it is of great practical and
economic significance to understand the genetic mecha-
nisms of chicken reproductive traits. However, egg produc-
tion is a polygenic genetic trait with low to medium
heritability and is affected by both genetic components and
environmental factors [7, 8]. It can be evaluated by many
indicators such as age at first egg, egg number, egg produc-
tion rate and so on. The egg number is an important repro-
ductive trait in poultry breeding, an important indicator
that can effectively evaluate individual egg production at a
certain stage and the fertility of breeding chicken [9].

It is possible to analyze the genetic mechanisms of
complex traits by using GWAS with the development of
sequencing technology. GWAS can not only take full ad-
vantage of molecular markers at the genome level, but,
owing to the use of whole genome sequences, avoid the
effects of linkage imbalance between SNPs and under-
lying genes [10]. At present, a few candidate genes and
regions related to egg number have been reported based
on GWAS technology [9, 11-16]. According to the QTL
database [17], 12,782 QTLs related to chicken economic
traits have been identified, 332 of which are associated
with egg number.

Some commercial lines or populations are intensively
selected for their production traits. Rhode Island Red
and White Leghorn chickens are well known for their
distinguished egg productivity. Dwarf chickens in China
have also been developed for egg production. The aver-
age annual egg number of them is approximately about
300 eggs. Chinese indigenous chickens grow relatively
slowly and are known to produce less than 200 eggs per
year. Therefore, we performed a GWAS based on the
differences of egg number between egg-type chickens
and local chickens to explore the underlying molecular
genetic mechanisms and identify candidate genes or
genomic regions related to egg number traits. The re-
sults of this study are supposed to be beneficial for layer
breeding.

Results

Population structure testing

Principal component analysis (PCA) using the first two
principal components showed that there was an obvious
stratification phenomenon between Chinese indigenous
chicken breeds (black circle) and commercial egg-type
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chickens. At the same time, we found a Tibetan chicken
was mixed with White Leghorn, as shown by the red cir-
cle in Fig. 1 and (see Additional File 4: Figure S1). Mean-
while, WL_CAU and WL_YQ were divided into two
groups as they came from two different population. The
first principal component (PC1) and the second princi-
pal component (PC2) explain 15.92 and 7.49% of the
total variance (or 59.65 and 28.08% of the top three
PCs), respectively. In GWAS, population stratification
might lead to false-positive results. So we used principal
components as covariates correct for stratification in this
study [18]. When the covariate was added as 1st PC, top
two PCs, top three PCs, top four PCs and top five PCs,
we performed GWAS and calculated the genomic infla-
tion factors (\) respectively. A was 1.004, 0.917, 0.916,
0.891, 0.882, respectively. When the 1st PC was added as
a covariate, A is the closest to 1, indicating that the cor-
rection effect of population stratification is the best [19].
So we finally decided to add the 1st PC in the GWAS
mixed model to adjust for population stratification.

Admixture software was used to analyze the popula-
tion structure. We displayed a bar plot based on the
cross-validation error rate (Additional file 5: Figure S2).
When K =2, Rhode Island Red and one of the White
Leghorn groups (WL_YQ) appeared as two differentiated
clusters. When K = 3-4, two White Leghorn populations
(WL_CAU, WL_YQ) gathered in the same group. When
K=5, two White Leghorn populations were separated.
When K=6-9, the high productivity layers from four
populations (WL_CAU, WL_YQ, RIR, DW) were sepa-
rated, indicating that the genetic backgrounds of these
layers were different (Additional file 4: Figure S1). These
results reinforce the subsequent analyses.

Genome-wide association study

We took the high productivity group as the case and the
low productivity group as the control, and performed
GWAS on the dramatic differences in egg number be-
tween two groups.

The QQ plot was presented as Fig. 2a, the \ was equal
to 1.004, which means that there was no population strati-
fication phenomenon and the GWAS results were reliable.

