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Infectious diseases exert a large and in many contexts growing burden on

human health, but violate most of the assumptions of classical epidemiolo-

gical statistics and hence require a mathematically sophisticated approach.

Viral shedding data are collected during human studies—either where vol-

unteers are infected with a disease or where existing cases are recruited—in

which the levels of live virus produced over time are measured. These have

traditionally been difficult to analyse due to strong, complex correlations

between parameters. Here, we show how a Bayesian approach to the inverse

problem together with modern Markov chain Monte Carlo algorithms

based on information geometry can overcome these difficulties and yield

insights into the disease dynamics of two of the most prevalent human

pathogens—influenza and norovirus—as well as Ebola virus disease.
1. Introduction
Infectious diseases continue to pose a major threat to human health, with

transmission dynamic models playing a key role in developing scientific under-

standing of their spread and informing public health policy [1]. These models

typically require many parameters to make accurate predictions, which interact

with data in complex, nonlinear ways. It is seldom possible to perform a series

of individual controlled experiments to calibrate these models, meaning that

the use of multiple datasets is often necessary [2].

At the population level, infectious disease models most frequently involve a

‘compartmental’ approach in which individuals progress between different dis-

crete disease states, usually at constant rates [3]. We note that alternatives to

such a compartmental approach exist, for example, use of a deterministic

time-varying infectivity, or allowing for non-Markovian state transitions in a

stochastic context [4]. There are theoretical differences between these and com-

partmental models for predictive epidemic modelling (see [5] for additional

discussion), but from the point of view of inference they pose very similar

challenges and therefore the rest of this paper will consider a compartmental

modelling framework.

At the individual level, there are three separate events that can be represented

using different compartments: (i) an individual receiving an infectious dose

of a pathogen, (ii) the individual becoming infectious and able to infect new

cases, and (iii) the individual ceasing to be infectious and becoming unable to

infect new cases. For some pathogens, there are also events relating to changes

in disease progression during the infectious period. The times elapsed between
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these events are important for understanding the epidemiol-

ogy of infectious diseases as well as designing control and

mitigation strategies [6,7].

Here, we consider how the rates of moving between com-

partments in standard epidemic models can be estimated

from shedding data generated either when individuals are

given an infectious dose of a virus under controlled conditions,

or when existing cases are enrolled in a study, and the level of

live virus that they produce (shed) is measured over time. The

nature of these models and data means that there are not

simple optimal values for the rate parameters, but instead the

data constrain the parameters to lie close to a nonlinear curve

in parameter space. We show that modern computationally

intensive Bayesian methods that make use of information

geometry can be used to calculate the posterior density

for models of influenza, norovirus and Ebola. We then use

forward modelling based on this posterior knowledge to

show that some epidemiological conclusions are robust

under the remaining uncertainty, but others require additional

information to determine. In particular, for influenza, we show

that the predicted effectiveness of quarantine-type inter-

ventions is unaffected by the remaining uncertainty, but

antiviral-like interventions have a bimodal uncertainty struc-

ture. For norovirus, we show that the frequency of epidemics

is predictable under the remaining uncertainty, but the severity

and timing of each seasonal epidemic is not. For Ebola, we are

able to distinguish between high- and low-viraemic infectious

disease progression, giving results that are consistent with

population-level observations of the case fatality ratio.
2. Methods
2.1. Overview
Our methodological approach involves three related com-

ponents. We start by defining the different compartmental

disease models that we use in §2.2. These are defined in terms

of each case’s natural history, which we represent mathematically

as a continuous-time Markov chain. We also show how these

models can be used to make population-level predictions by

assuming, for example, that an infectious individual will cause

new cases at a rate b.

Then in §2.3 we consider how the natural history parameters

can be estimated from shedding data. An important distinction

will be between the expected rate at which individuals infect in

the population (quantified using a rate like b above) and the

measured intensity of shedding (quantified using log titre). We

will generally assume a simple linear relationship between

these using a scaling parameter that we call t.

Finally in §2.4, we present the Bayesian approach to uncer-

tainty quantification as well as the algorithms necessary to

implement this for the complex posterior distributions that

arise in the analysis of shedding data.
2.2. Compartmental models of infectious disease
In a compartmental approach, we model the state of an individ-

ual who has been infected with a pathogen at time t ¼ 0 as an

integer random variable X(t). We label the possible states after

infection i,j, . . . [ f1, . . . ,mg; while more general structures are

needed for other pathogens, for both influenza and norovirus

we consider the ‘linear chain’ case where an individual spends

an exponentially distributed period of time with mean 1=gi in

each state i , m before progressing to state i þ 1, and where m
is the ‘recovered’ state, corresponding to the end of the infection,
from which the individual does not move. In the electronic

supplementary material, we provide a general solution for the

probability of being in disease compartment i at time t,

piðt; gÞ :¼ Pr½XðtÞ ¼ ijXð0Þ ¼ 1; g�, ð2:1Þ

and its derivatives with respect to the rates fgig. For Ebola, we

consider a chain that branches, which introduces parameters

relating to the probability of following one path or another in

addition to rate constants.

