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Abstract

Motivation: Regulation of gene expression in prokaryotes involves complex co-regulatory mechan-

isms involving large numbers of transcriptional regulatory proteins and their target genes.

Uncovering these genome-scale interactions constitutes a major bottleneck in systems biology.

Sparse latent factor models, assuming activity of transcription factors (TFs) as unobserved, provide

a biologically interpretable modelling framework, integrating gene expression and genome-wide

binding data, but at the same time pose a hard computational inference problem. Existing probabil-

istic inference methods for such models rely on subjective filtering and suffer from scalability

issues, thus are not well-suited for realistic genome-scale applications.

Results: We present a fast Bayesian sparse factor model, which takes input gene expression and

binding sites data, either from ChIP-seq experiments or motif predictions, and outputs active TF-

gene links as well as latent TF activities. Our method employs an efficient variational Bayes scheme

for model inference enabling its application to large datasets which was not feasible with existing

MCMC-based inference methods for such models. We validate our method on synthetic data

against a similar model in the literature, employing MCMC for inference, and obtain comparable re-

sults with a small fraction of the computational time. We also apply our method to large-scale data

from Mycobacterium tuberculosis involving ChIP-seq data on 113 TFs and matched gene expres-

sion data for 3863 putative target genes. We evaluate our predictions using an independent tran-

scriptomics experiment involving over-expression of TFs.

Availability and implementation: An easy-to-use Jupyter notebook demo of our method with data

is available at https://github.com/zhenwendai/SITAR.

Contact: mudassar.iqbal@manchester.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A typical biological study of cellular response to external stress/stim-

uli or certain knock-outs leads to the measurement of gene expres-

sion patterns of thousands of differentially expressed genes

(Galagan et al., 2013; Nieselt et al., 2010). Furthermore, transcrip-

tion factor binding sites data from literature as well as de novo

computational motif predictions (Gama-Castro et al., 2016; Sierro

et al., 2008; Studholme et al., 2004), in the case of small prokaryotic

genomes, are accessible for many well-studied organisms.

Large-scale ChIP-seq assays, e.g. (Galagan et al., 2013; Minch et al.,

2015) are also available, detailing the genome-wide binding patterns

of specific transcription factor proteins (TFs). A subsequent
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computational and statistical challenge is to integrate these data in

order to obtain a quantitative picture of the underlying regulatory

interactions between TF proteins and target genes. In the last dec-

ade, many statistical methods have been proposed (see Marbach

et al., 2010 for a review) which infer gene regulatory networks by

exploiting correlation patterns in the gene expression data.

However, mRNA expression data alone cannot disentangle the com-

plex wiring of regulatory interactions (Marbach et al., 2012). Other

experimental techniques for elucidation of regulatory interactions

also have limitations, e.g. ChIP-seq experiments do not determine

the effect of TF binding events on target genes and it is difficult to

distinguish direct versus indirect regulatory effects in TF perturb-

ation experiments (Siahpirani and Roy, 2017). It is therefore neces-

sary to integrate different genomic datasets in order to infer context-

specific regulatory networks.

TF proteins may be regulated at the post-transcriptional level

and therefore an important consideration in modelling transcrip-

tional regulation is that measured RNA levels often do not provide a

good proxy for the concentration of active TFs. Bayesian statistical

methods, especially sparse latent factor models (Carvalho et al.,

2008; Iqbal et al., 2012; Pournara and Wernisch, 2007; Sabatti and

James, 2006; Sanguinetti et al., 2006) which are the main focus of

this study, offer a flexible framework for data integration. These

methods treat the regulator activities as latent (unobserved) vari-

ables which can be inferred from the RNA expression levels of their

target genes. Sparse latent factor models also have other biological

applications, e.g. modelling cellular heterogeneity in single-cell

RNA-seq data (Buettner et al., 2015). The core underlying hypoth-

esis in the context of transcriptional regulation is that a large num-

ber of observed gene expression profiles can be explained by the

unobserved activities of a small number of regulatory proteins.

Biologically meaningful prior information on the underlying tran-

scriptional regulatory network (between TFs and genes) can be ob-

tained from computational motif predictions (Li et al., 2002;

Studholme et al., 2004) or large-scale ChIP-seq experiments

(Galagan et al., 2013). Sparse factor models combine the prior net-

work with relevant gene expression data in order to infer the true

underlying regulatory connections driving gene expression in the ex-

periment under study, as well as the activities of the regulators and

the strength of regulatory effects.

