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A B S T R A C T

Background: We longitudinally assessed Down syndrome individuals at the age of risk of developing dementia to
measure changes in brain anatomy and their relationship to cognitive impairment progression.
Methods: Forty-two Down syndrome individuals were initially included, of whom 27 (mean age 46.8 years) were
evaluable on the basis of completing the 2-year follow-up and success in obtaining good quality MRI exams.
Voxel-based morphometry was used to estimate regional brain volumes at baseline and follow-up on 3D ana-
tomical images. Longitudinal volume changes for the group and their relationship with change in general
cognitive status and specific cognitive domains were mapped.
Results: As a group, significant volume reduction was identified in the substantia innominata region of the basal
forebrain, hippocampus, lateral temporal cortex and left arcuate fasciculus. Volume reduction in the substantia
innominata and hippocampus was more prominent in individuals whose clinical status changed from cognitively
stable to mild cognitive impairment or dementia during the follow-up. Relevantly, longitudinal memory score
change was specifically associated with volume change in the hippocampus, prospective memory with prefrontal
lobe and verbal comprehension with language-related brain areas.
Conclusions: Results are notably concordant with the well-established anatomical changes signaling the pro-
gression to dementia in Alzheimer's disease, despite the dense baseline pathology that developmentally accu-
mulates in Down syndrome. This commonality supports the potential value of Down syndrome as a genetic
model of Alzheimer's neurodegeneration and may serve to further support the view that Down syndrome patients
are best candidates to benefit from treatment research in Alzheimer's disease.

1. Introduction

Down syndrome (DS) or chromosome 21 trisomy is the most
common genetic cause of intellectual disability (Ballard et al., 2016). In
addition to interference with brain development, aging is also disturbed
in DS with an early presence of neurodegenerative changes (in virtually
all DS individuals aged 40 or over) and clinical dementia in up to 70%
of cases by the age of 60 (Dekker et al., 2015; Wiseman et al., 2015).
The brain in older DS individuals displays many of the neuropatholo-
gical features found in Alzheimer's disease (Head et al., 2016). This
commonality is of capital importance in the research context, as it in-
dicates a direct link between a genetic anomaly and neurodegeneration

that may potentially contribute to elucidating the pathogenesis of
Alzheimer's disease (Wiseman et al., 2015).

Previous neuroimaging research is prominent in indicating that
demented DS patients do indeed show brain alterations in systems with
typical degeneration in Alzheimer's disease (Emerson et al., 1995;
Teipel and Hampel, 2006; RJ1 et al., 2008; Beacher et al., 2009; Powell
et al., 2014; Sabbagh et al., 2015; Rafii et al., 2015; Lin et al., 2016).
Nevertheless, existing cross-sectional studies are still not conclusive in
distinguishing baseline DS dense brain pathology established during
brain development from ongoing degenerative changes when progres-
sing towards dementia. We present a longitudinal study on DS patients
at the age of risk to developing dementia aimed to measure changes in
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brain anatomy and their relationship to cognitive deterioration.

2. Methods

2.1. Participants

Forty-two DS individuals were initially included in the study.
Candidates were recruited from the community via parent organiza-
tions and were selected on the basis of age (40 years old upwards), DS
confirmed by karyotype, capability to understand and follow MRI in-
structions, and also optimal attitude and willingness (participants and
parents) to participate. Individuals with non-stable medical conditions
were not considered eligible. Eight participants were excluded due to
head motion during baseline MRI, 3 participants were lost in the follow-
up period (follow-up cognitive testing was obtained, but they refused to
be re-scanned) and 4 more were ruled out due to head motion during
follow-up MRI exams. No subject was excluded on the basis of test
performance. The final evaluable sample for MRI analysis included 27
DS individuals (15 females, 12 males) with genotype-confirmed trisomy
21 and a mean ± SD age of 46.8 ± 5.6 years, range 40–63 years
(Table 1). The included (n=27) and excluded (n=15) participant
subgroups did not significantly differ in terms of age, sex distribution,
performance IQ and study-specific neuropsychological testing.

Our study was conducted in accordance with The Code of Ethics of
the World Medical Association (Declaration of Helsinki). The study
protocol was approved by the Clinical Research Ethical Committee of
the Parc de Salut Mar (Barcelona). Written informed consent was ob-
tained from parents. Verbal or written assent was additionally obtained

from Down syndrome individuals.

