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ABSTRACT 

 
Sequence-specific interactions of transcription factors (TFs) with genomic DNA underlie many cellular 
processes. High-throughput in vitro binding assays coupled with computational analysis have made it 
possible to accurately define such sequence recognition in a biophysically interpretable yet mechanism-
agonistic way for individual TFs. The fact that such sequence-to-affinity models are now available for 
hundreds of TFs provides new avenues for predicting how the DNA binding specificity of a TF changes 
when its protein sequence is mutated. To this end, we developed an analytical framework based on a 
tetrahedron embedding that can be applied at the level of a given structural TF family. Using bHLH as 
a test case, we demonstrate that we can systematically map dependencies between the protein sequence 
of a TF and base preference within the DNA binding site. We also develop a regression approach to 
predict the quantitative energetic impact of mutations in the DNA binding domain of a TF on its DNA 
binding specificity, and perform SELEX-seq assays on mutated TFs to experimentally validate our 
results. Our results point to the feasibility of predicting the functional impact of disease mutations and 
allelic variation in the cell-wide TF repertoire by leveraging high-quality functional information across 
sets of homologous wild-type proteins. 
 

SIGNIFICANCE STATEMENT 
 

Transcription factors (TFs) are DNA binding proteins that play a key role in gene expression control. 
Genetic mutations in the protein sequence of TFs are increasingly found to be associated with disease. 
Being able to predict the functional impact of such mutations in terms the quantitative changes in DNA 
sequence preference they cause is therefore highly useful. TFs come in families that are structurally 
similar but vary in terms of their sequence and function. In this study, we show that by jointly analyzing 
high-throughput DNA binding data for the basic helix-loop-helix (bHLH) family of transcription factors, 
we can successfully build a model that predicts the impact of TF protein sequence mutations. 
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INTRODUCTION 
 
Gene expression regulation is a central aspect of cellular function that is especially important during 
cell differentiation and stress response, and in which transcription factors (TFs) play a critical role. The 
DNA binding domain of TFs enables them to perform their regulatory functions by recognizing and 
binding to specific DNA sequences (1). TF binding sites typically reside either in proximal promoter 
regions near transcription start sites or in more remote enhancer regions. They allow TFs to regulate 
gene expression by recruiting or inhibiting associated proteins (2). Since the range of TF binding affinity 
(typically represented by a dissociation constant (KD), which equals the TF concentration at which the 
DNA is bound 50% of the time) covers many orders of magnitude between optimal and non-specific 
binding, even ultra-weak binding sites can be functionally relevant (3-6), and it is therefore of great 
value to be able to predict binding affinity of any DNA sequence over its full range (7). 
 
Previous studies have provided evidence that mutations in TFs are responsible for numerous common 
developmental disorders. For example, anophthalmia has been linked to mutations in SOX2 (8), while 
autosomal dominant Rolandic epilepsy is associated with mutations in NEUROG1 (9). A single point 
mutation in the DNA binding domain of TFs has the potential to disrupt their DNA binding preference, 
leading to dysregulated developmental pathways. It is important to note that if these TF mutations cause 
quantitative shifts in base preference within the DNA binding site, these can be functionally relevant 
even when the preferred base remains the same (10). Detecting subtle changes caused by de novo 
mutations requires quantitative protein-DNA binding assays such as SELEX-seq (11) and high 
throughput SELEX (HT-SELEX) (12, 13) or chromatin immunoprecipitation coupled with sequencing 
(ChIP-seq) (14). Such experiments are both labor-intensive and expensive: SELEX-seq experiments 
involve in vitro protein synthesis and multiple rounds of affinity-based selection; ChIP-seq experiments 
require manual collection of animal tissues and immunoprecipitation with antibodies that can vary 
widely in their efficacy. Therefore, the development of a computational prediction model for mutant TF 
binding affinity would greatly facilitate large-scale screening of TF mutations, by reducing the number 
of candidates that need to be tested experimentally to only those predicted to exhibit significant changes 
in DNA binding specificity. 
 