We also assume that an individual has ‘infection rate’ li in

state i (with lm ¼ 0), which is proportional to the rate at which

they would infect new cases in a population-level epidemic

model. A key quantity is the expected infectiousness of an

individual over time

Lðt; uÞ :¼
Xm

i¼1

lipiðt; gÞ, ð2:2Þ

where the model parameters are u ¼ ðg,lÞ ¼ ðuaÞ. Perhaps the

most important quantity in any epidemiological model of infec-

tions is the basic reproductive ratio, R0, defined as the expected

number of secondary infections produced by a typical infectious

individual early in the epidemic [4]. Under the simplifying (but

frequently made) assumption of a homogeneous population,

this quantity is given by

R0ðuÞ ¼
ð1

t¼0

Lðt; uÞdt: ð2:3Þ

Note that the constants of proportionality l depend on

the nature and strength of interactions in the population

and therefore cannot be determined from measurements of

individuals alone.
2.2.1. The SIR model
One of the simplest models in mathematical epidemiology is

the SIR model, in which individuals are susceptible, infectious

or removed. We use this model as a simple example of the

methodology we propose. An individual infected at time t ¼ 0

spends an exponentially distributed period of time in the

infectious class, with rate g, before recovering, and has

infectiousness b. Therefore,

p1ðt; gÞ ¼ e�gt and Lðt; b,gÞ ¼ be�gt: ð2:4Þ

At the population level, supposing that we can ignore demo-

graphic processes such as births and deaths so the population

size is fixed at N, we have a set of ordinary differential equations

describing the evolution of an epidemic:

dS
dt
¼ �b SI

N
,

dI
dt
¼ b

SI
N
� gI and

dR
dt
¼ gI: ð2:5Þ

Here S(t) is the expected number of susceptible individuals

in the population, I(t) is the expected number of infectious

cases and R(t) is the expected number of removed indivi-

duals; we will use a similar notation below generalized in a

natural way. In this work, we will consider how to fit

expressions such as (2.4) to shedding data in such a way that

population-level models such as (2.5) can be parametrized

accounting for uncertainty.
2.2.2. Influenza
Influenza is commonly modelled using the ‘SEEIIR’ or ‘SE2I2R’

framework, for example, in the work that was used to inform

vaccination policy during the recent H1N1 pandemic [8]. Here

m ¼ 5 and individuals spend a 2-Erlang distributed period of

time with mean 1/v in a non-infectious ‘exposed’ state, and

then a 2-Erlang distributed period of time with mean 1/g in

the infectious state, before recovering.
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To show the possible different impacts of uncertainty in par-

ameter values, we will consider two models for delayed

intervention (implemented after a time period of length d after

infection) during an influenza pandemic. The first of these

assumes that the intervention is ‘quarantine-like’ and completely

halts transmission after administration, leading to an epidemic

with reproduction number

Rð1Þd ¼
ðd

t¼0

Lðt; uÞdt: ð2:6Þ

The second, however, assumes that the individual must not have

progressed from the ‘latent’ to the ‘infectious’ class and is there-

fore similar to some models of administration of antiviral

medication like Tamiflu [9,10], leading to an epidemic with

reproduction number

Rð2Þd ¼ ð1� Pr½XðdÞ , 3�ÞR0: ð2:7Þ

We note from standard results in mathematical epidemiology

[4] that if the infection rate is b, and the mean infectious period is

1/g, then the basic reproductive ratio is R0 ¼ b/g, and for an epi-

demic with reproduction number R the epidemic final size Z is

given by the solution to the transcendental equation

Z ¼ 1� e�RZ, ð2:8Þ

which we solve numerically for the two different reproduction

numbers Rð1Þd and Rð2Þd above, a range of delays, and fitted

values of the parameters (v, g) at a fixed value of R0 ¼ 1.4 (as

in [8]) to make a direct comparison, although it would be

straightforward to place a distribution on R0. We note that

while all parameter values agree on the value of

R0 ¼ limd!1 Rd, and that limd!0 Rd ¼ 0, at finite non-zero d the

uncertainty in parameters will lead to posterior variability in

Rd and hence Z.