2.2. Clinical assessment

Each participant underwent comprehensive medical, neurological
and psychiatric evaluations and subsequent tailored neuropsycholo-
gical testing to clinically establish (or rule out) the diagnoses of mild
cognitive impairment (MCI) and dementia in terms of cognitive dete-
rioration overlapping with developmental cognitive deficits associated
with DS. The diagnosis of MCI and dementia was based on expert
clinical judgement as is recommended in DS (Sheehan et al., 2015;
Krinsky-McHale and Silverman, 2013; Fenoll et al., 2017). Operatively,
a diagnosis of MCI was established on the basis of (i) a report of cog-
nitive impairment by the patient (confirmed by a reliable informant) or
by a reliable informant implying a change from previous capacities and
(ii) no clinically relevant deterioration in adaptive skills and general
cognition. The diagnosis of dementia was established when the patient
met MCI criteria (i) and showed a perceptible deterioration in adaptive
skills associated with memory impairment and at least one of the fol-
lowing disorders: aphasia, apraxia, agnosia or disturbance in executive
functioning. At baseline, 2 DS individuals met MCI criteria and none for
dementia.

2.3. Specific neuropsychological testing

To establish the correlation between regional brain volume changes
over time and cognitive decline, one neuropsychological test was se-
lected for each major Alzheimer's disease domain: memory impairment,
aphasia, apraxia, agnosia and disturbance in executive functioning.

2.3.1. Memory
A version of the Rey Auditory-Verbal Learning Test (Geffen et al.,

1990) adapted for people with intellectual disability (Esteba-Castillo
et al., 2017) was used. The test measures learning, delayed recall and
recognition. Only performance on learning was used. Participants were
read a list of 12 words and were asked to evoke as many words as they
could remember. The same list was repeated over five trials. Word-list
learning over trials was measured as the sum of recalled words in trials
1 to 5.

2.3.2. Verbal comprehension-verbal abstract reasoning
This test combines an adapted version of the conventional “simila-

rities” subtest (4 items) used in many intelligence batteries (participants
are given two words or concepts and have to describe how they are
similar) with comprehension of verbal sentences (5 items) reflecting
different social situations (Esteba-Castillo et al., 2017). Each response
was rated as 0 (incorrect), 1 (partial) or 2 (correct) with total maximum
score of 18.

2.3.3. 3D block construction
As a measurement of constructional apraxia, we used a variation of

the cubes subtest of the Developmental Neuropsychological
Assessment-NEPSY battery (Korkman et al., 1998) adapted for people
with intellectual disability (Esteba-Castillo et al., 2017). The partici-
pants used hand movements to construct 3D block patterns with me-
thacrylate cubes to match a model. A total of 10 models were con-
secutively presented and 1 point was given for each correct
construction (maximum score= 10).

2.3.4. Object recognition
The recognition of objects (unusual views) subtest of the Cambridge

Examination for Mental Disorders of Older People with Down's
Syndrome and Others with Intellectual Disabilities-CAMDEX-DS (Ball
et al., 2006), validated for the Spanish population, was used (Esteba-
Castillo et al., 2013). The test involves the recognition of objects (6
items) on images taken from unusual angles. The number of correct

Table 1
Characteristics of study participants and cognitive testing.

Primary sample
(n=42)

Final sample
(n=27)

Age (mean, SD years) 46.0 (5.3) 46.8 (5.6)
Gender (male/female) 21/21 12/15
Medical background (%)
Cardiovascular 28.6% 37.0%
Respiratory 11.9% 11.1%
Metabolic/Endocrine 57.1% 48.1%
Ophthalmological 71.4% 70.4%
Otorhinolaryngological 4.8% 7.4%

Disability levels (%)DSM-IV-TR

Mild 33.3% 29.6%
Moderate 66.7% 70.4%
Severe 0% 0%
Profound 0% 0%

Performance IQ, K-BIT (mean, SD)a 59.3 (9.2) 60.7 (9.0)
Knowledge (%)
Illiterate 33.3% 29.6%
Read/Write 66.7% 70.4%

Primary sample (n= 42) Final sample (n=27)

Cognitive testing (mean (SD)
range)

Baseline Follow-up Baseline Follow-up

Memory-Word List Learning 24.3 (7.7)
8–42

25.8 (8.8)
9–45

25.7 (7.2)
13–42

25.8 (8.5)
9–42

Verbal Comprehension 8.9 (2.4)
2–12

9.2 (2.4)
0–12

9.0 (2.6)
2–12

9.2 (2.0)
3–12

Block Construction 6.2 (2.3)
3–10

5.2 (1.9)⁎

2–8
6.1 (2.3)
3–10

5.2 (1.9)⁎

2–8
Object Recognition 3.3 (1.5)

1–6
3.8 (1.3)
2–6

3.2 (1.3)
1–6

3.8 (1.2)
2–6

Prospective Memory 3.0 (1.4)
0–6

2.6 (1.9)
0–6

3.2 (1.4)
0–6

2.7 (1.7)
0–6

SD, standard deviation.
a K-BIT, Kaufman Brief Intelligence Test (2nd edition); matrices test.
⁎ Significant score reduction at p < 0.01.
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answers was duly registered.