An approximation that treats the effects of base-pair mutations at different positions within the DNA 
binding site as independent (which means additivity of partial binding free energies or, equivalently, 
multiplicativity of relative binding affinities) has long been relied on to parameterize binding specificity 
across all possible DNA ligands (15-18). For a given TF, this amounts to summing up contributions 
from a position-specific energy matrix, where each of the four base types is assigned a row, the length 
of the DNA binding site determines the number of columns, and values are free energy differences 
(ΔΔG in units of RT) associated with base substitutions at a particular position. There have been 
significant recent advances in our ability to estimate such ΔΔG parameters with sufficient accuracy to 
allow functionally meaningful quantification of ultra-low-affinity binding sites (6). In the present study, 
we build on an interpretable machine learning framework, known as ProBound, that was recently 
developed by our lab (18). ProBound allows us to accurately estimate the binding free energy 
parameters that define a TF’s base preferences using data from in vitro binding assays. While it is 
possible to extend this model to account for dependencies between nucleotide positions, the 
improvement in binding energy prediction accuracy over simple position-specific matrix representation 
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is often relatively modest (6, 19). 
 
In this study, we present an analytical framework to dissect the quantitative relationships between base 
preference and TF protein sequence within a given TF structural family. It enables us to systematically 
map the protein features that are the most important determinants of differences in DNA binding 
specificity among TF paralogs. Our method requires as inputs for model training the protein sequences 
of representative transcription factors within the same family along with data from suitable in vitro 
DNA binding assays. Several previous studies also analyzed variation in DNA binding specificity within 
TF families (20-24). However, the availability of large compendia of HT-SELEX data, along with state-
of-the-art biophysically interpretable machine learning methods that can reliably estimate binding 
energy parameters from such data, has opened up new avenues for predicting the effect of TF protein 
sequence variation on DNA binding specificity. As a proof of concept, we here focus on the basic helix-
loop-helix (bHLH) family of TF paralogs, which is widely studied in both eukaryotes and bacteria (25). 
 
 
RESULTS 
 
A compendium of DNA binding specificity models for bHLH transcription factors 
 
bHLH proteins (Figure 1A) function as homo- and/or heterodimers and typically prefer to bind a 
reverse-complement symmetric, or palindromic, core sequence CANNTG (with “N” denoting any of 
the four nucleobases) enhancer box (E-box) sequence (26). We collected 147 in vitro DNA binding 
datasets for the bHLH family from three different studies and used ProBound (18) to obtain 
biophysically interpretable and accurate binding energy models (Figure 1B, C). Because bHLH 
homodimers are expected to have palindromic binding preferences (meaning that the binding free 
energy differences associated with base-pair substitutions are subject to reverse complement symmetry, 
but not that the binding sites themselves need to be palindromic), we configured ProBound to impose 
reverse-complement symmetry on its binding free energy parameters (18). This yielded a binding model 
that matches the symmetrical CANNTG consensus E-box for 96 out of the 147 experiments analyzed, 
covering 54 distinct bHLH proteins (Figure 1B, C). Further filtering for high intrinsic model quality 
(see Methods for details) resulted in a compendium of DNA recognition models for 52 bHLH factors 
(Figure 1D and Supplemental Data S1). For each TF included in this training set, the cloned sequence 
for each protein covers the 56 amino acid bHLH HMMER profile, with a consensus Glu residue at the 
9th position of the protein sequence (25). The preferred DNA binding site is centered on one of three 
E-box variants (CACGTG, CAGCTG, or CATATG) with only a few exceptions. Protein sequences were 
aligned using the HMMER (27) profile of the bHLH family (see Methods); alignment of the DNA 
binding specificity models was trivial thanks to their imposed palindromic symmetry. 
 
Tetrahedron representation of DNA binding specificity 
 
The DNA binding specificity model for each individual TF consists of a set of free energy differences 
ΔΔG, or equivalently, a set of relative affinities, equal to exp(–ΔΔG/RT), for each nucleotide position, 
which together constitute a position specific affinity matrix (PSAM) (28). Directly modeling the ΔΔG 
values in terms of features of the amino acid sequence of the TF would have several drawbacks: Not 
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only can the reference base be different for each TF, but for bases that are strongly disfavored at a given 
position, the inferred ΔΔG values for disfavored bases can show large fluctuations that are not 
biophysically meaningful. To facilitate both the visualization and the quantitative analysis of the DNA 
binding specificity models, we transformed each column of four relative affinity values in the PSAM 
to a point within a three-dimensional tetrahedron, whose vertices correspond to the four possible base 
identities (Figure 2A and Supplemental Data S2). Each column in a PSAM, representing the 
quantitative base preference at a particular position within the DNA binding site for a particular TF, can 
be reversibly mapped to a single 3D position within the tetrahedron (see Methods for details). 
Intuitively, the degree of proximity to each of the vertices reflects the relative preference for the 
corresponding base. More precisely, the binding affinity ratios among the four bases are the same as the 
volume ratios among the four sub-tetrahedrons formed by the internal point and each of the four sides 
of the tetrahedron. This elegantly maps the common redundant four-dimensional representation of base 
preference in terms of energies or affinities to a non-redundant three-dimensional representation. For 
any position within the DNA binding site, the base preferences can be easily visualized for the entire 
gene family, with each point inside the tetrahedron representing a different TF. 
 