Temporal features of an influenza epidemic are often more

relevant for policy than the final size [11,12] and are typically

considered using systems of differential equations. As we are

considering an intervention with fixed delay, we couple the stan-

dard ODE system [8] to a set of terms modelling the delayed

intervention leading to the delay-differential equation system

dS
dt
¼ � b

N
SðtÞIðtÞ,

dE1

dt
¼ b

N
SðtÞIðtÞ � 2vE1ðtÞ � p1ðd; v, gÞ b

N
Sðt� dÞIðt� dÞ,

dE2

dt
¼ 2vðE1ðtÞ � E2ðtÞÞ � p2ðd; v, gÞ b

N
Sðt� dÞIðt� dÞ,

dI1

dt
¼ 2ðvE2ðtÞ � gI1ðtÞÞ � ep3ðd; v, gÞ b

N
Sðt� dÞIðt� dÞ

and
dI2

dt
¼ 2gðI1ðtÞ � I2ðtÞÞ � ep4ðd; v,gÞ b

N
Sðt� dÞIðt� dÞ,

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ð2:9Þ

where the variable e is 1 if the intervention works for any

infected individual and 0 if it only works during the latent

period, and d is the intervention delay. piðt; v,gÞ is the prob-

ability of being in state i time t after starting in state 1 at time 0

as in (2.1) above and is also determined by the parameters in

the shedding model.

2.2.3. Norovirus
Norovirus is usually assumed to follow the ‘SEIRS’ framework

[13], where after infection an individual spends an exponentially

distributed period of time with mean 1/v in a ‘latent’ class, then

an exponentially distributed period of time with mean 1/g in the

infectious class. In contrast to influenza, individuals move from

the ‘recovered’ class back to the ‘susceptible’ class with rate m;

this loss of immunity is a relatively slow process that does not

impact on the analysis of shedding data. It does, however,
influence the population-level disease dynamics of norovirus,

which can be described using a set of ordinary differential

equations, where S(t) stands for the expected number of people

who are susceptible and similarly for other compartments:

dS
dt
¼dNþmR�bðtÞSI

N
�dS,

dE
dt
¼bðtÞSI

N
�vE�dE,

dI
dt
¼vE�gI�dI and

dR
dt
¼gI�mR�dR:

9>>=
>>; ð2:10Þ

Here we have assumed a constant effective population size N and

have a time-varying infection rate (which is necessary to repro-

duce the regular seasonality seen in real data [13]) that we

assume takes a sinusoidal form bðtÞ¼b0ð1þAsinðatÞÞ. Because

such external forcing in transmission is typically believed to

arise from school terms [14], we take A ¼ 1/3 to be close to exist-

ing empirical estimates of the impact of school closures on

disease spreading [15,16], and a can be set to 2pyr�1. The demo-

graphic rate d is standardly set to 1/70 yr– 1. From the results of

[17], we have that R0¼b0=g; we vary this and the rate of waning

immunity m within ranges suggested by Simmons et al. [13], and

then run the model (2.10) to determine its long-term behaviour

for different fitted values of the parameters (v, g).

A norovirus vaccine is likely to be available in the future [18],

and we model the impact of a vaccination policy starting at time

u and with effective coverage v (defined as the product of cover-

age and efficacy) by modification of the demographic term for S
and addition of a vaccinated V compartment:

dS
dt
¼ dð1� vQðt� uÞÞN þ mR� bðtÞ SI

N
� dS

and
dV
dt
¼ dðvQðt� uÞN � VÞ:

9>>=
>>; ð2:11Þ

Here Q is the step function, leaving us with a set of time-

inhomogeneous ordinary differential equations.

2.2.4. Ebola
Ebola is both much less common than influenza and norovirus

and much more dangerous. This means that the modelling fra-

mework for it is less established—although it is typically

assumed to follow an SEIR-type framework [19,20]—and also

that challenge studies cannot be performed. Instead, existing

cases are recruited and their viral loads are monitored. Our mod-

elling approach is based on the results of such studies [21]. This is

shown diagrammatically in figure 1 and is described by

equations

dJ1

dt
¼ �u1J1,

dJ2

dt
¼ u1J1 � u1J2,

dI1

dt
¼ u2u1J2 � u3I1,

dI2

dt
¼ u3I1 � u3I2,

dH1

dt
¼ ð1� u2Þu1J2 � u4H1,

dH2

dt
¼ u4H1 � u4H2,

dR
dt
¼ u3I2 and

dD
dt
¼ u4H2:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð2:12Þ

In this study design, the latent E states are not observed and so

the initial condition is J1ð0Þ ¼ 1 with all other quantities initially

0. Parameter interpretations and priors are given in table 1.

The transmission rates for low- and high-viraemic pathways

are, respectively,

Ll ¼ bðu5(J1 þ J2)þ u6ðI1 þ I2ÞÞ
and Lh ¼ bðu5(J1 þ J2)þ u7ðH1 þH2ÞÞ:

)
ð2:13Þ

2.3. Shedding model and data
Our aim is to extract parameter estimates for compartmental epi-

demic models from challenge studies in which human volunteers

are infected with a pathogen, or observational studies based on
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Figure 1. Ebola model compartmental structure and role of parameters.
Compartments are shown as circles; flows between compartments are
shown as thin black arrows labelled with parameters; and infectiousness is
indicated by outward facing block arrows labelled with parameters.