Despite the appeal of sparse factor models for biological applica-

tions, inference in these models presents a computational challenge.

Markov Chain Monte Carlo (MCMC) can be used to carry out

model inference (Iqbal et al., 2012; Sabatti and James, 2006) and

has the advantage of quantifying uncertainty in all the inferred par-

ameters. However, MCMC suffers from convergence issues, and be-

comes computationally prohibitive even for a moderate number of

regulators. This lack of scalability hinders the application of sparse

factor models, since a typical biological experiment involves many

dozens of TFs and thousands of genes. As more ChIP-seq and gene

expression data becomes available, efficient methods are therefore

needed to extract biological information from these data.

Here, we present a novel method in the family of sparse factor

models, named SITAR (Sparse latent varIable model of

TrAnscritional Regulation), in which a spike-and-slab prior is used

to induce sparsity in network connections. We propose an efficient

variational inference method by deriving a closed-form variational

lower-bound for our model. This adaptation of the inference scheme

enables us to scale up the inference over much larger datasets than

current methods based on MCMC can cope with. We test our

method on synthetic data against a similar published method which

uses MCMC-based inference. We then apply our method to a large-

scale dataset (Galagan et al., 2013; Minch et al., 2015) from

Mycobacterium tuberculosis (MTB) with ChIP-seq data for 113 TFs

and matched gene expression data for 3863 genes, which include

multiple time series covering hypoxia and over-expression experi-

ments for some TFs. This is one of the largest application of its kind

and the running time for our method for this dataset was about 7 h

on a laptop.

The paper is organized as follows. In Section 2, we describe our

model for integrating binding sites and gene expression data. We de-

scribe the choices of the prior on model parameters and present the

variational inference algorithm and method for recovery of latent

activities. In Section 3 we describe validation results on synthetic data

and results on an application to a large-scale real dataset from MTB.

We report biological validation of our predictions on the MTB data-

set by comparing our inference results to results from an independent

TF over-expression study which was not used for learning the model.

2 Materials and methods

We model gene expression as a weighted sum of TF activities:

eit ¼
PL

j¼1 aijpjt þ �it, where eit represents the expression of gene i in

experiment t, aij is the control strength of TF j on gene i, pjt is a

proxy for the concentration of active form of TF j in experiment t

and �it accounts for measurement errors and biological variation. In

matrix notation the model is formulated as

E ¼ APþ �; (1)

where E 2 R
N�M; A 2 R

N�L; P 2 R
L�M, N is the number of genes,

M is the number of experiments and L is the number of TFs. Both

the control strength of TFs, A, and the concentration of active TFs,

P, are unknown. By assuming that the noise � follows an i.i.d.

Gaussian distribution, we can define the distribution of the expres-

sion data E as

pðEjA; PÞ ¼
YM
t¼1

NðEtjAPt; r
2IÞ; (2)

where Et and Pt indicates the tth column of E and P, and r2 is the

variance of Gaussian noise.

We define a unit variance Gaussian prior on the elements of P,

i.e. pðPtÞ ¼ N ðPtj0; IÞ, and marginalize out P from Equation (2):

pðEjAÞ ¼
YM
t¼1

NðEtj0;AA> þ r2IÞ: (3)

Only a small subset of genes are controlled by individual TFs due

to biological constraints and therefore A is known to be sparse. To

keep inference tractable we introduce some hard constraints on the

allowed connections through a binary connectivity matrix X 2 R
N�L

which is obtained from motif analysis or ChIP-seq data (as explained

in Section 3). Entry xij ¼ 0 indicates that TF j cannot control gene i,

i.e. aij ¼ 0. However, even if a connection is allowed by the connectiv-

ity matrix it may not be active, e.g. when xij ¼ 1 then TF j does not

necessarily control the corresponding gene i. To model this we intro-

duce a latent binary variable for each pair of TF and gene, S 2 R
N�L,

which control the connections between TFs and genes. The probabil-

ity distribution of the expression matrix is modified to be:

pðEjA; SÞ ¼
YM
t¼1

NðEtj0; ðA � SÞðA � SÞ> þ r2IÞ; (4)