Mapping the bHLH protein sequence determinants of DNA binding specificity 
 
As a first step towards performing family-level analysis of how the DNA binding specificity of bHLH 
TFs is determined by their protein sequence, we focused on DNA position –1 in the PSAM for each TF 
and labeled/colored each corresponding point in the tetrahedron according to the amino-acid identity at 
residue position 13 in the protein sequence alignment (Figure 2A). Visual inspection suggests that there 
is a trend for TFs that have an arginine at residue position 13 to prefer binding to DNA sequences with 
a cytosine over the other three bases at nucleotide position –1, while a methionine at the same position 
confers a preference for thymine. A similar visualization can be generated for other combinations of 
DNA binding site position and protein alignment position: When a different residue position is chosen 
in the alignment of TF protein sequences, the coloring of the points in the tetrahedron changes (Figure 
2B); on the other hand, when a different position within the DNA binding site is chosen, the position of 
each point changes (Figure 2C). 
 
To systematically dissect the relationships between amino-acid identity at residue positions in the bHLH 
protein sequence alignment and the base preferences at nucleotide positions within the DNA binding 
site in a way that addresses statistical significance, we performed a series of multidimensional analysis 
of variance (MANOVA) tests. Each MANOVA analyzes the positions of points within the tetrahedron 
that represented the binding affinities at a specific motif position. The three-dimensional tetrahedral 
coordinate plays the role of dependent variable in these tests, while the (categorical) independent 
variable is the amino-acid identity at a given position in the TF protein alignment. For each combination 
of TF and DNA positions, the MANOVA yields a p-value that quantifies the significance of the 
statistical association between the protein and DNA positions. It is important to note that since the 
binding model is symmetrical, the p-values for nucleotide positions –1, –2, and –3 are the same as +1, 
+2, and +3, respectively, for the corresponding residue position (Figure 2D). We found that of the 56 
residue positions in the bHLH protein alignment, 12 are significantly associated with base preference 
at nucleotide position –1/+1 (α < 0.01 after Bonferroni correction (29)). Visualizing the p-values from 
the MANOVA test along the structure of PHO4 (Figure 2E) shows that, as expected, the residues in 
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direct contact with the DNA major groove (e.g., positions 5, 13, and 14) tend to have the most significant 
associations. Base preference at nucleotide position –1/+1 is greatly influenced by amino acid identity 
at residue position 13 (Figure 2F), consistent with the fact that in PHO4, the sidechain of Arg13 directly 
interacts with the base-pairs at position –1 and +1 through hydrogen bonds that are known to be crucial 
for standard E-box preference (30, 31). Available structures of bHLH-DNA complexes with other amino 
acids at residue position 13 also provide a mechanistic rationale for the observed difference in base 
preference (Figure 2G-I). 
 
Predicting DNA binding specificity from TF protein sequence within the bHLH family 
 
Beyond identifying positional correlations across the protein-DNA interface, the tetrahedron 
representation provides a natural starting point for predicting the effect of protein mutations on DNA 
binding specificity in a quantitative manner. For example, to estimate the effect of a point mutation 
from Arg to Val at residue position 13 in the bHLH domain on base preference at nucleotide position –
1/+1, we can compute the centroid of all TFs with Arg13 or Val13, respectively (Figure 3A, B), and 
then use the vector connecting the two centroids as a predictor of the change in binding specificity upon 
R13V mutation of any bHLH protein that contains an Arg at position 13. 
 