2.3.5. Prospective memory
This task requires the interaction of executive and mnemonic

components to remember intentions. We used two prospective memory
items from the Rivermead Behavioral Memory Test (RBMT) (Wilson
et al., 1985) adapted for people with intellectual disability (Esteba-
Castillo et al., 2017). In the first situation, the participant had to re-
member (following a 20-min interference) to ask for his or her next
appointment when cued by the explorer. In the second situation, the
participant, upon cueing, was required to ask for a previously hidden
object. Scores were lower when the number of given cues in each si-
tuation were higher (i.e., higher scores indicated better performance).
The sum of scores from both situations was used to indicate the overall
test performance.

2.4. MRI acquisition

A 1.5-Tesla Signa Excite system (General Electric, Milwaukee, WI)
equipped with an eight-channel phased array head coil and single-shot
echoplanar imaging (EPI) software was used. High-resolution 3D ana-
tomical images were obtained using an axial T1-weighted three-di-
mensional fast spoiled gradient inversion recovery prepared sequence.
A total of 134 contiguous slices were acquired with inversion time
400ms, repetition time 11.9 ms, echo time 4.2ms, flip angle 15°, field
of view 30 cm, 256×256 pixel matrix, and slice thickness 1.2mm.
Each participant was assigned an MRI practice session with a specifi-
cally designed mock scanner to allow for habituation and minimize the
probability of head motion during actual MRI sessions.

2.5. Image pre-processing

All the anatomical images were visually inspected prior to analysis
by a trained operator to detect artefacts and motion effect. Eight par-
ticipants were discarded at baseline and 4 at follow-up as a result of
poor image quality. Gray and white matter tissue volumes were esti-
mated at a voxel level using Statistical Parametric Mapping (SPM). SPM
voxel-based morphometry (VBM) DARTEL algorithms were used with
the following processing steps: segmentation of anatomical images into
gray and white matter tissue probability maps in their native space;
estimation of the deformations that best align the images together by
iteratively registering the segmented images with their average; and,
finally, the generation of spatially normalized and smoothed segmen-
tations (10x10x10 mm FWHM) using the deformations estimated in the
previous step. The analyses were performed with scaling by Jacobian
determinants (estimates of volume change during normalization) to
consider tissue volume. Normalized images were finally transformed to
the standard SPM template, resliced to 1.5mm resolution in Montreal
Neurological Institute (MNI) space. In addition, the VBM tool allowed
us to obtain global measurements (in ml) for gray matter, white matter
and global CSF spaces in each participant.

2.6. Image analysis

As in a previous longitudinal assessment of brain volume changes
over time (Soriano-Mas et al., 2011), we generated difference images
(baseline voxel values minus follow-up voxel values) for both gray
matter and white matter segments that served to map regional volume
change in the whole sample (using one-sample t-test) and to compare
the degree of anatomical change between individuals with and without
cognitive deterioration during follow-up (using two-sample t-test). In
addition, we estimated voxel-wise the correlations between volumetric
longitudinal changes (i.e., the generated difference images) and cog-
nitive longitudinal changes (baseline cognitive scores minus follow-up
cognitive scores) using linear regression in SPM. Paired t-test was used
to assess group mean differences between baseline and follow-up for

global brain volumes (gray matter segment plus white matter segment)
and CSF spaces.

Results were considered significant with clusters of 1701ml
(504 voxels) at a height threshold of p < 0.005, which satisfied the
FWE (family wise error) rate correction of PFWE < 0.05 according to
Monte Carlo simulations. Results below this threshold are also reported
(FWE small volume corrected) for the hippocampus, which is a primary
interest anatomical structure with a narrow section diameter.