where A � S indicates the element-wise multiplication between A

and S. We incorporate the information of the connectivity matrix
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into the prior distribution of these binary variables. For the entries

of S with xij ¼ 0, we set pðsijÞ ¼ 1� sij. For xij ¼ 1, we assume sij

has a prior probability pj, pðsijjpjÞ ¼ p
sij

j ð1� pjÞ1�sij , and pj follows a

beta prior pðpjÞ ¼ Betað2; 2Þ. Finally, with a unit Gaussian prior dis-

tribution for A; pðaijÞ ¼ N ðaijj0;1Þ, the marginal likelihood distri-

bution for our model is

pðEÞ ¼
ð

pðEjA; SÞpðAÞpðSjpÞpðpÞdAdSdp: (5)

Given expression data E, we can then write the posterior distri-

bution of the regulatory interactions using Bayes rule:

pðA; SjEÞ ¼
Ð

pðEjA; SÞpðAÞpðSjpÞpðpÞdp
pðEÞ : (6)

From this, we can estimate A and S by computing their expect-

ions hAipðA;SjEÞ and hSipðA;SjEÞ, and the posterior also provides cred-

ible regions for these estimates.

2.1 Variational inference
As mentioned above, our aim is to infer the posterior distribution of

the regulatory network S, the control strength A and the activity

profiles of transcription factors P by observing gene expression data

E. Unfortunately, exact inference of the posterior is infeasible due to

the intractable integral in Equation (5). Sampling-based approaches

such as Markov Chain Monte Carlo (MCMC) have been developed

(Iqbal et al., 2012) but are very time-consuming and prohibitively

slow for large-scale datasets, e.g. thousands of genes and hundreds

of TFs. In this work, we propose an efficient inference algorithm

based on a variational approximation which reduces the computa-

tional run-time for large datasets from weeks to hours.

Variational inference avoids the evaluation of the intractable

marginal likelihood by optimizing parametric posterior distributions

with respect to a lower bound of the log marginal likelihood. We as-

sume a variational posterior distribution qðA; S; pÞ and derive a

lower bound such as

log pðEÞ �
ð

qðA; S;pÞ log
pðEjA; SÞpðAÞpðSjpÞpðpÞ

qðA; S; pÞ dAdSdp: (7)

For our model, the standard mean-field approximation qðA; S; pÞ
¼ qðAÞqðSÞqðpÞ is still intractable due to the covariance matrix inver-

sion in Equation (4). In this paper, we exploit the fact that our model

can be viewed as a Gaussian Process latent variable model (Lawrence,

2005) with a linear kernel and a spike-and-slab prior. This enables us

to adopt the sparse Gaussian Process formulation (Titsias, 2009;

Titsias and Lawrence, 2010) for our model. We first rewrite our likeli-

hood expression (4) in the form of a Gaussian Process (GP):

pðEjFÞ ¼
YM
t¼1

Nðetjft; r
2IÞ; (8)

pðftjA; SÞ ¼ N ðftj0;Kff Þ; (9)

where F is the noise-free observation of the gene expression data E and

Kff is the covariance matrix of F computed according to our model,

i.e. Kff ¼ ðA � SÞðA � SÞ>. The sparse GP approximation introduces an

auxiliary latent variable U 2 R
L�L with a corresponding inducing in-

put I 2 R
L�L (I is an identity matrix.) This allows us to reformulate the

prior distribution of F in terms of the auxiliary variable:

pðftjut;A; SÞ ¼ NðftjKfuK�1
uu ut;Kff � KfuK�1

uu K>fuÞ; (10)

pðutÞ ¼ N ðutj0;KuuÞ; (11)

where the conditional distribution (10) is derived through GP infer-

ence and Kuu and Kfu are the covariance matrices, i.e. Kuu ¼ XX>

and Kfu ¼ ðA � SÞX>. Note that marginalizing out the auxiliary

variable U in Equations (10) and (11) returns the original distribu-

tion of F in Equation (9). Following the sparse GP formulation,

we define the variational posterior distribution as qðF;U;A; S;pÞ
¼ pðFjU;A; SÞqðUÞqðA; SÞqðpÞ and obtain a lower bound of the mar-

ginal likelihood:

L ¼ F � KLðqðUÞ jj pðUÞÞ � KLðqðA; SÞqðpÞ jj pðAÞpðSjpÞpðpÞÞ;
(12)

where F ¼ h log pðEjF;U;A; SÞipðFjU;A;SÞqðA;SÞqðUÞ. Since A and S are

often strongly correlated in the posterior distribution, their vari-

ational posterior is defined as a conditional distribution,

qðSÞ ¼
YN
i¼1

YL
j¼1

c
sij

ij ð1� cijÞð1�sijÞ;

qðaijjsij ¼ 1Þ ¼ N ðaijjlij; cijÞ; (13)

where cij is the posterior probability of TF j controlling the gene i

and lij and cij are the posterior mean and variance of the control

strength. Note that the distribution qðaijjsij ¼ 0Þ is not defined expli-

citly, because, as the switch variable is zero, the control strength

does not influence the likelihood anymore, so that qðaijjsij ¼ 0Þ will

only appear inside the KL divergence, which makes it always equal

to the prior distribution pðAÞ. With the above posterior distribution

of qðA; SÞ, the first expectation in Equation (12) can be solved

analytically.

h log pðEjF;U;A; SÞipðFjU;A;SÞqðUÞqðA;SÞ ¼ �
NM

2
log 2pr2

� 1

2r2

DXM
t¼1

u>t K�1
uu W2K�1

uu ut

E
qðUÞ

þ
XM
t¼1

1

r2
eT

t W1K�1
uu hutiqðUÞ �

1

2r2

XM
t¼1

e>t et

� M

2r2
w0 þ

M

2r2
TrðK�1

uu W2Þ

(14)

where w0, W1 and W2 denote the expectation of the covariance

matrices w.r.t. qðA; SÞ, i.e. w0 ¼ TrðhKff iqðA;SÞÞ; W1 ¼ hKfuiqðA;SÞ;
W2 ¼ hK>fuKfuiqðA;SÞ. For the linear kernel used in this paper, w0, W1

and W2 can be derived analytically (we call them psi-statistics) as:

w0 ¼
XN
i¼1

XL

j¼1

cijðl2
ij þ cijÞ; (15)

ðW1Þid ¼
XL

j¼1

cijxdjlij; (16)

ðW2Þdd0 ¼
XN
i¼1

XL

j¼1

cijzdjzd0 jðl2
ij þ cijÞ þ

XL

j¼1

X
j0 6¼j

cijcij0zdjzd0 j0lijlij0

 !
:

(17)

The optimal distribution of qðUÞ can be derived analytically

from Equation (12) by setting its derivative to be zero:

qðutÞ ¼ N ðutjKuuðKuu þW2Þ�1WT
1 et;KuuðKuu þW2Þ�1KuuÞ: (18)

By substituting the optimal variational distribution of qðUÞ, the

variational lower bound can be formulated in closed form which en-

ables us to perform inference efficiently by optimizing the model
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parameters and variational parameters with respect to the closed-

form lower bound.

2.2 Recovering the activities of TFs
Using the lower bound of the log-marginal likelihood derived in the

previous subsection, we can efficiently infer the posterior distribu-

tion of the connectivity qðSÞ and the control strength if the link is

connected qðaijjsij ¼ 1Þ. Besides these posterior distributions, we are

also interested in the posterior distribution of the latent activity pro-

files of TFs pðPjEÞ. As they are marginalized out in our model, their

posterior distribution can be estimated as:

pðPjEÞ ¼
Ð

pðPjE;A; SÞpðA; SjEÞdAdS

�
Ð

pðPjE;A; SÞqðA; SÞdAdS
(19)

where we approximate the true posterior pðA; SjEÞ by the estimated

variational posterior qðA; SÞ. According to the model definition, we

can derive pðPjE;A; SÞ as:

pðPjE;A; SÞ ¼ pðEjP;A; SÞpðPÞ
pðEjA; SÞ

¼
YM
t¼1

N ptjr2RpðA � SÞ>et;Rp

� � (20)

where Rp ¼ ðr�2ðA � SÞ>ðA � SÞ þ IÞ�1. Due to the matrix inversion

in Rp, the posterior in Equation (19) is not analytically tractable.

However, since we only need to infer it once after optimizing the

variational posterior qðA; SÞ, we numerically estimate the posterior

mean and variance of the activity profiles through Monte Carlo

integration.