To generalize this approach so that predictions can be made for any TF in the bHLH family, two issues 
need to be addressed. First, we would like to define a tetrahedral coordinate frame in a data-driven way, 
so that it optimally reflects the variation in chemical features that drives the interactions between amino-
acid side chains and the DNA ligand. Second, we need to account for the fact that evolutionary selection 
has created dependencies between amino-acid identities at distinct residue positions, which can 
confound the analysis when using multiple protein features simultaneously as a predictor of base 
preference. For instance, it would not be accurate to simply add up the individual effects of two residue 
positions that are in perfect linkage disequilibrium with each other. 
 
The solution we settled on was to first perform a principal component analysis (PCA) of the cloud of 
points within the tetrahedron (see Methods for details). Each of the three principal components defines 
a natural direction within the tetrahedron onto which variation in base preference can be projected 
(Figure 4A). Grouping TFs by amino-acid identity at a given residue position again reveals 
interpretable patterns (Supplemental Data S3). For instance, TFs with protein feature Arg13 and Val13, 
respectively, are on opposite ends of the spectrum for PC1 (Figure 4B). By performing a (one-
dimensional) ANOVA for each individual principal component, its informative residue positions can be 
mapped (Figure 4C and Supplemental Data S4). The difference between the mean across all TFs and 
the mean of the subset that matches a specific protein sequence feature such as Arg13 reflects a shift in 
base preference associated with that feature. To predict the base preference for a particular TF, we 
performed iterative feature selection using an F-test p-value threshold for each PC to decide if an added 
feature is contributing to the model. In this way, the collinearity between protein features reflecting the 
evolutionary history of the bHLH was appropriately dealt with (see Methods for details). 
 
As an initial test of this scheme, we performed leave-one-out cross-validation across the bHLH family, 
in which we built an PCA-regression model from all TFs except one, and then used this model to predict 
the tetrahedral position of the held-out TF. The prediction accuracy was 0.7625 in terms of coefficient 
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of determination (R2) and 0.5796 in terms of root-mean-squared deviation (RMSD) of ΔΔG/RT (Figure 
4D). This result exceeds what we observed for a subset of 40 bHLH factors for which we had access to 
two HT-SELEX replicates (R2 = 0.7167, RMSD = 0.5389, Figure 4E). We also compared to a previous 
approach (32) in which the binding specificity of the closest paralog in the same family for which data 
is available was taken as the prediction (Figure 4F). Our PCA-regression model outperforms this 
scheme by a significant margin (R2 = 0.6879, RMSD = 0.6832, bootstrap t-test p-value < 10–32), and in 
addition provides detailed information about the specific effect of individual protein features on DNA 
binding preference. 
 
Experimental validation using unseen mutants of HES2 and ASCL2 
 
Validation of our prediction method so far has focused on predicting DNA binding specificity for held-
out members of a given TF family. Since high-throughput in vitro binding data is available for most 
human TFs (13, 33, 34), a more useful application is to predict the effect on DNA binding specificity 
associated with natural non-synonymous mutations in TF protein sequence or engineered sequences. 
The number of TF variants in the human population is too large for an experimental approach to be 
practical.  
 
To validate our prediction model for TF variants, we performed SELEX-seq experiments on two wild-
type bHLH proteins: HES2, which energetically prefers the standard E-box CACGTG (cytosine at 
position –1), and ASCL2, which prefers the E-box variant CAGCTG. Among other differences, wild-
type HES2 contains Lys5 and Arg13 whereas wild-type ASCL2 has Arg5 and Val13 (see Figure 5A). 
We performed additional SELEX-seq assays for the four single mutants HES2(K5R or R13V) and 
ASCL2(R5K or V13R) and two double mutants HES2(K5R+R13V) and ASCL2(R5K+V13R). 
 
As a check on data quality, we first applied ProBound (18) to the SELEX-seq data for wild-type HES2 
and ASCL2. As expected, the resulting models (Figure 5B) were similar to the ones previously obtained 
from HT-SELEX data for the same TFs (Figure 5C). Next, we used our SVD-regression approach to 
predict the base preferences at nucleotide position –1/+1 for the HES2 and ASCL2 mutants. Both single 
mutants for HES2 are predicted to retain their preference for the standard E-box CACGTG, while the 
double mutant is predicted to have a more pronounced shift in preference to the alternative E-box 
CAGCTG (Figure 5D). On the other hand, for ASCL2, the individual mutations are projected to reduce 
the preference for the alternative E-box motif, and the double mutant to switch preference to the 
standard E-box. 
 