3. Results

3.1. Behavioral results

The study follow-up had a mean duration of 23months (SD,
2months). The clinical status of five participants changed from cogni-
tively stable to MCI and 2 more from cognitively stable to dementia.
Therefore, 26% of cases (n=7) in our sample showed clinical evidence
of cognitive impairment progression in a period of approximately
2 years. In the whole group, score change for the selected cognitive tests
was not significant, except for constructional apraxia assessment with
Block Construction (Table 1).

3.2. Imaging results

Global brain volumes were measured to assess potential changes
indicating a general effect over time on brain tissue. The brain volume
at baseline in the follow-up sample was (mean ± SD) 995 ± 88ml
and the CSF space volume 267 ± 49ml. No significant change was
identified for these measurements after the follow-up. At the end of the
study, the mean brain volume was 1000 ± 81ml (paired t=0.6;
p=0.548) and the mean CSF volume 269 ± 44ml (paired t=0.3;
p=0.772). Such an absence of general effects confers more anatomical
specificity to the findings obtained in the regional analysis below.

In the regional (VBM) analysis, significant gray matter volume re-
duction over time in the whole DS sample was identified in a region
located at the basal forebrain and ventral aspect of the basal ganglia
involving the substantia innominata, in the right orbitofrontal cortex
and in the lateral aspect of the right temporal lobe (Fig. 1 and Table 2).
Changes in the homologous temporal lobe region in the left hemisphere
were not significant, although volume reduction was present at a lower
cluster size threshold (Table 2). Significant white matter volume re-
duction was identified in a region implicating the right hippocampus
and in the left arcuate fasciculus (Fig. 1 and Table 2).

DS individuals with cognitive impairment progression showed sig-
nificant gray matter volume reduction compared with the remaining
sample also in the region of the substantia innominata, and in the left
hippocampus (Fig. 2 and Table 2). Albeit less extensive, volume re-
duction in the substantia innominata region notably overlapped with
changes in the whole sample. Fig. 1 shows a box-plot of volume re-
duction in individuals with and without cognitive impairment pro-
gression at the brain coordinate showing the largest (peak) volume
reduction in the whole sample.

In the analysis of correlations between anatomical and cognitive
longitudinal change, the following results were observed: a correlation
between memory score reduction and gray matter volume reduction in
a small portion of the left hippocampus and amygdala. A correlation
between verbal comprehension score reduction and gray matter volume
reduction within the Wernicke area (and related auditory cortex) and
volume reduction in part of the left arcuate fasciculus. A correlation
between prospective memory score reduction and both gray and white
matter volume reduction in an extensive portion of the prefrontal lobe
bilaterally, bilateral gray matter volume reduction in the paracentral
lobule, and bilateral white matter volume reduction involving the in-
ferior temporal cortex and the hippocampus (Fig. 3 and Table 2).

All these associations were observed in the expected positive di-
rection (i.e., tissue volume reduction in parallel with cognitive score
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reduction). In addition, the analysis generated two results in the op-
posite direction involving a negative correlation between memory score
change and volume change in the right thalamus, and between object
recognition score change and volume change in white matter adjacent

to the left caudate nucleus (Table 2). Finally, all the analyses were re-
peated adjusting by sex. We found no relevant sex effects (Table 2).

Fig. 1. Significant gray matter (top images) and white matter (bottom images) volume reduction over time in the whole DS sample. The box-plot corresponds to volume reduction
(arbitrary units) for individuals with and without changes in their cognitive status at the brain coordinates showing the highest (peak) volume reduction in the whole sample. The right
side of coronal views corresponds to the right hemisphere. The sagittal images correspond to the right (top) and left (bottom) hemispheres.

Table 2
Regional brain volume change and correlation with change in cognitive scores.

Number of voxels (ml) x y z t ta

Adj. sex

Volume reduction
Whole sample

Substantia Innominata Region (gray matter) 2358 (8.0) 1.5 0–10.5 5.9 5.9
R Lateral Temporal Cortex (gray matter) 573 (1.9) 49.5–18 −10.5 4.3 4.2
L Lateral Temporal Cortex (gray matter) 316 (1.1)b −63 −18 −6 4.0 3.9
R Orbitofrontal Cortex (gray matter) 550 (1.9) 19.5 37.5–21 5.4 5.3
R Hippocampus Region (white matter) 1375 (4.6) 27–33 −6 5.0 4.9
L Arcuate Fasciculus (white matter) 1314 (4.4) −43.5 30–7.5 5.8 5.8