3 Results and discussion

3.1 Simulation study
To assess the proposed model, we first generate synthetic data

where the true regulatory network, control strengths and activities

of TFs are known. To mimic a real network, we take a subset of

the connectivity matrix from the real dataset from Iqbal et al.

(2012) which was obtained from motif analysis. The resulting con-

nectivity matrix contains 353 genes and 20 TFs. The control

strength of each interaction and TF activities are sampled from a

unit Gaussian. Then 94 gene expression measurements are gener-

ated according to the model with noise variance r2 ¼ 0:1. For this

validation experiment, we relied on this relatively smaller size net-

work, to be able to run MCMC method long enough to ascertain

the convergence and compare the efficiency and accuracy of

SITAR against MCMC given the ground truth. As shown in

Supplementary Figure S1, not all parameters are converged even

after one week‘s run-time.

We apply the proposed model (SITAR) and the existing MCMC

method from Iqbal et al. (2012) to the synthetic data. Both methods

recover the underlying regulatory network with similar accuracy

(93% for SITAR and 92% for MCMC) which is defined as propor-

tion of correctly predicted positive and negative regulatory inter-

actions. TF-gene links were called positive if the corresponding

posterior probability was greater than 0.5, negative othewise. The

latent motif activities are correctly recovered by both methods, as

shown in Figure 2 for MCMC and Figure 1 for SITAR. The control

strength and activity profiles are recovered up to an ambiguity of

their sign. In order to compare with the ground truth, we correct the

sign of the predicted control strength and TF latent activity accord-

ing to the ground truth control strength. The underlying motivation

for this simulation study was to show that given the ground truth

network, SITAR is at least as accurate as the MCMC method. At

the same time, we want to emphasize on the computational effi-

ciency of our method where one single run of the method took about

an hour on a laptop, achieving mean squared error MSE¼0.007 be-

tween the input gene expression data and model prediction, which

was better than the MCMC even after a week-long run (Fig. 2).

Performance of SITAR for synthetic data generated using different

noise variances and varying the number of independent gene expres-

sion datasets was also studied as shown in Supplementary Tables S1

and S2, respectively.

3.2 Application: MTB hypoxia regulatory network
Next, we apply our method to much larger real data from

Mycobacterium tuberculosis (MTB), involving a large-scale ChIP-

seq assay as well as gene expression data measuring response to hyp-

oxia treatment. MTB is known to have a robust hypoxia response

network, involving a large number of TFs, facilitating its clinical la-

tency within the host. Earlier analysis of the ChIP-seq data shows

that MTB has a highly complex regulatory network, more diversi-

fied binding patterns of TFs as compared to previous models of pro-

moter proximal binding, and context-specific occupancy of TF

binding sites (Galagan, 2014). For this study, we downloaded 78

samples of gene expression data from GEO (GSE43466, samples

GSM1084307 to GSM1084384), which included 10 hypoxia-relevant

TF over-expression data, and 68 samples comprising three over-

lapping time-series covering hypoxia. We obtained pre-processed

ChIP-seq data for 113 MTB TFs (through personal communication

with James Galagan, the same data are now publicly available at

http://genome.tbdb.org/annotation/genome/tbdb/Resources.html).

This constituted a prior topology matrix with 113 columns represent-

ing TFs and 3863 rows representing genes with at least one TF con-

nection and for which corresponding expression data was available.

The binary entries of this matrix represent the binding of correspond-

ing TF (column) and gene (row). We combined expression data from

78 individial samples in a matrix for all genes present in prior top-

ology matrix, thus obtaining an expression data matrix with 3863

rows representing genes and 78 columns representing samples. This

matrix was standardized to zero mean and unit variance.

With these many regulators in the model, which is still much less

than the total TFs in MTB, a latent factor model with MCMC-

Fig. 1. The recovered motif activities (blue) by SITAR are compared with

the ground truth activities (red). Their Pearson correlations are shown in the

parentheses. For all subplots, x-axis shows the time and y-axis shows

the normalized activities of corresponding motifs (Color version of this figure

is available at Bioinformatics online.)
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based inference would not be feasible while one run of SITAR was

completed in just 7 h on a laptop with an 8-core intel processor (E5-

2650v2). The results of our methods are shown in Figure 3 where

we show that although the prior TF-gene links were obtained from

high quality ChIP-seq data (unlike computational motif predictions),

there are still large numbers of links for most of the TFs which were

switched off by the model after integration with gene expression

data (from 21 501 prior interactions obtained form ChIP-seq data,

8645 were switched off by the model). Among the original 113 TFs,

there are 14 TFs which were switched off altogether since they have

no significant targets. This confirms the quality of prior data on one

hand, but also the ability of the model to discard the non-functional

links conditional on the gene expression data under use. We also

infer the latent activity of all TFs and in Figure 3 we show clusters of

activities of TFs showing dynamic patterns in response to hypoxia.