Table 1. Parameters of the Ebola model, their interpretation and prior
distribution.

parameter interpretation prior

u1 2/(mean time in initial

viraemic state)

Exp(0.01)

u2 proportion entering high-

viraemic state

Uniform([0,1])

u3 2/(mean time in low-viraemic

state)

Exp(0.01)

u4 2/(mean time in high-

viraemic state)

Exp(0.01)

u5 scaling parameter for initial

viraemic state

Exp(0.1)

u6 scaling parameter for low-

viraemic state

Exp(0.1)

u7 scaling parameter for high-

viraemic state

Exp(0.1)
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existing cases, and the level of live virus they produce (or ‘shed’)

is measured over time. The concentration of live virus is quanti-

fied as a ‘titre’, which is essentially an estimate of the

concentration of live virus. The relationship between this quan-

tity and transmissibility is complex, but generally agreed to be

sub-linear [22,23]. We assume here that at each time point t the

log titre y is proportional to the expected intensity of infection

L(t) plus additive Gaussian noise representing experimental

error and other factors such as individual-level variability, lead-

ing to likelihood functions based on products of normal

distribution probability mass functions. The details are, however,

different for the four scenarios we consider and so we define our

models separately below.
2.3.1. The SIR model
For the SIR model, we assume one observation y of shedding

with standard deviation s at time t leading to likelihood function

Lðyjt, gÞ ¼ N ðyjte�g; sÞ: ð2:14Þ

We will use this as a toy model to demonstrate our methodologi-

cal approach, using numerical values y ¼ 1, s ¼ 0.02 and t ¼ 1.

Note that here and throughout, we write the probability density

function for the normal distribution with mean m and standard

deviation s evaluated at x as

N ðxjm; sÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2s2p
p exp

�ðx� mÞ2

2s2

 !
: ð2:15Þ

2.3.2. Influenza
For influenza, we use the meta-analysis data of Carrat et al. [24]

for viral titre in the nasal passages of individuals infected with

influenza A H1N1, which is shown in figure 2a. Here, obser-

vations are made at regularly spaced times belonging to a

set T . Under our general modelling assumptions, the likelihood

of observing a set of mean log-titres (yt) among participants,

with associated standard deviations (st), given the model

parameters, is

Lðy,sjuÞ ¼
Y
t[T

N ðyt; ðt=bÞLðtjuÞ,stÞ, ð2:16Þ

where N is the normal distribution probability density function

intended to capture various sources of experimental error and

individual-level variability as would be expected due to the cen-

tral limit theorem. Here, we assume that the variance at each time

point is measured, as given in [24]. Because the infection rate b

depends inter alia on the rate of contact between individuals,

which cannot be estimated from shedding data, we rescale the
infectiousness L using the scaling parameter t meaning that

our parameters for estimation are u ¼ ðt,v, gÞ.

2.3.3. Norovirus
For norovirus, we use data from the study of Atmar et al. [25],

where individuals were infected under controlled conditions

and observations of viral titre in faeces made irregularly at

times belonging to a set T : These data are shown in figure 3a
and since they do not aggregate in the same way as the influenza

data the likelihood function is

Lðyju,sÞ ¼
Y
t[T

N yt;
t

b

� �
LðtjuÞ,s

� �
, ð2:17Þ

so s is here an additional parameter that must be estimated, and

we have rescaled the infectiousness as before using t. This makes

the norovirus parameter space dimension 4, in contrast to dimen-

sion 3 for influenza, with u ¼ ðt,v,g,sÞ.

2.3.4. Ebola
For Ebola, we use the data of Ksiazek et al. [21] on viral titre in

the blood of hospitalized Ebola cases, which are stratified into

low- and high-viraemic disease pathways as shown in figure 1,

together with the model described by equations (2.12). This

leads to a likelihood function that takes the form of a product

of low and high trajectories, each of which is similar to the

influenza likelihood:

Lðy,sjuÞ ¼
Y
t[T l

N yl,t;
1

b

� �
LlðtjuÞ,sl,t

� �

�
Y

t[T h

N yh,t;
1

b

� �
LhðtjuÞ,sh,t

� �
, ð2:18Þ

where we use a natural subscripting of ‘l’ for low and ‘h’ for high,

and the parameters for estimation are ðu1, . . . ,u7Þ as shown

in table 1.