After correction, we found 148 SNPs that could be asso-
ciated with egg number (57 significantly, 91 suggestively)
(Additional file 1: Table S1). The global view of P-values
(in terms of -log10 (P-value)) for all SNPs was represented
by a Manhattan plot, as shown in Fig. 2b. Table 1 lists the
SNP information that was emphasized in this study. Using
Ensembl to annotate related SNPs, we found a total of 68
genes around significant peaks, and identified 32 candi-
date genes associated with egg number according to their
functions (Table 2). Some genes such as NELL2, KITLG,
GHRHR, NCOA1, ITPR1, GAMT, and CAMK4, which
have been proved to be related to egg number, egg
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Fig. 1 PCA plot of chicken populations in this study. Each color represents a breed and the abbreviations are as defined in Table 3. PC1, principal
components one; PC2, principal components two. PCT and PC2 explain 15.92 and 7.49% of the total variance (or 59.65 and 28.08% of the top
three PCs), respectively

production, litter size, or reproductive traits, are worth a  between the high and low productivity groups. The re-
deeper exploration [20-33]. sults showed that the allele frequencies of these 20 SNPs

In addition, the most significant peak in this study was  were significantly different between the two groups
located at 48.61-48.84 Mb on chromosome 5. The chi- (Additional file 2: Table S2). At the same time, four
square test was carried out to compare the allele fre- genes were repeatedly identified in this region. YY1 is in-
quencies of the significant SNPs identified in this region  volved in oocyte growth and maturation [34]. A member
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Fig. 2 QQ plot and Manhattan of the egg number traits. a The QQ plot shows the expected -log10 P-value (the x-axis) plotted against the
observed -log10 P-value (y-axis). In the top left of the QQ plot, A is shown as 1.004. b In Manhattan plot, the x-axis is the position of each SNP on
the chicken chromosomes (34, 40, 63 indicate LEG64, W, and Z respectively), and the y-axis is the -log10 P-value. The horizontal red dotted line at
the top indicates the genome-wide significant thresholds is 3.91 x 107, line at the bottom represents the genome-wide suggestively thresholds
is 7.82x107°
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Table 1 Genome-wide SNPs around significant peaks associated with egg number traits

SNP ID Chromosome Posistion® P value Nearest gene
AX-75424481 1 30418287 2.69E-07 NELL2

AX-75424489 1 30420285 7.69E-06 NELL2

AX-75427140 1 31722672 1.80E-06 LRIG3

AX-75448176 1 41739240 3.62E-09 TSPAN19

AX-75450814 1 43099910 4.52E-07 KITLG

AX-75499001 1 65863432 2.52E-06 ENSGALG00000046127
AX-75225234 1 1.18E+08 5.79E-07 ENSGALG00000036169
AX-75320912 1 1.63E+08 2.17E-06 PCDH17

AX-75322789 1 1.64E+08 2.13E-06 ENSGALG00000034638
AX-75322810 1 1.64E+08 1.38E-06 ENSGALG00000034638
AX-75965321 2 1068425 2.52E-08 MINDY4, AQP1
AX-75993000 2 1215757 6.42E-06 GHRHR

AX-75996755 2 1234625 3.13E-07 GHRHR

AX-76053674 2 20576504 2.35E-06 FAM171A1
AX-80779498 2 46145450 1.88E-06 TRANK1

AX-76003273 2 1.3E4+08 5.33E-08 AZINT

AX-76003319 2 1.3E+08 1.55E-06 AZIN1

AX-76536054 3 69621540 242E-07 NA

AX-76536071 3 69628923 1.59E-06 NA

AX-76536096 3 69655624 4.14E-06 NA

AX-76536308 3 69762163 5.02E-06 NA

AX-76540844 3 72000979 5.65E-07 POU3F2, FBXL4
AX-76541349 3 72227940 9.78E-07 ENSGALG00000034564
AX-76541394 3 72243677 7.32E-06 ENSGALG00000034564
AX-76541486 3 72303465 2.23E-06 ENSGALG00000034564
AX-76541488 3 72304623 1.32E-06 ENSGALG00000034564
AX-76401421 3 1.06E+08 240E-06 NCOA1