Here, we only show the clusters of latent profiles of 99 TFs plotted

for three time-series (68 out of the 78 samples used in the model).

For all TFs, we also show plots comparing recovered latent activity

with gene expression data of corresponding TFs (see Supplementary

Figs S3–S9).

In order to validate our network predictions we used an inde-

pendent large-scale TF over-expression (TFOE) study in (Rustad

et al., 2014; Turkarslan et al., 2015) which was not used to learn

the model. This data resulted from a systematic experiment of over-

expressing 206 MTB TFs in order to quantify regulatory effects of

each transcription factor. We downloaded and extracted the data

(http://networks.systemsbiology.net/) for the TFs and genes in our

prior network. As shown in Figure 4, we report the enrichment of

predicted targets (of given TFs individually) which are showing dif-

ferential expression in corresponding over-expression experiment

(j log2ðFCÞj � 0:5), for example, for a known regulator involved in

hypoxia response (Galagan et al., 2013), RV3133c (DosR), 38% of

its 200 significant targets satisfy the over-expression criteria, against

14% among the 3663 non-targets. Although over-expression criteria

cannot be considered a completely reliable indicator of TF-gene con-

nection due to complex regulatory control, there are still many regu-

lators, e.g. RV0576, RV1846c, RV2557c among others, whose

targets are highly enriched among the differentially expressed genes.

The right-hand panel in Figure 4 shows the correlation of the con-

nection strength of TF-gene links predicted by the model against the

over-expression indicator, i.e. log2FC. Here again, we have a num-

ber of regulators with very strong correlation which is plotted along-

side the random background (calculated by randomly reassigning

TF-gene connections). Among these, we have RV3133c (DosR)

again, with very high correlation, which along with RV0081 are

well-known primary hypoxia response regulators, identified in a

number of studies in the literature (Galagan et al., 2013; Park et al.,

2003). Other known regulators which score highly in this validation

analysis include RV3574, RV0324, RV0757 (PhoP), RV1255c and

RV2034 among others. Besides these known regulators, we also

have few predictions which might be the novel regulators with sig-

nificant role in hypoxia response and which might be worth ana-

lyzing further. These include RV0576 (ArsR family transcriptional

regulator), RV1846c (Blal family transcriptional repressor),

RV0818 (PhoB) and RV2359 (Zur, zinc uptake regulatory protein)

and others as shown in Figure 4.

Furthermore, in order to compare the enrichments shown in

Figure 4, we downloaded a relatively smaller hypoxia regulatory

network (a Cytoscape session file from Galagan et al., 2013) and

performed similar validation analysis using same over-expression

data as with our predicted network. After filtering for matching TFs

and genes in our network and over-expression data, we have a final

network including 39 TFs and 2763 target genes. In Figure 5(a), we

show the enrichment of differential targets of TFs in this published

network, again plotted alongside non-targets (out of total 2763

genes in that network). Overall, the matching TFs in both networks

have similar level of enrichment despite the difference in the number

of targets (since our network has a larger number of targets). Also,

there are more TFs in our data with highest proportion of differen-

tial targets. Lastly, in order to ascertain if our predictions of links

were more enriched in differential targets compared to ChIP-seq

data (prior), in Figure 5(b), we plot the enrichment for 54 TFs

(analyzed earlier in Fig. 4). The majority of predicted TFs are signifi-

cantly enriched compared to the prior network with only a few ex-

ceptions. Overall, this analysis leads us to believe that the model is

making biologically meaningful predictions.