To experimentally validate these predictions in a targeted manner, we performed electrophoretic 
mobility shift assays (EMSAs) on wild-type and mutant ASCL2 proteins using radioactively labeled 
DNA probes containing either a standard or an alternative E-box (see Methods for details). Consistent 
with our family-based model predictions, these assays showed that the V13R single mutant and the 
R5K/V13R double mutant of ASCL2 had higher affinity for the canonical E-box (CACGTG) than the 
alternative E-box (CAGCTG) preferred by wild-type ASCL2 and its R5K mutant (Figure 5E). The 
difference in the ratio between the bound and unbound band between the CACGTG and CAGCTG 
probes can be used to obtain an experimental estimate of ΔΔG (Figure 5F). The binding free energy 
difference (ΔΔG/RT) between CACGTG and CAGCTG equals –2.12 ± 0.30 for wild type ASCL2, –
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2.79 ± 0.55 for the R5K mutant of ASCL2, 1.82 ± 2.02 for the V13R mutant, and 2.10 ± 1.18 for the 
double mutant. 
 
Next, to more rigorously evaluate the performance of our SVD-regression approach on mutant TFs, we 
used a model trained on all available wild-type bHLH data to predict the DNA binding specificity of 
HES2 and ASCL2 mutants. Predicted ΔΔG values for the central nucleotide positions –1 and +1 were 
highly correlated with ΔΔG inferred from our SELEX-seq data using ProBound (R2 = 0.5852, RMSD 
= 0.5798; Figure 4G), illustrating the promise of our approach. 
 
 
DISCUSSION 
 
In this study, we achieved an encouraging level of accuracy when predicting the binding specificity of 
mutant bHLH proteins. Our family-level analysis strategy can also be applied to other protein families 
to identify key residue positions that affect DNA binding and generate a recognition scheme for residue 
type-base pair interactions. Since the prediction model is structure-agnostic, future research would no 
longer need to rely on crystal structures to gain functional insights into DNA binding. This would enable 
the identification of DNA-binding-associated residues in unstructured regions of a TF, such as the linker 
domain consisting of random coils or a protein interaction domain far from DNA. The interpretable 
nature of our prediction model allows for predicting DNA binding specificities and dissecting the 
biophysical mechanisms underlying binding preferences. It could facilitate future research in designing 
mutant TFs with specific DNA binding motifs for applications in gene regulation drugs or DNA pull-
down mediators. 
 
Our approach is innovative in several regards. Previous research on protein-DNA binding has primarily 
focused on one of two approaches: starting from the binding structure and assessing the association 
between residues and bases, or constructing a mechanism-agnostic machine learning model that predicts 
the binding affinities of protein-DNA pairs using arbitrary features (15, 23, 35-38). These approaches 
often incorporate structural features and other high-level parameters, neglecting the fact that the protein 
sequence alone can provide sufficient information for functional prediction. The framework presented 
in this study takes a structure-agnostic approach yet offers mechanistic insights throughout the analysis. 
This is particularly valuable in identifying protein sequence determinants of DNA binding in 
dimerization or linker domains. 
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METHODS 
 
Collecting HT-SELEX data for training bHLH binding models 
 
The training set data used in this study consisted of HT-SELEX data for all TFs annotated as belonging 
to the bHLH family from three publications of the Taipale lab (13, 33, 34). For (34), we only used the 
unmethylated library and ignored reads corresponding to methylated DNA ligands. This yielded a total 
of 121 multi-round HT-SELEX datasets covering 62 distinct bHLH proteins. 
 
Constructing binding free energy models using ProBound 
 
For each of the 121 HT-SELEX datasets, we ran ProBound (http://github.com/RubeGroup/ProBound 
and Ref. (18)) using the JSON configuration file in Supplemental Data S5. We filtered by model 
quality based on the following two heuristic criteria: (i) sufficient ability of the model to predict 
sequence enrichment at the level of 8-mers (R2 > 0.15), and (ii) a base preference pattern consistent 
with the E-box consensus CANNTG in the center of the binding energy model. A total of 97 models 
passed these criteria. An bHLH factor was assigned the binding model with the highest R2 value if 
multiple models for it passed the quality filter. Our final bHLH binding model compendium comprised 
52 distinct bHLH proteins. 
 