AX-76624455 4 141350 1.78E-06 MSN

AX-76630762 4 173004 4.71E-07 MSN

AX-76645558 4 249014 349E-06 ENSGALG00000044799
AX-76652327 4 283517 1.22E-06 HEPH, HSF3
AX-76658977 4 319076 1.94E-06 HEPH, GPR83L
AX-76662643 4 338418 1.02E-06 GPR83L, ENSGALG00000038728
AX-80823531 4 394383 1.51E-06 NA

AX-76676155 4 408469 4.71E-07 NA

AX-76714260 4 612204 3.23E-06 ENSGALG00000029764
AX-76718681 4 634832 2.09E-06 ENSGALG00000029764
AX-76675026 4 48646624 1.82E-06 ADGRL3

AX-76713110 4 67434214 4.37E-06 ENSGALG00000041624, GABRA2, GABRA4
AX-76715084 4 68430908 4.09E-06 GRXCR1

AX-76776179 5 1133440 1.52E-07 Luzp2

AX-76814849 5 30327067 3.26E-06 RYR3

AX-76845554 5 44381627 3.63E-06 CCDC88C, PPP4R3A
AX-76855266 5 48607009 3.72E-06 YY1, SLC25A29
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Table 1 Genome-wide SNPs around significant peaks associated with egg number traits (Continued)

SNP ID Chromosome Posistion® P value Nearest gene
AX-76855305 5 48622650 1.28E-06 SLC25A29, YY1
AX-76855335 5 48635048 1.45E-06 SLC25A29
AX-76855457 5 48687658 3.62E-07 WDR25
AX-76855519 5 48714129 6.08E-06 WDR25
AX-76855557 5 48731601 9.56E-12 WDR25
AX-76855561 5 48733361 3.33E-08 WDR25
AX-76855583 5 48739609 5.29E-12 BEGAIN
AX-76855593 5 48745253 531E-18 BEGAIN
AX-76855630 5 48762022 6.51E-08 BEGAIN
AX-76855665 5 48778313 4.22E-07 BEGAIN
AX-76855684 5 48786534 9.28E-18 BEGAIN
AX-76855699 5 48792877 140E-18 BEGAIN
AX-76855705 5 48795578 1.94E-12 BEGAIN
AX-76855726 5 48804374 2.31E-06 BEGAIN
AX-80949259 5 48808664 1.61E-06 BEGAIN
AX-76855747 5 48811664 9.02E-10 BEGAIN
AX-76855766 5 48820492 5.54E-13 BEGAIN
AX-76855815 5 48838402 248E-12 BEGAIN
AX-76855817 5 48839325 5.76E-12 BEGAIN
AX-76900556 6 13775431 4.09E-06 KCNMAT
AX-76900629 6 13799359 6.36E-06 KCNMAT1
AX-76943077 6 30466599 5.62E-06 NA
AX-77011457 7 25213170 544E-06 NA
AX-77014656 7 26516128 6.78E-06 SLC15A2, IQCB1
AX-75660603 1 445721 3.26E-07 CSNK2A2
AX-75665353 [ 607645 1.34E-07 POLR2C
AX-75643828 [ 1608025 2.68E-06 HYDIN
AX-75644090 11 1618412 7.76E-06 HYDIN
AX-80948010 11 1754582 4.07E-06 VAC14
AX-75703508 12 18557458 5.27E-07 ITPR1
AX-75703529 12 18564932 2.08E-07 ITPR1
AX-75703541 12 18569966 2.87E-07 ITPR1
AX-75703548 12 18572141 6.83E-07 ITPR1
AX-75744414 13 16244175 5.66E-07 VDAC1
AX-75745363 13 16603463 821E-07 ENSGALG00000029896
AX-75810149 14 8804646 1.25E-06 OTOA
AX-75810223 14 8826708 841E-07 OTOA
AX-75906835 18 6994110 2.21E-06 SMURF2
AX-80787269 18 7876592 1.18E-06 ARSG, SLC16A6
AX-76227922 20 8585474 4.52E-06 ENSGALG00000039201, ENSGALG00000005652
AX-76249257 21 4983824 3.25E-07 KAZN
AX-76249303 21 4996326 6.51E-08 KAZN
AX-76250675 21 5263523 1.55E-09 C1orf158 ENSGALG00000021598
AX-76288938 23 4139841 1.78E-07 NA
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Table 1 Genome-wide SNPs around significant peaks associated with egg number traits (Continued)