(a) (b)

Fig. 2. Application of MCMC method (Iqbal et al., 2012) to synthetic data, (a) Mean Squared Error (MSE) against the running time for MCMC(single MSE value for

SITAR is shown in red), (b) Recovered motif activities by MCMC (red) are compared with the ground truth activities (blue), Pearson correlations are shown in the

parentheses. For all subplots, x-axis shows the time and y-axis shows the normalized activities of corresponding motifs (Color version of this figure is available at

Bioinformatics online.)
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4 Conclusions

In conclusion, we present a Bayesian sparse factor analysis model

coupled with a highly efficient inference scheme to make quantita-

tive inferences of regulatory networks, including binary TF-gene

interactions as well as latent activities of TFs, using binding sites

and gene expression data in prokaryotic systems. As MCMC is com-

monly used for inference in these specific type of models, we validate

our method against a study with similar modelling scheme for

(a) (b)

Fig. 3. Results of SITAR for MTB data. (a) Number of links (targets) for each TF in the prior network based on ChIP-seq data (blue) and posterior links, as predicted

significant by SITAR. We used >0.5 cut-off on the posterior probability of links to decide if the link is supported or not. (b) Predicted TF activity profiles clustered

into 9 clusters (using K-means method). The shaded area represents the activities of cluster members and red line shows the mean profile of the cluster, while

the cluster number and number of its members are given in the suplot title. Vertical lines in each plot separate three separate hypoxia experiments (time series

SG2, SG6 and SG7 respectively). Out of total 78 samples used in the model, in these plots, we only use 68 samples corresponding to three time-series which are

partly replicated, overall cover day0 to day14 of hypoxia, each of them covering a subset of the days, with some overlap with other time series (for detail of the

experimental design, see GSE43466). The x-axis shows the time (in Days) for experiments for individual time-series, while y-axis shows the normalized, replicate-

averaged, activity of the corresponding TFs

Fig. 4. Validation of our predictions against TF over-expression data from Rustad et al. (2014). The y-axis, showing 54 TFs which have at least 10 significant targets

predicted by our method, is shared among two subplots. For each TF, the left panel shows the proportion of targets with log2 fold change (log2FC) �0.5 (blue for

targets, red for non-targets), while in this data the average ratio of enrichments for targets and non-targets is 3.5. The right panel shows the absolute correlation

of over-expression log2FC against the connection strength predicted by the model, blue for targets while red is the background calculated by randomly permut-

ing the connection strength for the given TF targets, averaged over 100 iterations (Color version of this figure is available at Bioinformatics online.)
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synthetic data where ground truth is known. Our method repro-

duced the network underlying synthetic data with high accuracy but

with much higher efficiency than MCMC-based method. This led us

to apply it to much larger real data on M. tuberculosis which consti-

tute one of the largest application of regulatory network inference.

There is one recent study (Arrieta-Ortiz et al., 2015) where genome-

wide network inference was performed on B. subtilis data of similar

scale, but there are significant differences in the methodology.

Inference was done in an iterative two-step procedure, first TF activ-

ities were estimated directly from known regulatory interactions

using NCA (Liao et al., 2003), which were then used in the predic-

tion of regulatory direction and strength. On the other hand, our ap-

proach is significantly different in the sense that we employ a

probabilistic model providing simultaneous inference of control

strength and latent activities and providing a degree of uncertainty

in our estimates.

We perform further validation of our predictions using inde-

pendent transcriptomics data, compare our predictions against exist-

ing network from literature and make novel predictions about the

role of certain regulators in MTB’s response to hypoxia treatment.

As more and more ChIP-seq and gene expression data becomes

available, we believe our method will be a useful tool to make prac-

tical inference of large-scale networks regulating gene expression in

prokaryotes. Also, since methodology is generic, we can imagine

adaptation of our method for other problems in biology and beyond,

especially in single-cell RNA-seq applications (see Buettner et al.,

2016). Another future direction for our work would be to use a non-

linear kernel in our GP formulation or take into account interactions

among hidden factors (as in Asif and Sanguinetti, 2011).
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Fig. 5. (a) Validation of a smaller MTB network published in Galagan et al. (2013) against the TF over-expression data. We only used TFs which are in our input

network and for which there is OE data. For each TF, we plot the proportion of targets with absolute log2 fold change (log2FC) �0.5 (blue for targets, red for non-

targets in that network). These analysis was further restricted to TF with at least 10 targets. (b) Based on 54 TFs reported in Figure 4, further comparison of our

predictions (blue) with the prior network (red) obtained from ChIP-seq data only. The average ratio of enrichments for targets over non-targets for (a) is 3.2 while

1.25 for (b) (Color version of this figure is available at Bioinformatics online.)
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