2.4. Statistical framework
2.4.1. The Bayesian approach to identifiability
It is long-established that fitting of a sum of exponentials to

data is potentially troublesome; in particular, Acton [26]
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considers fitting the model y ¼ Ae�at þ Be�bt to (y, t) pairs and

notes that ‘there are many combinations of (a, b, A, B) that

will fit most exact data quite well indeed [. . .] and when exper-

imental noise is thrown into the pot, the entire operation

becomes hopeless’.

Our compartmental models are more complex than sums of

exponentials, but exhibit the same lack of a clear mode in the

likelihood function. While there are various methods to address

this issue in other applications (e.g. [27]), another response is

(informally speaking) to consider all parameter combinations

that fit well, and to investigate the epidemiological consequences

of this uncertainty in parameter values.

More formally, we work in a Bayesian framework, meaning

that we attempt to calculate the posterior density p over par-

ameters u from the likelihood function L and the prior function
f using Bayes’ rule

pðujyÞ ¼ LðyjuÞf ðuÞÐ
LðyjqÞf ðqÞdq : ð2:19Þ

Given fixed data y, the measure pðujyÞdu is higher in more cred-

ible regions of parameter space, and can be multi-modal and/or

with many combinations of parameters having the same level of

posterior support.

Here, we attempt to use priors that are broadly speaking

uninformative—either uniform or improper if there is sufficient

data, or low-rate exponential if there is less data. It is important

to note, however, that use of strongly informative priors is

another method for restoration of identifiability, in the sense of

an approximately multivariate normal posterior distribution

that is concentrated in the region of a unique mode.
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2.4.2. Markov chain Monte Carlo
Typically, the integral in the denominator of (2.19) is not tractable

so we adopt the popular methodology of defining a Markov

chain on parameter space whose stationary distribution has

probability density function p, i.e. Markov chain Monte Carlo

(MCMC) [28,29], in particular the Metropolis–Hastings algor-

ithm [30,31]. This is a discrete-time Markov chain in which a

change of state from u n to u � is proposed with probability

qðu �ju nÞ and the proposal is accepted with probability

a ¼ 1 ^
Lðyju �Þfðu �Þqðu nju �Þ
Lðyju nÞfðu nÞqðu �ju nÞ : ð2:20Þ

We shall now outline five popular approaches to MCMC, three

that do not make use of derivatives and two that do, with all

being in some sense a special case of (2.20).

2.4.3. Derivative-free Markov chain Monte Carlo algorithms
(i) Independence sampling. In independence sampling, there is no

dependence on the current state for the proposal distribution.
A popular choice is simply to sample from the prior so that

qðu0juÞ ¼ fðu0Þ: ð2:21Þ

Intuitively, such an approach is expected to work well when the

posterior is ‘close’ to the prior.

(ii) Random walk. In a random walk approach, the current state of

the Markov chain is only used to inform the mean of the propo-

sal distribution. The most popular choice is the multivariate

normal

qðu0juÞ ¼ N ðu0ju,SÞ, ð2:22Þ

where the constant matrix S is often adaptively tuned to

optimize algorithmic performance [32].

(iii) Gibbs. If it is possible to sample from the marginal posterior

for a parameter ua then we can propose with density

qðu0juÞ ¼ pðu0aju1, . . . ,ua�1,uaþ1, . . . ,un,yÞ: ð2:23Þ

From (2.19) and (2.20), we then see that the acceptance prob-

ability for such a proposal is 1. If the marginal posteriors for
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all parameters are known, then pure Gibbs sampling can be

undertaken and involves cycling through proposals (2.23) for

all a.

2.4.4. Derivative-based Markov chain Monte Carlo
In the field of numerical optimization, methods such as gradient

descent that make use of the first-order derivatives of the func-

tion to be optimized are popular. Significant care must be

taken when extending these to stochastic algorithms such as

MCMC, but there are two popular methods that make use of

the first-order derivatives of L :¼ lnðLfÞ. We use the following

notation:

@aL :¼ @L
@ua and @L ¼ ð@aLÞ; ð2:24Þ

note that throughout we write (xi) for the vector x with ith
element xi and (Mij) for the matrix M with (i, j )th element Mij.

There are then two main families of derivative-based MCMC

algorithms that we consider.