SNP ID Chromosome Posistion® P value Nearest gene
AX-80768216 23 4214468 7.13E-08 AGO1
AX-76339015 26 3035521 3.58E-07 NA
AX-76348623 26 5077655 3.82E-09 TAF8
AX-76348772 26 5100952 1.49E-08 CHIA
AX-76379082 28 2980442 4.15E-06 SBNO2
AX-76379816 28 3170288 3.73E-06 NA
AX-76379939 28 3197429 1.98E-06 GAMT, DAZAP1
AX-76380005 28 3210016 6.59E-07 DAZAP1
AX-76380342 28 3284684 1.57E-08 SLC39A3
AX-76380390 28 3295475 1.40E-10 SLC39A3, DIRAS
AX-77265370 63 8262232 1.19E-06 CNTFR
AX-77206121 63 24853011 5.82E-06 NA
AX-77226182 63 46670667 1.48E-08 CAMK4
AX-77226564 63 46942411 2.19E-06 NA
AX-77228575 63 49223728 1.22E-06 NA
AX-77252226 63 66675375 4.08E-07 MUSK
AX-77252227 63 66676347 1.56E-07 MUSK
AX-77252241 63 66683942 1.89E-06 MUSK
AX-77252265 63 66694071 8.69E-09 MUSK
AX-80869954 63 66732038 1.01E-08 MUSK

2 Physical position

of the solute carrier family 25 (SLC25A29) is involved in
the transport of amino acids. WDR25 may be related to
the reproductive tissues [35]. Brain enriched guanylate
kinase (BEGAIN) is a gene specifically expressed in the
brain and is involved in the regulation of postsynaptic
neurotransmitter receptor activity [36].

Comparing with previously reported QTLs
Through Animal QTLdb, we detected 4 QTLs that over-
lapped with SNPs obtained from this study. Two of

Table 2 Details for 32 candidate genes that influence egg
number traits in different ways

Ways impacting Genes

reproductive traits

Regulating hormone level NELL2, AQP1, AZIN1, POU3F2,
POLR2C, GPR83L, ENSG
ALG00000038728, RYR3, ITPR1, CNTF

R

LRIG3, KITLG, PCDH17, GHRHR, ADGR
L3, CCDC88C, YY1, CSNK2A2, POLR2C,
ITPR1, SMURF2, AGO1, CHIA, DAZAP1,
DIRAS1, MUSK, CAMK4

WDR25, ENSGALG00000029896, ENSG
ALG00000039201, GAMT, DAZAP1,
ENSGALG00000005652, SLC39A3,
HYDIN

Influencing the formation,
growth, development of follicle

Influencing the development
of the reproductive system

these 4 QTLs were associated with egg production, in-
cluding 1 with egg production rate and 1 with small yel-
low follicle number. The remaining QTLs were related
to reproductive traits, including 2 with ovary weight
(Additional file 3: Table S3).