Tetrahedron representation of DNA binding energies 
 
In the position-specific affinity matrix (PSAM) representation for a given TF (28), each column 𝑗 
corresponds to a different position within the DNA binding site, each row 𝑏 to a different base, and 
each element 𝑤!" to the affinity relative to the preferred base 𝑏#(𝑗) at position 𝑗 (this implies that 
𝑤!"!(!) = 1 for the preferred base at each position). To map the four relative affinities in a column of 
the PSAM to a 3D position within the tetrahedral embedding space, the relative affinities are first 
normalized to frequencies 𝑓!" =	𝑤!"/+∑ 𝑤!"&"& -. In a subsequent transformation step, the transpose of 
the frequency matrix is multiplied by a 4x3 tetrahedral transformation matrix: 

𝑣! =	 /𝑣!'		𝑣!(		𝑣!)0 = 	 /𝑓!*		𝑓!+ 		𝑓!, 		𝑓!-0 	× 	 2
+1 +1 +1
+1 −1 −1
−1 +1 −1
−1 −1 +1

5 

This operation maps each PSAM column containing four elements to the Cartesian coordinates (𝑥, 𝑦, 𝑧) 
within a tetrahedron. Note that the tetrahedron has corners located at positions (1, 1, 1), (1, −1,−1), 
(−1, 1, −1), and (−1,−1, 1), corresponding to a strict preference for A, C, G, and T, respectively. 
 
Alignment of bHLH protein sequences 
 
The protein sequences of bHLH transcription factors were obtained from the cloned sequence tables 
provided by (13, 33, 34) and aligned using the multisequence alignment function provided by Clustal 
Omega. The resulting sequence alignment is consistent with PFAM entry PF00010 
(https://www.ebi.ac.uk/interpro/entry/pfam/PF00010/), with amino-acid positions in the range 1-56. 
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MANOVA analysis 
 
A series of MANOVA tests were performed to examine the association across all bHLH factors between 
amino acid identity (independent variable) at a given residue position in the protein alignment and 
tetrahedral position (dependent variable) reflecting the base preferences for a given position in the DNA 
binding model. For each combination of residue position and DNA position, we used the 
summary.manova() function in R, with the F-statistic computed using the Pillai-Barlett trace test. The 
null hypothesis is that the mean tetrahedral position is the same for all amino acids. 
 
bHLH replicate comparisons used as reference for predictions 
 
Of the 52 unique bHLH proteins, 36 had two replicates available (when more than two replicates were 
available, we chose the two with best correlation between predicted and observed 8-mer enrichment). 
The ΔΔG/RT estimates from the binding model for these replicates were compared to obtain a reference 
for predictive performance. 
 
Definition of closest paralog for predicting binding specificity 
 
For each of the 52 bHLH proteins that was held out, the protein with the smallest Levenshtein distance 
in terms of protein sequence was selected from the remaining 51 sequences. These ΔΔG/RT estimates 
from the binding model for this closest paralog were then used as predicted values. 
 
Construction of SVD-regression model 
 
To perform SVD regression for a given DNA position, we first constructed a tetrahedral coordinate 
matrix 𝑀 whose three columns correspond to the coordinates of the 3D space in which the tetrahedron 
is embedded, and whose rows correspond to the set of bHLH proteins analyzed. The 52x3 matrix 𝑀 
was centered by subtracting the column mean from each value. Next, we performed singular value 
decomposition (SVD): 𝑀 = 𝑈𝐷𝑉-using the base function svd() in R. The columns of 3x3 matrix 𝑉 
define a natural data-driven basis for the vector space inside the tetrahedron, while the columns of U 
correspond to the projection of the points inside the tetrahedron along each of these principal component 
(PC) directions. 
 
For each PC we separately constructed a linear regression model that predicts the position of an unseen 
bHLH factor from its protein sequence. Each residue position in the bHLH multiple alignment 
corresponds to a feature that could be used as a predictor. The importance of each of the 168 features 
(56 residue positions × 3 PCs) was assessed using an ANOVA test implemented using the aov() 
function in R, with the amino acid identity as the independent variable and the values in each column 
of 𝑈 as the dependent variable. Each residue position is associated with three p-values, one for each 
PC. For each PC, we ranked the protein features by their ANOVA p-value, and iteratively selected for 
the features to include. For each PC, we started by fitting a linear regression model based on a single 
feature. Next, we compared with a linear model using an additional feature. Along as the p-value of the 
F-test was below 0.05, indicating a significant improvement in variance explained, we included the 
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additional feature in our model, and proceed to the next feature. 
 