(i) MALA. The first algorithm family starts with the Langevin

equation

du ¼ 1
2@Ldtþ dW: ð2:25Þ

This stochastic differential equation model has a stationary distri-

bution equal to the posterior distribution as defined in (2.19), and

the Metropolis-adjusted Langevin algorithm (MALA) uses the

Euler approximation to (2.25):

Du � 1

2
@Leþ e1=2U� N e

2

� �
@L, eI

� �
, ð2:26Þ

where U is a vector of independent standard normal random

variables and I is the identity matrix. The approximation (2.26)

can then be used as a proposal within the Metropolis–Hastings

algorithm [33].

(ii) HMC. The second family of algorithms starts from the follow-

ing system of ordinary differential equations that are a special

case of Hamiltonian dynamics:

du

dt
¼ v and

dv

dt
¼ @L: ð2:27Þ

The randomness in the proposals arises as a result of the starting

value of a vector of auxiliary variables v, by default chosen as a

vector of standard normal random variables. MCMC algorithms

based on Hamilton’s equations (2.27) are called hybrid [34] or

Hamiltonian [35] Monte Carlo (HMC).

One important thing to note about these algorithms is that

they use likelihood derivatives to improve acceptance rates,

but since they include a Metropolis–Hastings step the derivative

calculations could be approximate.

2.4.5. Geometric concepts in Markov chain Monte Carlo
While both MALA and HMC remove some of the inefficiencies

of random walks through use of local gradients, they are not par-

ticularly efficient for the curved ‘boomerang’-shaped posteriors

that we see for the shedding models and data defined above.

To address this issue, recent work has made progress through

use of concepts from differential geometry [36].

In general, we have n real-valued parameters, where the

support for the posterior distribution is a set P # Rn. A general

vector of parameter values is u ¼ ðu1, . . . ,unÞ [ P, and informally

speaking a metric is defined as a smooth symmetric map

s : P� P! ½0, 1Þ such that sðu, u0Þ is the ‘distance’ between u

and u. In practice, we will only need to define this over small

local distances, which requires a metric matrix GðuÞ ¼ ðGabÞ;
explicitly, the infinitesimal distance between u and u þ du is

dsðu, duÞ ¼
X
a,b

Gabduadub

 !1=2

: ð2:28Þ
Here G can be any smooth matrix function and conceptually

speaking this means that even the most complex posterior can

be efficiently sampled with a choice of metric that brings all

high-density regions of parameter space sufficiently ‘close’ to

each other.

Throughout this work, we will visualize the impact of the

metric in the plane for two parameters of a general model

using ellipses, which are defined as follows. Let Gðu1, . . . ,unÞ
be the metric matrix and consider the first two parameters

ðu1,u2Þ without loss of generality. Now let

ðGðu1,u2,û3, . . . ,ûnÞÞab ¼ ðGabÞ, a, b [ f1, 2g, ð2:29Þ

where ûi is a point estimate (we choose the posterior median) for

the parameter ui. Consider the ellipse defined by the following

equation for polar coordinates distance r (from ðu1,u2Þ in the

plane) and angle a:

rðaÞ ¼ (G11 cos2ðaÞ þ G12 cosðaÞ sinðaÞ þ G21 sinðaÞ cosðaÞ

þG22 sin2ðaÞ)�1=2: ð2:30Þ

Plotting several such ellipses in the plane allows us to visualize

the impact of the metric in the following sense: points on each

ellipse are all the same ‘distance’ from the centre as each other

under the assumption of a locally constant metric.

While it is not simple to optimize the metric for a particular

model, a generally well-motivated choice is the Fisher–Rao

metric as suggested by Girolami & Calderhead [36]

GabðuÞ ¼ E½@aL@bL�, ð2:31Þ

where the expectation is taken over data. Benefits of this metric

include that it ensures the matrix G will be positive definite,

and hence that the inverse matrix G21 will exist and be positive

definite. Calculations of the Fisher–Rao metric for the models

under consideration are given in the electronic supplementary

material, showing that it is also available in a closed form for

our models. We note that other metrics are sometimes preferable,

as discussed by, for example, Betancourt [37]; however in our

case the Fisher–Rao metric proved to be adequate.

We used two different geometric algorithms, chosen based

on features of the posterior.

(i) SMMALA. The simplified manifold Metropolis-adjusted

Langevin algorithm (SMMALA) was introduced in [36] and

shown to be competitive in terms of computational effort in sev-

eral applied contexts by Calderhead and co-workers [38,39]. In

this approach, the proposal distribution is

qðu�junÞ ¼ N u�; un þ e

2

� �
G�1@L, eG�1

� �
, ð2:32Þ

with standard MALA recovered if we set G ¼ I. Note that the

inverse of the metric matrix is used to ensure that the expected

distance (as defined in (2.28)) of a move is directionally invariant.