Discussion

GWAS and QTL overlapping

An important condition for GWAS to achieve better re-
sults is to eliminate false associations caused by differ-
ences in allele frequencies arising from population
stratification, recessive kinship, and genotyping errors
[37]. The GEMMA adopted in this study considers the
group stratification and sample structure. At the same
time, we also added the PC1 as a covariate to reduce the
group stratification effect. The results of the QQ plot
and A show that the correction effect is good, and there
is no population stratification phenomenon.

Four of the 148 QTLs in this study were those identi-
fied in previous studies. Among these overlapping QTLs,
2 QTLs were associated with egg production. This rein-
forces the results of our study. AX-75745363 is located
the ENSGALG00000029896 gene on chromosome 13.
AX-76715084 is located 0.046 Mb upstream of the
GRXCRI (glutaredoxin and cysteine-rich domain con-
taining 1) gene on chromosome 4. Although these genes



Zhao et al. BMC Genomics (2021) 22:610

have not been very well studied in chickens, and their
functions have not been fully elucidated, they provide a
reference and idea to understand the molecular mechan-
ism for egg number traits.

Candidate genes

As far as we know, this study has the largest variety of
breeds so far in the research of reproductive traits in
chicken, which not only improves the detection ability of
related QTLs, but also allows us to detect some QTLs
related to fat and heat resistance. We speculate that this
was due to the relatively slow fat formation and depos-
ition [38, 39] and the relatively high heat generation of
layers [40]. Thus, we identified 32 candidate genes based
on their function. These genes mainly affect egg number
in three ways (Table 2). Some genes regulate hormone
levels, including gonadotropin-releasing hormone
(GNRH), oxytocin (OXT), growth hormone (GH), and
thyroid hormone (TH). All these hormones play a vital
role in the female reproductive system [41-46]. Some
genes affect egg number traits by affecting the growth
and development of follicles. It is well known that the
growth and development of follicles are critical for

Table 3 Summary of phenotypic data
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reproductive function, especially in chickens. The
remaining genes directly affect reproductive system de-
velopment. Among these 32 candidate genes, we also
found 7 important genes that have been identified as re-
lated to reproductive traits such as egg production, egg
number and litter size in previous studies, which further
validates our findings. NELL2 and KITLG are located on
GGAL. NELL2 not only affects the synthesis and secre-
tion of GNRH [47], but has also been shown to be in-
volved in maintaining the normal female reproductive
cycle of mammals [20]. KITLG plays an important role
in the growth and development of follicles [21, 48]. It
has been shown to be related to the litter size of goat
and sheep, and has been considered an excellent candi-
date gene for reproductive traits of humans and livestock
[21-23]. Therefore, it is reasonable to speculate that
KITLG has an important impact on egg number traits.
GHRHR located on GGA?2 participates in the secretion
and synthesis of GH. It is believed to be involved in the
growth and reproduction of livestock [49]. Liu et al.
identified three SNPs in the GHRHR promoter that are
significantly related to egg number traits in Beijing You
chickens [24]. NCOAI, located on GGA3, is involved in

Group Breeds Abbreviation Sample size Average annual egg number” Total®
High productivity White Leghorn® WL 100 315 220
Dwarf DW 60 280
Rhode Island Red” RIR 60 310
low productivity Beijing You® BY 42 110 222
Henan Game' HN 13 100
Xishuangbanna Game®? XS 10 110
Turpanh TU 11 70
Zhangzhou Game' 77 10 80
Luxi Game’ LX 10 40-60
Tibetan® 8 42 40-80
Hongshan' HS 42 116
Taihe Silkies™ SK 42 110
Total - - - - 442