Volume reduction
Cognitive impairment progression group > remaining sample

Substantia Innominata Region (gray matter) 907 (3.1) 0 1.5–10.5 4.8 5.1
L Hippocampus (gray matter) 365 (1.2) −30− 25.5 −13.5 4.1 4.1

Correlation between change in volume and change in cognitive score
Memory-Word List Learning
L Hippocampus-Amygdala (gray matter) 444 (1.5) −25.5 −25.5 −10.5 3.9 3.5
R Thalamus (gray matter) 665 (2.4) 10.5–16.5 1.5 −4.2 −3.9

Verbal Comprehension
L Wernicke Area (gray matter) 759 (2.6) −49.5 −15 −10.5 4.0 4.0
L Arcuate Fasciculus (white matter) 1402 (4.7) −36 0 30 4.0 3.5

Object Recognition
L Caudate Nucleus (adjacent white matter) 1591 (5.4) −12 18 1.5 −4.7 −4.4

Executive Function-Prospective Memory
L Prefrontal (gray matter) 6578 (22.2) −25.5 6 37.5 5.3 5.2
R Prefrontal (gray matter) 2773 (9.4) 39 49.5 22.5 4.3 4.2
Paracentral Lobule (gray matter) 4850 (16.4) 12–15 70.5 4.5 4.4
L Prefrontal (white matter) 5154 (17.4) −19.5 16.5 24 6.5 6.3
R Prefrontal (white matter) 6478 (21.9) 24 31.5 18 6.9 7.1
L Inferior Temp/Hippocampus (white matter) 1019 (3.4) −28.5 −18 −13.5 3.8 3.7
R Inferior Temp/Hippocampus (white matter) 2079 (7.0) 39–28.5 −21 3.9 3.9

x y z, coordinates (mm) given in Montreal Neurological Institute (MNI) space. Statistics at corrected threshold PFWE < 0.05 estimated using Monte Carlo simulations.
a Adjusted by sex.
b Subthreshold.
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4. Discussion

Despite challenges inherent to longitudinal assessments particularly
in individuals with a degree of intellectual disability, our study shows
that the identification of brain anatomical changes preceding dementia
in DS is feasible. Significant volume reduction after two years was
identified in the substantia innominata region of the basal forebrain,
the hippocampus, the lateral temporal cortex and the left arcuate fas-
ciculus. Volume reduction in the substantia innominata and hippo-
campus was more prominent in the individuals showing variation in
their general cognitive status during this period. Score change in dif-
ferent cognitive domains correlated with anatomical changes in specific
brain systems. Of relevance were the associations of longitudinal
change in the domain of memory with hippocampus, prospective
memory with the prefrontal lobe and verbal comprehension with lan-
guage-related brain areas.

Neurons of the cholinergic basal forebrain show neurofibrillary
tangles in the earliest and presymptomatic stages of Alzheimer's disease
(Theofilas et al., 2015; Mesulam et al., 2004; Mesulam, 2013), and both
neurofibrillary tangle accumulation and neuronal loss are parallel to
cognitive decline (Mesulam et al., 2004; Liu et al., 2015). The nucleus
basalis of Meynert is the major element of the cholinergic complex lo-
cated in the region of the substantia innominata below the anterior
commissure and basal ganglia (Liu et al., 2015). In young people with
DS, the nucleus basalis contains fewer neurons than in controls and the
difference may accentuate in older individuals (Casanova et al., 1985;
Mann et al., 1984) with combined developmental and degenerative
changes. In our study, we have established a direct link between basal
forebrain volume reduction and cognitive decline in the early stages of
dementia in DS. Thus, basal forebrain degeneration would also seem to
be an optimal marker of progression to dementia in DS.

Hippocampal volumetry is one of the most validated, accessible and
widely used biomarkers in Alzheimer's disease, capable to reliably
predicting time-to-progression from mild cognitive impairment to
Alzheimer's dementia (Mak et al., 2017; Jack et al., 2010). In cross-
sectional studies, the hippocampus volume is consistently smaller in

young DS individuals compared with control subjects. However, vo-
lume alteration again is more important in older and demented in-
dividuals superimposed on developmental deficiency (Teipel and
Hampel, 2006; Beacher et al., 2009; Aylward et al., 1999; Krasuski
et al., 2002). Our results indicate that longitudinal assessment of hip-
pocampal volume in DS may sufficiently distinguish the degenerative
component from baseline alterations. We are aware of only one long-
itudinal assessment of brain volumetry published in DS, which precisely
focused on the hippocampus. In the follow-up study by Aylward et al.
(1999), changes in hippocampus volume over time were not statisti-
cally significant for either demented (n=6) or non-demented (n=13)
DS subjects probably due to the small sample size.