We used SMMALA to sample from the norovirus and Ebola pos-

teriors, which each had one mode but were strongly correlated

with variable local correlation structure.

(ii) WHLMC. The idea behind wormhole Lagrangian Monte

Carlo (WHLMC) is that for a multi-modal posterior, a metric

can be defined that dramatically reduces the distance between

modes, and a modified form of the dynamics (2.27) can exploit

this proximity. Full details of the algorithm are highly technical

and are given in the papers that first introduced it [40,41], as

well as in our electronic supplementary material.
3. Results
3.1. Selection of Markov chain Monte Carlo algorithm
Taking the simple likelihood function (2.14) together with

prior distribution uniform ([0, 5] � [0, 3]) we were able to
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run the full set of MCMC algorithms discussed above to

assess their efficiency. Figure 4 shows the results of running

these algorithms.

In terms of the derivative-free algorithms, the low-

dimensional nature of the problem means that the

independence sampler does relatively well. Both of the

random walk and Gibbs samplers are not able to move

efficiently through the region of high posterior density due

to its narrow, curved structure. By contrast, SMMALA is

able to adjust to variations in local posterior structure and

as such provides a series of samples from the posterior that

are much more independent of each other than other

approaches. This is explained by figure 4e,f that visualize

the impact of the geometry in this algorithm.
Figures 2, 3 and 5 also show that the Fisher–Rao metric

and associated geometry generally correctly resolves the dif-

ficulties associated with our highly correlated posterior

distributions for influenza, norovirus and Ebola, allowing

accurate quantification of uncertainty in epidemiological

rates. The question then becomes under what circumstances

the additional computational effort of implementation of

these algorithms is warranted, which has no simple answer

here as in other areas of computational statistics; however,

we note the following points.

First, standard measures of performance such as mini-

mum effective sample size per CPU second [36] often

overstate the effectiveness of inaccurate algorithms for our

models. Figure 4b shows that over iterations 2–3000,
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random walk sampling appears to be well-behaved and

would yield a high ESS despite only being in a small sub-

area of the region of parameter space from which we

would like to sample.

Secondly, if the posterior density is concentrated in a

nonlinear region, derivative-free methods such as Gibbs, inde-

pendence sampling and random walk will have a general

tendency to get ‘stuck’ in sub-areas. This will not be proble-

matic if there are sufficient computational resources available

to perform significant thinning—i.e. removal of MCMC

samples to reduce correlations between those that remain.

Thirdly, computational resources for these algorithms

will almost certainly become overstretched in any of the fol-

lowing three limits: (i) As the dimensionality of parameter

space becomes larger, for example, in our Ebola model.

(ii) In the presence of multi-modality as in our influenza

model. (iii) For extreme cases of unidentifiability, for

example, the s! 0 limit of our SIR model.

Finally, the geometric methods for MCMC that we pre-

sent and employ here are designed to be particularly

well suited to complex nonlinear relationships between
parameters where the derivatives of the log-likelihood and

log-prior are available in an analytically closed form, which

is the case for our models. Despite this we note that there

are many other sophisticated approaches to computationally

intensive Bayesian inference [29] that could be of use due

to their generality.
3.2. Influenza parameters and antiviral treatment
Figure 2 shows the results for our influenza model given

rate-0.1 exponential priors on each parameter (chosen not to

influence the posterior significantly but to ensure that the

small number of data points does not become problematic).

This shows that the credible ranges of individual parameters

are close to typical values in the literature—Baguelin et al. [8],

for example, consider scenarios with v [ ½0:5, 10� and

g [ ½0:5, 2:5�.
More importantly, however, the bimodal and highly corre-

lated nature of the posterior distribution means that for some

models of antiviral action it is not possible to make firm pre-

dictions based on parameter values from challenge studies.
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Figure 6a,c,e shows the results of a quarantine-like intervention

that is always effective after a delay, where the relationship

between delay in antiviral administration and epidemic final

size at constant R0 is predictable to within a few percentage

points, although there is much greater uncertainty in the

peak prevalence. Figure 6b,d,f shows an antiviral-like interven-

tion that is only effective if administered during the latent

period, meaning the absolute uncertainty in final size can be

almost 50% and the relative uncertainty in peak prevalence

can amount to a factor of four or more.
3.3. Norovirus parameters and seasonality
Figure 3 shows the results for our norovirus model; given the

large amount of data we use improper priors and see that the

credible ranges of individual norovirus parameters are also

close to typical values in the literature; e.g. Simmons et al.
[13] take v ¼ 1 and g ¼ 0.5.
Figure 7 shows that the impact of this uncertainty (for