*White Leghorn came from two different groups. Among them, 40 samples obtained from the Experimental Chicken Farm at the China Agricultural University, 60
samples obtained from Beijing Yanqing Commercial Layer Breeding Company. Their abbreviations are WL_CAU and WL_YQ, respectively
PRegarding the sample size, we tried to make the ratio between case and control was 1:1 to avoid the large number difference between the two groups

interfering the results

“Dwarf chickens obtained from Beijing Yanqing Commercial Layer Breeding Company

9Rhode Island Red obtained from Beijing

®Beijing You chickens obtained from Beijing

fHenan Game obtained from Henan province

9Xishuangbanna Game obtained from Xishuangbanna, Yunnan province
"Turpan obtained from Turpan, Xinjiang

Zhangzhou Game obtained from Fujiang province

iLuxi Game obtained from Shandong province

“Tibetan obtained from four different places, including the Experimental Chicken Farm at the China Agricultural University, Nimu, Tibet, Naidong, Tibet and

Lingzhi, Tibet
'Hongshan chickens obtained from Hubei province

MTaihe Silkies chickens obtained from the Experimental Chicken Farm at the China Agricultural University

"Refer to the poultry genetic resources in China
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regulating signal pathways mediated by TH and estro-
gen. It has not only been shown to be an important gene
that influences reproductive traits in pigs and sheep, but
also related to egg production, fertility, and reproductive
traits in chicken [25-30]. ITPRI repeatedly identified in
the 18.56-18.57 Mb on chromosome 12 can not only
participate in the signaling pathway of GnRH, estrogen,
and the synthesis and secretion of GH and TH, but also
affects the growth and differentiation of follicles. In
addition, ITPR1 has been reported to be involved in the
transport of Ca** and may be associated with egg num-
ber [31]. This suggests that this region located on
chromosome 12 and the ITPRI gene may be important
for chicken egg number traits. GAMT located on
GGAZ28 has been shown to be associated with the repro-
ductive system and development [32]. CAMK4 located
on chromosome Z is involved in the signaling pathway
of OXT and may play a role in the development of folli-
cles and ovulation [50]. It is believed to play a significant
role in the reproductive processes of females [33].

However, NELL2, GAMT, and CAMK#4 have not been
studied before in chickens, and the results of this study
may pave the way for future researchers to explore the
relationship between these genes and egg number traits.
Also, the specific functions of these genes need to be
further verified.

Candidate region

In this study, the most significant peak obtained was lo-
cated at 48.61-48.84 Mb region on GGAS5. In this region,
YY1, SLC25A29, WDR25, and BEGAIN were annotated.
Among them, YY1 and WDR25 have been shown to be re-
lated to oocytes and reproductive tissues, respectively [34,
35]. However, there is no concrete literature to prove that
they are associated with egg number traits in chickens,
thus further research is still required. At the same time,
interestingly enough, a number of studies have detected
regions associated with egg number traits on chromosome
5 [12, 15]. The region identified in our study was about
1.2 Mb away from the QTL reported by Zhang et al. [15].
Although the results are different, it has once again proved
that chromosome 5 is an important candidate region that
affects the reproductive traits of chickens.

Conclusions

In this study, we performed a GWAS based on the dif-
ference of egg number between high productivity layers
and Chinese indigenous chickens and identified a series
of SNPs and candidate genes related to reproductive
traits. Four of the SNP effects overlapped with previously
reported QTL regions, which supports the results of this
study. These results may help us to better understand
the molecular mechanisms underlying reproductive
traits in chickens and even other species.
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Materials and methods

Experimental animals

For this study, 442 chicks were available. Among them,
White Leghorn and Rhode Island Red are intensively se-
lected commercial breed, Dwarf Chicken is a synthetic
layer line. Both they are egg-type chickens and produce
about 300 eggs per year. They were placed in the high
egg productivity group in this study. The other ten
Chinese indigenous breeds laying less than 200 eggs an-
nually were classified into the low egg productivity
group. The details of the samples are presented in
Table 3.