To compare the significance level between the prediction to label R2 and RMSD values between the 
SVD-regression model and the closest sequence method. A set of 52 trials each with one left-out sample 
was performed using each model, and a t-test was used to obtain the p-value between the set of 52 
paired R2 and RMSD values. 
 
Wildtype and mutant HES2 and ASCL2 protein expression 
 
ASCL2 and HES DNA binding domain (DBD) sequences were expressed based on the cloned 
sequences described in (34). To create mutant proteins, site-directed PCR was performed using primers 
containing mutations at the 5th and 13th residue positions. Both ASCL2 wildtype and mutants were 
tagged with mScarlet to enhance solubility. Affinity purification was carried out for both HES2 and 
ASCL2 wildtype and mutants using a poly-histidine tag. 
 
For HES2, the wildtype and mutant sequences were cloned into the pQE30 vector and expressed in 
BL21 cells. Standard procedures were followed for protein purification, with the exception of using a 
low Imidazole wash buffer instead of the regular wash buffer. The lysis buffer remained unchanged 
throughout the process. The final concentration of HES2 obtained was 17±3μM for wildtype and R5K 
mutant and 70±20μM for R13V and double mutant. 
 
For ASCL2, the wildtype and mutant sequences were cloned into the pET11 vector and expressed in 
BL21 cells. Similar to HES2, the proteins were purified using standard procedures, with the use of a 
low Imidazole wash buffer. The lysis buffer for ASCL2 also remained unchanged. The final 
concentrations obtained were 14±1 μM for ASCL2 wildtype and mutants. 
 
SELEX assays 
 
SELEX experiment were performed following the protocol outlined in Riley, et al. (11) and a SELEX 
library with a 16-mer randomized region whose full sequence is as follows: 

GTTCAGAGTTCTACAGTC-CGACCTAA-16N-TTAGG-ACTCGGACCTGGACTAGG 
The libraries were double strand DNA annealed and extended with Klenow polymerase. 66nM of HES2 
and ASCL2 wildtype and mutant proteins was added to each DNA binding reaction.  
 
EMSA assays were performed alongside the SELEX reactions to define the position of the bound band 
in the gel. The high-affinity probes for HES2 and ASCL2 binding, respectively, were as follows: 

HES2  CTCTCCTCCGTCAACACGTGTTGAGCAGCGCAGTCGTATGCCGTCTTCTGCTTG 
ASCL2  CTCTCCTCCGTCAACAGCTGTTGAGCAGCGCAGTCGTATGCCGTCTTCTGCTTG 

50nM of probe was added to 150 nM of ASCL2 wildtype protein and 150 nM of HES2 wildtype protein 
to locate the bands. The bound band was cut out, purified, PCR amplified, and sequenced with Illumina 
sequencing according to protocol of a previous study (39). 
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SELEX data analysis 
 
The raw FASTQ files for each of the eight protein samples were analyzed using the R/Bioconductor 
package SELEX (11). An 8mer enrichment analysis was performed on all protein samples, and each 
unique 8mer sequence was assigned an affinity score relative to the most enriched 8mer. 
 
To compare the relative enrichment of the CACGTG 6mer and CAGCTG 6mer for each protein sample, 
8mer pairs were selected based on the following criteria: both contain a CANNTG E-box and are 
identical except for a CG/GC difference in the NN position. For instance, an example of an 8mer pair 
would be ATCACGTGAA and ATCAGCTGAA. All 8mer pairs that fulfilled these requirements were 
collected for each protein sample, and their affinity scores were plotted against each other. 
 
ProBound (18) was applied for all 8 protein samples to construct binding free energy models using the 
JSON configuration file in Supplemental Data S5, resulting in symmetrical motif matrices with a 
CANNTG E-box core. 
 
Wildtype and mutant ASCL2 EMSA experiment 
 
EMSA assays were performed using ASCL2 wildtype and mutant protein and 32P-labeled DNA probes. 
Protein samples were prepared using the same procedure as above. The DNA probes used, however, 
were different to avoid affinity towards the flanking regions: 
CACGTG probe: TAGCCAATAACTTCGTCCCTCACGTGCATATAAGGAAGATCTAACCACCAATTTGG 
CAGCTG probe: TAGCCAATAACTTCGTCCCTCAGCTGCATATAAGGAAGATCTAACCACCAATTTGG 
Each probe was synthesized with P32 labeled SRI sequence through annealing and Klenow reactions.  
 