A set of neocortical areas with relevant vulnerability to Alzheimer's
disease neuropathology have collectively been called the cortical sig-
nature of the disease based on the fact that cortical thinning relates to
symptom severity in the earliest stages (Dickerson et al., 2009) and
during clinical progression (Verfaillie et al., 2016), and may even be
detectable in asymptomatic individuals approximately a decade prior to
dementia (Dickerson et al., 2011). All in all, the main elements of the
cortical Alzheimer's disease signature were the superior prefrontal, in-
ferior parietal and anterior temporal cortices. Previous research has
shown that individuals with DS have a significantly greater age-related
reduction in volume compared with normal control subjects in regions
broadly corresponding to the vulnerable Alzheimer's disease cortical
signature with a particularly large effect in the prefrontal cortex
(Beacher et al., 2010). Our study shows a significant association be-
tween longitudinal volume change in an extensive portion of the su-
perior aspect of the prefrontal lobe and prospective memory score
change.

Prospective memory is a relatively complex task requiring the in-
teraction of mnemonic and executive components to remember inten-
tions after delay and interference. Neuroimaging studies in normal
subjects have shown a consistent activation of the prefrontal lobe
during prospective memory paradigms (Burgess et al., 2011). Our re-
sults suggest that prospective memory could reflect the functional
status of the prefrontal lobe during the progression to dementia in DS,
despite being one of the most developmentally affected brain structures
(Fenoll et al., 2017; Pujol et al., 2015). Longitudinal behavioral studies
also support the view that frontal lobe symptoms, in the form of dis-
turbance in executive functioning, are early signs of dementia in DS
(reviewed in Dekker et al., 2015).

All in all, cognitive score changes in the selected tests were small.
The selection of relatively highly performing individuals may partially
explain this event, probably added to some retest effects. Nevertheless,
the correlations between cognitive score change and regional volume
change showed notable neural system specificity. The only apparently
non-consistent findings in our study were the negative correlations
between volume change in the thalamus and memory score change, and
between the white matter adjacent to the left caudate nucleus and
object recognition. We consider that they may correspond to spurious
associations, but, paradoxically, larger (Fortea et al., 2010) or relatively
preserved (Benzinger et al., 2013) caudate nucleus volumes were also
identified in mutation carriers in familial AD prior to dementia.

One challenge in MRI studies in populations with intellectual dis-
ability is to avoid excessive head motion during the acquisition. In this
sample we used MRI practice sessions with a specifically designed mock
scanner to minimize the problem. In addition, we decided to exclude
cases with detectable image degradation, as no correction procedure is
wholly efficient once the images have been acquired. Although accurate
control of head motion effects may be a strength of the study, partici-
pant selection is also a limitation. In this context, our findings cannot
generalize to all individuals with DS and conclusions should be limited
to individuals with no severe or profound disability (Table 1). It is also
relevant to note that our sample does not optimally represent the pre-
valence of dementia and MCI in the assessed age range (40 years old
upwards). Both the selection of relatively highly performing individuals

Fig. 2. Regions showing significant gray matter volume reduction in DS individuals with
clinical evidence of cognitive impairment progression compared with the remaining
sample. The right side of coronal views corresponds to the right hemisphere.
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and the loss of participants entail a degree of limitation for the use of
MRI to monitor Down syndrome individuals in clinical practice and
clinical trials. A final limitation relates to using a 1.5-T system, as op-
posed to a 3-T system with higher MRI signal.

In conclusion, volume changes identified in our longitudinal as-
sessment and their associations with cognitive impairment progression
are, in general, notably consistent with well-established anatomical
changes signaling the progression to dementia in Alzheimer's disease.
Thus, brain involution in the older DS individuals would seem to re-
semble the degenerative process of Alzheimer's disease, despite the fact
that it occurs in a complex situation with dense baseline pathology and
a high potential for interactions between developmental and age-asso-
ciated changes. Brain systems affected early in Alzheimer's disease such
as the basal forebrain, hippocampus and the prefrontal lobe were se-
lectively affected in DS preceding dementia in our study. Finally, we
would also emphasize the bidirectional implications of our findings, by
supporting both the potential value of DS as a genetic model of
Alzheimer's neurodegeneration and the view that patients at risk of
developing dementia in DS are best candidates to benefit from treat-
ment research in Alzheimer's disease.
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