Genotyping and quality control

In total, blood samples from 442 chickens from the high
and low egg productivity groups were collected by stand-
ard venipuncture. After DNA extraction using the stand-
ard phenol/chloroform method [51], the chickens were
genotyped using a 600 K Affymetrix Axiom Chicken
Genotyping Array with a total of 580,961 SNPs [52].
Quality control was performed using Plink v1.9 [53].
SNPs with a minor allele frequency = 1% and genotyping
rate > 98% were retained. Individuals with a genotype de-
letion rate of >5% were excluded. SNPs with Hardy-
Weinberg equilibrium P <10 ° were eliminated. After
filtering, 439 chickens, including 218 in high and 221 in
low egg productivity groups, and 456,647 SNPs were
retained for further analyses.

Population structure analysis

Prior to GWAS, population structure was examined
by PCA. Plink 1.9 was used to determine the popula-
tion structure and generate eigenvectors and eigen-
values, and the “ggplot2” package in R studio was
used to visualize the results of PCA. We selected the
first two principal components with the largest vari-
ance interpretation rate as the horizontal and vertical
coordinates to create a PCA plot. At the same time,
we calculated the principal component contribution
rate based on 439 eigenvalues.

We retained relatively dependent SNPs with the
plink ‘--indep-pairwise 25 5 0.2° command. The gen-
etic structure was estimated using Admixture soft-
ware [54]. We calculated the ancestor coefficient
matrix, simulated the situation of genetic clusters
(K) from 1 to 20, and computed the cross-validation
error rate. Furthermore, we used an online pophel-
per to display a population structure bar plot (http://
pophelper.com/) [55].

Genome-wide association study

GWAS analyses of the egg number were performed
using a univariate mixed linear model in GEMMA [56].
In the current study, only the PCl was used as a
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covariate to correct population stratification. The model
is as follows:

y=Wa+xp+u+e

where y denotes a phenotypic value vector of 439 indi-
viduals, W is a matrix of covariates (fixed effects that
contain a column of 1s and the first principal compo-
nent), a represents a vector of the corresponding coeffi-
cients consisting of intercepts, x is a vector of marker
genotypes, f3 is the effect size of a marker, u is a vector of
random effects with a covariance structure that follows a
normal distribution as u ~ N (0, KVg), where K is a genetic
relationship matrix and Vg is the polygenic additive vari-
ance; and ¢ is a vector of random residuals. In this study,
the Wald statistic was used to test each SNP.

Manhattan and Quantile-Quantile (QQ) plot were
made by R package “CMplot” and “qqman” respectively,
and we also calculated \ based on p-values from GWAS
to judge the degree of false-positive [57]. A was calcu-
lated by the median of the resulting chi-squared test sta-
tistics divided by the expected median of the chi-
squared distribution. We set the median of a chi-
squared distribution with one degree of freedom was
0.454 in this study.

The traditional Bonferroni correction is too strict,
resulting in a higher false-negative rate and omission of
some SNPs truly associated with the target trait [58].
Therefore, in this study, we calculated the sum of the
number of independent SNPs and LD blocks for correc-
tion [59]. The effective number of independent tests was
127,862 in this study. Hence, the threshold P value was
adjusted to 3.91 x 10”7 for a genome-wide significance
level, and 7.82 x 10~ ° for a genome-wide suggestive sig-
nificance level. This means that SNPs with P values
below 7.82 x 10~ ¢ are considered and may be associated
with egg number traits.

Bioinformatics analysis of candidate genes

We identified candidate genes by searching for the nearest
genes located within 400 bp upstream or downstream of the
significant associated SNPs and annotated based on the Gal-
gal 5.0 assembly supported by Ensembl (http://www.
ensembl.org/indexhtml) databases. We then checked the
biological functions of these genes in PubMed (https://
pubmed.ncbi.nlm.nih.gov).

Overlap with known QTLs

In addition, regions within 100kb of a candidate SNP
were searched for previously reported QTLs with egg
number, egg production or reproductive traits in the
chicken QTL database (https://www.animalgenome.org/
cgi-bin/QTLdb/GG/index).
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