other parameter values as given above) is mainly seen in the

height (with peak prevalence differing by a factor of 3 or

more) and timing within the year of seasonal epidemics. For

the chaotic/irregular scenario (figure 7b) however, the overall

epidemic dynamics are subject to significant uncertainty. For-

tunately, conditioned on knowing that epidemics are regular

and annual and with a particular peak, the broad impact of

a vaccine policy can be predicted as shown in figure 7e.
3.4. Ebola parameters and case fatality ratio
Figure 5 shows the results obtained for our Ebola model. The

point estimates and 95% CIs of mean infections period come

out at 5.3[3.3, 7.4] days for low-viraemia cases and 6.8[5.1,

10.1] days for high-viraemia cases, which are reasonable

values [20]. Figure 5a shows that the model produces shed-

ding output that is consistent with the data, and figure 5b



0.5 1.0 1.5 2.00

1

2

3

4

5

6

7

8
×106 ×106

×106

×106

×106

pr
ev

al
en

ce

time (years) time (years)

time (years) time (years)

2 4 6 8 100

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.5 1.0 1.5 2.00

0.5

1.0

1.5

2.0

2.5

3.0

pr
ev

al
en

ce

1 2 3 4 5 60

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

time post-vaccine (years)

pr
ev

al
en

ce

0
–5 0 5 10 15 20 25 30

1

2

3

4

5

6

7

8

(e)

(b)(a)

(c) (d )

Figure 7. Implications of uncertainty in norovirus shedding for long-term temporal behaviour. Deterministic ODE trajectories are shown for 50 different posterior
samples with two randomly chosen ones highlighted in red and blue. (a) R0 ¼ 1.8, TL ¼ 6 months shows regular annual oscillations. (b) R0 ¼ 1.8, TL ¼ 60
months shows irregular/chaotic behaviour. (c) R0 ¼ 4, TL ¼ 6 months shows annual oscillation but not well-defined epidemics. (d ) R0 ¼ 4, TL ¼ 60 months
shows bi-annual oscillation but with variable peak heights. (e) Time series for parameters as in plot (a) given vaccination at birth with 90% efficacy.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160279

11
compares the posterior for the case fatality ratio obtained

from shedding data to the one obtained from known out-

comes of previous outbreaks [42], again suggesting that the

model outcome is reasonable but that uncertainties are

very large.
4. Discussion
In summary, we have shown that it is possible to use

modern Bayesian MCMC methods, based on derivatives of
the log-likelihood and information geometry, to make a full

uncertainty quantification of epidemiological parameters

fitted to human viral shedding data. We have performed

our analysis for two of the most prevalent pathogens: influ-

enza and norovirus, as well as for Ebola, a highly virulent

zoonotic disease.

Shedding data allow disease ‘natural history’ parameters

to be fitted; these usually need to be combined with popu-

lation-level measurements such as the basic reproductive

ratio R0 to specify policy-relevant models fully. Our results

show that the epidemiological consequences of uncertainty
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in natural history parameters can often be highly significant

since these are important for interventions such as reducing

transmission through quarantine or medication, as well as

prediction of long-term disease behaviour and clinical out-

comes. Natural history parameters also strongly affect other

aspects of infectious disease epidemiology such as outbreak

reconstruction and we would expect similarly strong effects

in these contexts.

To make progress, we have had to base our analysis on

simplifying assumptions that we would hope can be relaxed

in future work as the field develops. One example is that the

simple likelihood functions (2.18) and (2.17) assume indepen-

dence that could be extended to include more general

functional relationships, which would be particularly impor-

tant if the methodology were extended to diseases such as

human immunodeficiency virus where there are very differ-

ent time scales involved in passing between compartments

[43]. In such an example, one might wish to consider more

general models, for example, ones in which the progression

between the latent, infectious and removed classes is gov-

erned by more general distributions than those we have

considered here. Provided the Laplace transformations of
the probability density functions for these distributions are

available, then expressions for L and its derivatives with

respect to the parameters can be obtained via the convolution

theorem, although this can result in a computationally inten-

sive likelihood function. Alternatively, it might be possible to

approximate the derivatives since inaccuracies in any such

approximation will lead to algorithmic inefficiency rather

than bias.

An additional assumption we have made is that the

parameters we are not fitting (for example, the basic repro-

ductive ratio R0) are fixed. This is particularly important to

relax if multiple data sources are to be used in a principled

way in infectious disease modelling for public health [2]. In

particular, the measurements at the population level required

to estimate R0 are likely to carry their own uncertainty, which

can be combined with our uncertainty quantification for dis-

ease natural history parameters as the next step towards

systematic evidence synthesis for infectious diseases.
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