50nM of probe was combined with 500nM, 1μM, and 2μM of protein, respectively, in each binding 
reaction, and the same reagents as used in Ref. (40). The mixture was loaded into a polyacrylamide gel 
after 30 minutes of reaction time. An EMSA gel was run for 90 minutes at 4 degrees with 150mA current, 
and dried and imaged using a phosphor-imaging plate and Typhoon gel imager. 
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FIGURES 

 

 
Figure 1: Variation in DNA binding preference within the helix-loop helix (bHLH) family of 
transcription factors. (A) Structure of the representative homodimeric bHLH transcription factor Pho4 
bound to DNA. (B) We analyzed high-throughput (HT-SELEX) in vitro DNA binding data for 62 
distinct human bHLH proteins. The Venn diagram shows the overlap among the TFs covered by each 
of the data sources (13, 33, 34). (C) Phylogenetic relationship among the bHLH proteins in our training 
set. (D) Aligned protein sequences and DNA binding energy logos for a representative set of bHLH 
factors, grouped by preferred E-box core. 
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Figure 2: Family level analysis uncovers protein sequence determinants of DNA binding 
specificity. (A-C) Tetrahedron representation of base preference at DNA position –1 (panel A, B) or –
3 (panel C). Each point represents a different bHLH factor, and is colored according to the amino acid 
identity at protein position 13 (panel A, C) or 5 (panel B). (D) Heatmap showing the p-value from a 
MANOVA test between amino-acid identity and position within the tetrahedron. (E) Statistical 
significance at position –1 shown in the context of the co-crystal structure for Pho4 (red denotes 
significant p-values). (F) Detailed view of the interaction between Arg13 and a GC base pair at motif 
position +1. The Arg13 sidechain is colored in cyan. The E-box is shown in magenta using DNA blocks. 
(G-I) Additional examples of interactions between amino-acids and base pairs at residue position 13 
and DNA position +1. Structural images generated using 3DNA/DSSR (x3dna.org). Hydrogen bonds 
are shown as pink dashed lines.  
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Figure 3: Predicting shifts in DNA binding preference associated with specific protein sequence 
features. (A-B) Protein alignment and binding motif of select bHLH proteins with either Arg (panel A) 
or Val (panel B) at residue position 13 (highlighted by red box). The energy logos and tetrahedron plots 
and the right show the base preference at DNA position –1 (red box). Arrows in the tetrahedrons indicate 
the shift relative to the overall centroid associated with the Arg13 and Val13 subset, which can again be 
represented by an energy logo (far right). 
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Figure 4: Using PCA-regression to predict the binding specificity of mutated bHLH proteins. (A) 
Principal component analysis of the set of tetrahedral coordinates defines a natural coordinate frame for 
each DNA position. (B) Empirical cumulative distribution of tetrahedral position along each principal 
component direction for DNA position –1, with points colored according to the amino-acid identity at 
protein position 13. (C) Statistical significance of ANOVA test covering all PCs over each protein 
position at DNA position –1/+1. (D) Direct comparison between predicted and observed binding free 
energy parameters . (E) Comparison between observed values for two replicates of the same TF. (F) 
Comparison in which the predicted value of the binding energy parameters is that of the closest paralog 
in the dataset. (G) Direct comparison between predicted and observed binding free energy parameters 
for HES2 and ASCL2 mutants. 
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Figure 5: in vitro binding assays of single/double mutation in HES2 and ASCL2. (A) Illustration 
of HES2 and ASCL2 sequences and positions of mutations. (B) Binding energy calculation by 
ProBound using 1st round SELEX of High-throughput SELEX performed by Yin et al. (34). (C) 
Binding energy calculation by ProBound on WT HES2 and ASCL2. (D) Experimental and predicted 
binding energy of HES2 and ASCL2 single and double mutants at motif position –1/+1. (E) EMSA 
experiment on WT and mutant ASCL2 binding with CACGTG and CAGCTG probes. (F) Scatter plot 
of ΔΔG value by mutating from CACGTG to CAGCTG calculated with ProBound models from 
SELEX-seq experiment against ΔΔG values calculated from EMSA gel band intensity. 
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